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Abstract: This paper presents an interactive approach for solving multi-level multi-objective quadratic fractional programming

problems with fuzzy parameters in the constraints. Firstly, the concept of α-cut is applied to transform the fuzzy mathematical

problem into a common deterministic one. Then, the quadratic fractional objective functions in each level are transformed into

non-linear objective functions based on a proposed transformation. Secondly, the interactive approach was extended to solve such

problem. Finally, an illustrative numerical example is introduced to demonstrate the applicability and performance of the proposed

approach.
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1 Introduction

Hierarchical decision structures are prevalent in government systems, competitive economic organizations, supply
chains, agriculture, biofuel production, and so on Baky [1]. The area of multi-level mathematical programming (MLMP)
provides the art and science of making such decisions. Several mathematical models for such problems have been
exhibited [2,3,4,5,6]. The fundamental idea of MLMP methodology is that the first-level decision maker (FLDM)
decides his/her objectives and/or choices, hence, asks each inferior level of the association for their solutions, which
obtained individually. The lower level decision makers’ choices are then presented and altered by the FLDM in light of
the general advantage for the association [1,2].

As of late, MLMP has been deeply deliberated and several methods have been exhibited for solving such problems
[1,7,8,9,10]. An interactive algorithm for bi-level decision-making problem has been proposed by Shi and Xia [11].
Interactive fuzzy programming has been extended by Sakawa et al. [12] to thoroughly consider in MLMP problems with
fuzzy parameters. The balance space approach was extended to solve MLMP problems by Abo-Sinna and Baky [2]. Baky
[13] presented fuzzy goal programming (FGP) methodology to takle decentralized bi-level programming problems (BL-
PP). A further extension of the FGP approach for BL-PP with fuzzy demands was considered by Baky et al. [14]. Chen
and Chen utilized a fuzzy variable for relative satisfactions among leader- and –follower to solve the decentralized BL-PP
[7]. Arora and Gupta exhibited interactive FGP methodology for BL-PP with the merits of dynamic programming [15].

Fractional programming deals with the optimization of one or more ratios of functions subject to set constraints. Over
the past four decades, fractional programming has become one of the planning tools. It is routinely applied in engineering,
business, finance, economics and other disciplines [16,17,18,19].
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During the past few decades, MLMP [1,2,7] as well as bi-level mathematical programming (BLMP) problems
[13,15,16,20] have been deeply studied and many methodologies have been developed for solving such problems. The
use of the concept of the membership function of fuzzy set theory to multi-level programming problems for satisfactory
decisions was first presented by Lai in [21]. Sakawa et al. [19] developed interactive fuzzy programming for MLMP with
fuzzy parameters. Also, Abo-Sinna and Baky [2] presented balance space approach for multi-level multi-objective
programming problems. Baky [13] studied FGP algorithm for solving a decentralized bi-level multi-objective
programming problem.

Pramanik and Roy [22] adopted fuzzy goals to specify the decision variables of higher-level DMs and proposed
weighted/ unweighted FGP models for solving MLMP to obtain a satisfactory solution. Arora and Gupta [15] extended this
approach by employing dynamic programming to solve the FGP model in sequence for bi-level programming problems.
Multi-level decision-making problems were recently studied by Chen and Chen [7].

The optimization of ratios of criteria gives more insight into the situation than the optimization of each criterion.
Indeed, in such situations, it is often a question of optimizing a ratio debt/equity, output/employee, actual cost/standard
cost, profit/cost, inventory/sales, student/cost, doctor/patient, and so on subject to some constraints [12,12,17,19]. Such
type of problems in large hierarchical organizations of complex and conflicting multi-objectives formulate ML-MOFP
problems. Recently Lachhwani [9] proposed FGP approach presented by Baky [1] with some modifications for ML-
MOFP problems. Baky et al. [17] presented fuzzy goal programming procedures to bi-level multi-objective fractional
programming. Also, computer-oriented technique was extended by Helmy et al. [23] to solve a special class of ML-MOFP
problems.

When ML-MOFP problems are being formulated, the parameters of objective functions and constraints are normally
assigned by experts. In most real situations, the possible values of these parameters are imprecisely or ambiguously known
to the experts. Therefore, it would be more appropriate for these parameters to be represented as fuzzy numerical data
that can be represented by fuzzy numbers [12,14,24]. The resulting mathematical programming problem involving fuzzy
parameters would be viewed as a more realistic version than the conventional one. From this viewpoint, the parameters
involved in the objective functions and the constraints of the ML-MOFP problem are assumed to be characterized by
fuzzy numbers.

The current research presents an interactive approach for solving multi-level multi-objective quadratic fractional
programming problems with fuzzy parameters in the constraints.

The remainder of this paper is organized as follows: the next section introduces the formulation of the problem;
section 4 gives the formulation of crisp set of constraints and solution concept; in section 5 an illustrative example will be
introduced.

2 Problem Formulation

Consider the hierarchical system be composed of a p-level DM. Let the DM at the ith-level denoted by DMi controls over
the decision variable xxxiii = (xi1,xi2, · · · ,xini

) ∈ Rni , i = 1,2, · · · , p. where xxx = (xxx111,xxx222,,, · · ·,,,xxxppp) ∈ Rn and n = ∑
p
i=1 ni and

furthermore it is assumed that

Fi (xxx111,xxx222,,, · · ·,,,xxxppp)≡ Fi (xxx) : Rn1× Rn2×·· ·×Rnp→Rki , i=1, · · · , p, (1)

are the vector of quadratic fractional objective functions for DMi, i = 1,2, · · · , p. Mathematically, ML-MOQFP problem
with fuzzy parameters in the constraints follows as [1,3,23]:

[[[111sssttt LLLeeevvveeelll]]]

max︸︷︷︸
xxx111

F1 (xxx) =
xxxTTT Q1 jxxx+++ ccc111 jjjxxx+++α1 j

xxxTTT R1 jxxx+++ddd111 jjjxxx+++β 1 j
, j = 1,2, · · · ,k1, (2)

where xxx222,xxx333, · · · , xxxppp solves

[[[222nnnddd LLLeeevvveeelll]]]

max︸︷︷︸
xxx222

F2 (xxx) =
xxxTTT Q2 jxxx+++ ccc222 jjjxxx+++α2 j

xxxTTT R2 jxxx+++ddd222 jjjxxx+++β 2 j
, j = 1,2, · · · ,k2, (3)

...
where xxxppp solves
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[[[pppttthhh LLLeeevvveeelll]]]

max︸︷︷︸
xxxppp

Fp (xxx) =
xxxTTT Qp jxxx+++ cccppp jjjxxx+++α p j

xxxTTT Rp jxxx+++dddppp jjjxxx+++β p j
, j = 1,2, · · · ,kp, (4)

subject to

xxx ∈ G̃ =
{

xxx ∈ Rn
∣∣∣ Ã1xxx111 + Ã2xxx222 + · · ·+ Ãpxxxppp ≤ b̃bb, xxx = 0, b̃bb ∈ Rm

}
, (5)

where Qi j is an n× n negative definite matrix, Ri j is an n× n positive semi-definite matrix ccci j, dddi j are n-vectors, ÃAAiii

is an m× ni, i = 1,2, · · · , p fuzzy matrices and b̃bb is an m-vector of fuzzy parameters. It is customary to assume that
Di j (xxx) >>> 0,,, ∀∀∀ xxx ∈∈∈ G̃, also α i j and β i j are constants and G̃ represents the multi-level convex constraints feasible choice
set in the fuzzy environment.

3 Formulation of Crisp Set of Constraints and Solution Concept

Let µ
ÃAAiii

, and µ
b̃bb

be the membership functions which represents the fuzzy coefficients matrices ÃAAiii and the fuzzy numbers

in the corresponding vector b̃bb in model (2− 5) respectively. The α-cuts of ÃAAiii and b̃bb are defined as [7,14,20,21,24]:

(AAAiii)α =
{

AAAiii ∈
[
(AAAiii)

L
α , (AAAiii)

U
α

] ∣∣∣ µ
ÃAAiii
≥ α, AAAiii ∈ S

(
ÃAAiii

)}
, (6)

(bbb)α =
{

bbb ∈
[
(bbb)L

α , (bbb)
U
α

] ∣∣∣ µ
b̃bb
≥ α, bbb ∈ S

(
b̃bb

)}
, (7)

where S
(

b̃bb
)

, and S
(

ÃAAiii

)
are the supports of the corresponding vectors and matrix of fuzzy numbers.

Let α ∈ [0,1] , be the grade of satisfaction associated with the set of constraints of the ML-MOQFP problem. The
fuzzy constraints in (5) are to be understood with respect to the ranking relation ∑n

j=1 Ãi jx j ≤α b̃i, between the fuzzy

vectors. Thus, for α ∈ [0,1], the feasible set of the ML-MOQFP problem can be described as:

xxx ∈ GGGα =

{
xxx ∈ Rn

∣∣∣∣∣
∑n

j=1

(
Ãi j

)U

α
x j ≤

(
b̃i

)U

α
, x j = 0

∑n
j=1

(
Ãi j

)L

α
x j ≤

(
b̃i

)L

α
,,, i = 1,2, · · · ,m

}
(8)

3.1 Nonlinear Model Development of ML-MOQFP Problem

Now, we make further extensions on the article of Lachhwani [9], to develop a methodology for obtaining the equivalent
non-linear model of the ML-MOQFP problem. Since the MOQFP problem for the ith-level DM may be written as [9,22]:

max︸︷︷︸
xxxiii

Fi (xxx) = max︸︷︷︸
xxxiii

(
fi1 (xxx) , fi2 (xxx) , · · · , fiki

(xxx)
)
, (9)

subject to

xxx ∈ GGGα =

{
xxx ∈ Rn

∣∣∣∣∣
∑n

j=1

(
Ãi j

)U

α
x j ≤

(
b̃i

)U

α
, x j = 0

∑n
j=1

(
Ãi j

)L

α
x j ≤

(
b̃i

)L

α
,,, i = 1,2, · · · ,m

}
(10)

where

fi j (xxx) =
Q

i j
1 xxx222

111 +++Q
i j
2 xxx222

222 +++ · · ·+++Q
i j
p xxx222

ppp +++ ccc
iii jjj

111
xxx111 +++ · · ·+++ ccc

iii jjj
ppp xxxppp +++α i j

R
i j
1 xxx222

111
+++R

i j
2 xxx222

222
+++ · · ·+R

i j
p xxx222

ppp +++ddd
iii jjj

111
xxx111 +++ · · ·+++dddiii jjj

ppp xxxppp +++β i j
∀ i, j (11)

Thus, for the sake of simplicity in this chapter we employ the representation of eq. (11) in order to deal with the
ML-MOQFP problem. Let us take the transformation [5,6]:

yi j =
1

R
i j
1 xxx222

111
+++R

i j
2 xxx222

222
+++ · · ·+R

i j
p xxx222

ppp +++ddd
iii jjj

111
xxx111 +++ · · ·+++dddiii jjj

ppp xxxppp +++β i j
, (12)
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which is equivalent to:

yi j
(

R
i j
1 xxx222

111 +++R
i j
2 xxx222

222 +++ · · ·+Ri j
p xxx222

ppp +++ddd
iii jjj

111
xxx111 +++ · · ·+++dddiii jjj

ppp xxxppp +++β i j
)
= 1, (13)

So, each quadratic fractional objective function is transformed into the following nonlinear function:

fi j (xxx,y) =
(

Q
i j
1 xxx222

111 +++Q
i j
2 xxx222

222 +++ · · ·+++Qi j
p xxx222

ppp +++ ccc
iii jjj

111 xxx111 +++ · · ·+++ ccc
iii jjj
ppp xxxppp +++α i j

)
yi j (14)

Based on the equation (14), the nonlinear model of the MOQFP problem for ith level decision maker is formulated as
follows:

max︸︷︷︸
xxxiii

[
Q

i j
1 xxx222

111 +++Q
i j
2 xxx222

222 +++ · · ·+++Qi j
p xxx222

ppp +++ ccc
iii jjj

111
xxx111 +++ ccc

iii jjj

222
xxx222 +++ · · ·+++ ccc

iii jjj
ppp xxxppp +++α i j

]
yi j, (15)

subject to

yi j
[
R

i j
1 xxx222

111 +++R
i j
2 xxx222

222 +++ · · ·+Ri j
p xxx222

ppp +++ddd
iii jjj

111
xxx111 +++ · · ·+++dddiii jjj

ppp xxxppp +++β i j
]
= 1, ∀i, j (16)

n

∑
j=1

(
Ãi j

)U

α
x j ≤

(
b̃i

)U

α
, x j = 0 (17)

n

∑
j=1

(
Ãi j

)L

α
x j ≤

(
b̃i

)L

α
,,, i = 1,2, · · · ,m (18)

Following the above discussion thus, the nonlinear model of the ML-MOQFP problem is formulated as follows [3,5]:
[[[111sssttt LLLeeevvveeelll]]]

max︸︷︷︸
xxx111

F1 (xxx,y) = max︸︷︷︸
xxx111

(
f11 (xxx, y) , f12 (xxx, y) , · · · , f1k1

(xxx, y)
)
, (19)

where xxx222,xxx333, · · · , xxxppp solves

[[[222nnnddd LLLeeevvveeelll]]]

max︸︷︷︸
xxx222

F2 (xxx, y) = max︸︷︷︸
xxx222

(
f21 (xxx, y) , f22 (xxx, y) , · · · , f2k2

(xxx, y)
)
, (20)

...
where, xxxppp solves

[[[pppttthhh LLLeeevvveeelll]]]

max︸︷︷︸
xxxppp

Fp (xxx, y) = max︸︷︷︸
xxxppp

(
fp1 (xxx, y) , fp2 (xxx, y) , · · · , fpkp

(xxx, y)
)
, (21)

subject to

yi j
[
R

i j
1 xxx222

111 +++R
i j
2 xxx222

222 +++ · · ·+Ri j
p xxx222

ppp +++ddd
iii jjj

111
xxx111 +++ · · ·+++dddiii jjj

ppp xxxppp +++β i j
]
= 1, ∀i, j (22)

n

∑
j=1

(
Ãi j

)U

α
x j ≤

(
b̃i

)U

α
, x j = 0 (23)

n

∑
j=1

(
Ãi j

)L

α
x j ≤

(
b̃i

)L

α
,,, i = 1,2, · · · ,m (24)

where

fi j (xxx,y) =
[
Q

i j
1 xxx222

111 +++Q
i j
2 xxx222

222 +++ · · ·+++Qi j
p xxx222

ppp +++ ccc
iii jjj

111
xxx111 +++ · · ·+++ ccc

iii jjj
ppp xxxppp +++α i j

]
yi j, (25)

and the system of constraints in (22)-(24), at an α-level denoted by SSSα , which form a nonempty convex set.
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3.2 Interactive Approach for ML-MOQFP Problem with Fuzzy Parameters in the constraints

After the crisp nonlinear model of the problem, equations (19)-(24), is developed at a desired value of α , then the
interactive approach is used to solve the nonlinear model. In the interactive mechanism, as explained previously
obtaining the preferred solution mainly based on the ε-constraint method and the concept of satisfactoriness [11].

3.2.1 The First Level Decision Maker Problem

The first level decision-making problem of the ML-MONP model follows as:

max︸︷︷︸
xxx111

F1 (xxx,y) = max︸︷︷︸
xxx111

(
f11 (xxx, y) , f12 (xxx, y) , · · · , f1k1

(xxx, y)
)
, (26)

subject to

(x1,x2, · · · ,xp,y) ∈ SSSα . (27)

To obtain the α-Pareto optimal solution of the FLDM; the MODM problem, model (26)-(27), is transformed into the
following SODM problem:

max︸︷︷︸
xxx111

f1 j (xxx, y) ( j = ℓ) , (28)

subject to

f1 j (xxx, y)≥ δ1 j, ( j = 1,2, · · · ,k1) , ( j 6= ℓ) , (29)

(y1,y2, · · · ,yp, t) ∈ SSSα . (30)

So the solution of the first level is obtained by executing algorithm I, as
(
x∗1,x

∗
2, · · · ,x

∗
p

)
=
(
xF

1 ,x
F
2 , · · · ,x

F
p

)
.

The preferred solution of the ithLDM problem is obtained by the following algorithm:
Algorithm I:

Step 1. Set the satisfactoriness siv, (i = 1,2, · · · , p) , v = 1,2, · · · . Let si = si0 at the beginning, and let
si = si1,si2,si3, · · · , (i = 1,2, · · · , p) respectively.

Step 2. Set up the ε-constraint problem P(ε−ℓ(siv)) , if P(ε−ℓ(siv)) has no solution or has an optimal
solution with fℓ j (xxx, y)< δℓ j, then go to step 1, to adjust s = si(v+1) < siv. Otherwise, go to step
3.

Step 3. If the decision maker is satisfied with
(
x∗1,x

∗
2, · · · ,x

∗
p

)
, then it is the preferred solution of the

ithLDM, go to step 5. Otherwise, go to step 4.
Step 4. Adjust satisfactoriness, let si(v+1) > siv and go to step 2.

Step 5. Stop.

3.2.2 The Second Level Decision Maker Problem

Secondly, the first level decision variable xF
1 should be included in the SLDM problem; hence, the problem of SLDM can

be formulated as:

max︸︷︷︸
xxx222

F2 (xxx,y) = max︸︷︷︸
xxx222

(
f21 (xxx, y) , f22 (xxx, y) , · · · , f2k2

(xxx, y)
)
, (31)

subject to

(
xF

1 ,x2, · · · ,xp

)
∈ SSSα . (32)

The ε-constraint method is utilized to obtain the SODM as follows [11,25]:

max︸︷︷︸
xxx222

f2 j (xxx, y) ( j = ℓ) , (33)
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subject to

f2 j (xxx, y)≥ δ2 j, ( j = 1,2, · · · ,k2) , ( j 6= ℓ) , (34)

(
xF

1 ,x2, · · · ,xp

)
∈ SSSα . (35)

Solving model (33)-(35) to obtain the second level non-inferior solution
(
xF

1 ,x
S
2, · · · ,x

S
p

)
that is closest to the FLDM

solution
(
xF

1 ,x
F
2 , · · · ,x

F
p

)
by following algorithm I.

Therefore, we will test whether
(
xF

1 ,x
S
2, · · · ,x

S
p

)
is a preferred solution to the FLDM or it may be changed according

to the following test [11,25]: If

∥∥F1

(
xF

1 ,x
F
2 , · · · ,x

F
p

)
−F1

(
xF

1 ,x
S
2, · · · ,x

S
p

)∥∥
2∥∥F1

(
xF

1 ,x
S
2, · · · ,x

S
p

)∥∥
2

< σF (36)

Then,
(
xF

1 ,x
S
2, · · · ,x

S
p

)
is a preferred solution to the FLDM, where σF is a small positive constant given by the FLDM.

3.2.3 The Pttthhh Level Decision Maker Problem

Consequently, the decision variables controlled by the top levels
(

xF
1 ,x

S
2, · · · ,x

(p−1)
(p−1)

)
should be given to the Pth LDM

problem; hence, the Pth LDM problem follows as:

max︸︷︷︸
xxxppp

Fp (xxx,y) = max︸︷︷︸
xxxppp

(
fp1 (xxx, y) , fp2 (xxx, y) , · · · , fpkp

(xxx, y)
)
, (37)

subject to

(
xF

1 ,x
S
2, · · · ,x

(P−1)
(P−1)

,xp

)
∈ SSSα . (38)

Based on the ε-constraint method the SODM problem of the PthLDM follows as:

max︸︷︷︸
xxxppp

fp j (xxx, y) ( j = ℓ) , (39)

subject to

fp j (xxx, y)≥ δp j, ( j = 1,2, · · · ,kp) , ( j 6= ℓ) , (40)

(
xF

1 ,x
S
2, · · · ,x

(P−1)
(P−1)

,xp

)
∈ SSSα . (41)

Solving model (39)-(41) the non-inferior solution of the PthLDM, closest to the preferred solutions of the top levels(
xF

1 ,x
S
2, · · ·x

(P−1)
(P−1)

,x
p
p

)
, is obtained by following algorithm I.

Now, we will test whether
(
xF

1 ,x
S
2, · · · ,x

p
p

)
is a preferred solution to the Pth LDM or it may be changed according to

the following test: If

∥∥∥F(p−1)

(
xF

1 ,x
S
2, · · · ,x

(p−1)
p

)
−F(p−1)

(
xF

1 ,x
S
2, · · · ,x

p
p

)∥∥∥
2∥∥F(p−1)

(
xF

1 ,x
S
2, · · · ,x

p
p

)∥∥
2

< σ (p−1) (42)

Then,
(
xF

1 ,x
S
2, · · · ,x

p
p

)
is a preferred solution to the PthLDM. Where σ (p−1) is a small positive constant given by the

(p− 1)thLDM.

For the ithLDM problem δi j, bi j and ai j are defined as:

δi j = (bi j − ai j)si + ai j, (i = 1,2, · · · , p) , ( j = 1,2, · · · ,kp) , (43)
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bi j = max︸︷︷︸
x∈SSSααα

fi j (xxx, y) , (i = 1,2, · · · , p) , ( j = 1,2, · · · ,kp) , (44)

ai j = max︸︷︷︸
x∈SSSααα

fi j (xxx, y) , (i = 1,2, · · · , p) , ( j = 1,2, · · · ,kp) , (45)

where si is the satisfactoriness given by the ith level decision maker [25].

4 Interactive Algorithm for ML-MOQFP Problem with Fuzzy Parameters in the Constraints

Following the discussion in the previous sections, the proposed interactive algorithm will be constructed for solving ML-
MOQFP problem with fuzzy parameters in the constraints as follows:

Step 1. Formulate the crisp set of constraints for the ML-MOQFP problem at the given α-level, model
(8).

Step 2. Formulate the ML-MONP model (19)-(24), of the ML-MOQFP problem.
Step 3. Calculate the individual maximum and minimum values for each objective function fi j (xxx,y).
Step 4. Set r=0.
Step 5. Execute the steps presented in Algorithm I to obtain a set of preferred solutions for the

FLDM problem equations (28)-(30). The FLDM puts these solutions in order according
to the following format:

(
xr

1, · · · ,x
r
p

)
, · · · ,

(
xr+n

1 , · · · ,xr+n
p

)
. Preferred ranking

(
xr

1, · · · ,x
r
p

)
≻(

xr+1
1 , · · · ,xr+1

p

)
≻ ·· · ≻

(
xr+n

1 , · · · ,xr+n
p

)
.

Step 6. Given x F
1 = xr

1, to the SLDM problem. Solve the SLDM problem, equations (33)-(36),

following Algorithm I and obtain
(
x s

2 , x s
3 , · · · ,x

s
p

)
=
(
x∗2,x

∗
3, · · · ,x

∗
p

)
.

Step 7. If
‖F1(xF

1 ,x
F
2 ,··· ,x

F
p )−F1(xF

1 ,x
S
2,··· ,x

S
p)‖2

‖F1(xF
1 ,x

S
2,··· ,x

S
p)‖2

< σF , then go to Step 8. Otherwise go to Step 11.

Step 8. Given
(

xF
1 ,x

S
2, · · · ,x

(P−1)
(P−1)

)
to the PthLDM problem, solve the PthLDM problem model (39)-

(41), following Algorithm I to obtain
(

xF
1 ,x

S
2, · · · ,x

(P−1)
(P−1),x

p
p

)
.

Step 9. If

∥∥∥F(p−1)

(
xF

1 ,x
S
2,··· ,x

(p−1)
p

)
−F(p−1)(xF

1 ,x
S
2,··· ,x

p
p)

∥∥∥
2

‖F(p−1)(xF
1 ,x

S
2,··· ,x

p
p)‖2

< σ (p−1) , then go to Step 10. Otherwise go to

Step 11.

Step 10. If the FLDM is satisfied with
(
xF

1 ,x
S
2, · · · ,x

p
p

)
and F1

(
xF

1 ,x
S
2, · · · ,x

P
p

)
, then

(
xF

1 ,x
S
2, · · · ,x

p
p

)
is

the preferred solution of the ML-MOQFP problem, go to Step 12. Otherwise go to Step 11.
Step 11. Let r = r+ 1, and go to Step 7.
Step 12. Stop.

5 Illustrative Example

The following ML-MOQFP problem with fuzzy parameters in the constraints, is given to demonstrate the proposed
interactive approach.

[[[111sssttt LLLeeevvveeelll]]]

max︸︷︷︸
xxx111

(
f11 =

−x2
1 − 2x2

2 − x2
3 + 5x2 + 10

x2
1 + 3x2+ 5

, f12 =
−x2

1 − x2
2 − 4x2

3 + 5x1+ 12

x2
1 + 3x2 + 5

)
,

where xxx222,xxx333 solves

[[[222nnnddd LLLeeevvveeelll]]]

max︸︷︷︸
xxx222

(
f21 =

−x2
1 − 2x2

2 − 2x2
3 + 5x3 + 6

x2
2 + 3x1 + 1

, f22 =
−3x2

1 − x2
2 − x2

3 + 7x3 + 8

x2
2 + 3x1 + 1

)
,

where xxx333 solves
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[[[333rrrddd LLLeeevvveeelll]]]

max︸︷︷︸
xxx333

(
f31 =

−x2
1 − 4x2

2 − x2
3 + 6x2 + 7

x2
3 + 5x2+ 2

, f32 =
−x2

1 − 2x2
2 − x2

3 + 9

x2
3 + 5x2 + 2

)
,

subject to

4̃x1 + 7̃x2 + 2̃x3 ≤ 3̃0,

3̃x1 − 0̃x2 + 1̃4x3 ≤ 1̃8,

7̃x2 + 8̃x3 ≥ 1̃2,

Here, the fuzzy numbers are assumed to be L R-fuzzy numbers and are given as follows:

4̃ = (4,2,1)LR, 7̃ = (7,4,2)LR, 2̃ = (2,2,3)LR, 3̃ = (3,2,2)LR, 0̃ = (0,1,2)LR, 1̃4 = (14,4,2)LR, 8̃ = (8,4,2)LR, 3̃0 = (30,5,10)LR, 1̃8 = (18,3,4)LR, 1̃2 = (12,2,8)LR

The ML-MOQFP problem is transformed into ML-MONP model based on the proposed transformation as follows:
[[[111sssttt LLLeeevvveeelll]]]

max︸︷︷︸
xxx111

(
f11 (x,y) =

(
−x2

1 − 2x2
2 − x2

3 + 5x2 + 10
)

y1,

f12 (x,y) =
(
−x2

1 − x2
2 − 4x2

3 + 5x1 + 12
)

y1,

)
,

where xxx222,xxx333 solves

[[[222nnnddd LLLeeevvveeelll]]]

max︸︷︷︸
xxx222

(
f21 (x,y) =

(
−x2

1 − 2x2
2 − 2x2

3 + 5x3+ 6
)

y2,

f22 (x,y) =
(
−3x2

1 − x2
2 − x2

3 + 7x2 + 8
)

y2,

)

where xxx333 solves

[[[333rrrddd LLLeeevvveeelll]]]

max︸︷︷︸
xxx333

(
f31 (x,y) =

(
−x2

1 − 4x2
2 − x2

3 + 6x2 + 7
)

y3,

f32 (x,y) =
(
−x2

1 − 2x2
2 − x2

3 + 9
)

y3,

)
,

subject to

(
x2

1 + 3x2 + 5
)

y1 = 1,

(
x2

2 + 3x1 + 1
)

y2 = 1,

(
x2

3 + 5x2 + 2
)

y3 = 1,

3.6x1 + 6.2x2 + 1.6x3 ≤ 29,

4.2x1 + 7.4x2+ 2.6x3 ≤ 32,

2.6x1 − 0.4x2+ 13.2x3 ≤ 17.4,

3.4x1 + 0.2x2+ 14.4x3 ≤ 18.8,

6.2x2 + 7.2x3 ≥ 11.6,

7.4x2 + 8.4x3 ≥ 13.6,

The individual maximum and minimum values are given in Table 1
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Table 1: The individual maximum and minimum values

f11(((xxx,yyy) f12(((xxx,yyy) f21(((xxx,yyy) f22(((xxx,yyy) f31(((xxx,yyy) f32(((xxx,yyy)
max fi j(((xxx,yyy) 1.632 1.426 7.83 7.88 1.29 1.281

min fi j(((xxx,yyy) -0.321 -0.562 -1.59 -2.67 -1.77 -1.2

Formulate and solve SODM problem of the FLDM (28)-(30):

max f11 (x,y) =
(
−x2

1 − 2x2
2 − x2

3 + 5x2 + 10
)

y1,

sub ject to
(
−x2

1 − x2
2 − 4x2

3 + 5x1 + 12
)

y1 ≥ 1.2272,

(
x2

1 + 3x2 + 5
)

y1 = 1,

(
x2

2 + 3x1 + 1
)

y2 = 1,

(
x2

3 + 5x2 + 2
)

y3 = 1,

3.6x1 + 6.2x2 + 1.6x3 ≤ 29,

4.2x1 + 7.4x2 + 2.6x3 ≤ 32,

2.6x1 − 0.4x2 + 13.2x3 ≤ 17.4,

3.4x1 + 0.2x2 + 14.4x3 ≤ 18.8,

6.2x2 + 7.2x3 ≥ 11.6,

7.4x2 + 8.4x3 ≥ 13.6,

where δ12 = (b12 − a12) s1 + a12 = 1.2272, so the solution of the FLDM is
(
xF

1 ,x
F
2 ,x

F
3

)
= (0.295, 0.694, 1.014) and

s1 = 0.9, σF = 0.15 are given by the FLDM.
Secondly, the SLDM formulate its SODM problem (33)-(45):

max f21 (x,y) =
(
−x2

1 − 2x2
2 − 2x2

3 + 5x3+ 6
)

y2,

sub ject to
(
−3x2

1 − x2
2 − x2

3 + 7x2+ 8
)

y2 ≥ 3.66,

(
x2

1 + 3x2 + 5
)

y1 = 1,

(
x2

2 + 3x1 + 1
)

y2 = 1,

(
x2

3 + 5x2 + 2
)

y3 = 1,

x1 = 0.295;

3.6x1 + 6.2x2 + 1.6x3 ≤ 29,

4.2x1 + 7.4x2 + 2.6x3 ≤ 32,

2.6x1 − 0.4x2 + 13.2x3 ≤ 17.4,

3.4x1 + 0.2x2 + 14.4x3 ≤ 18.8,

6.2x2 + 7.2x3 ≥ 11.6,

7.4x2 + 8.4x3 ≥ 13.6,

where δ22 = (b22 − a22)s2 + a22 = 3.66, so the SLDM solution is
(
xF

1 ,x
S
2,x

S
3

)
= (0.295, 0.443, 1.23) and s2 = 0.6,

σS = 0.05 are given by the SLDM.
Now, the FLDM test function, equation (36), will be utilized to decide whether the solution (0.295, 0.433, 1.23) is

acceptable or not:
‖F1 (0.295, 0.694, 1.014)−F1 (0.295,0.443,1.22)‖2

‖F1 (0.295,0.443,1.22)‖2
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=
‖(1.5889, 1.2266)− (1.5933,1.1128)‖2

‖(1.5933,1.1128 )‖2

= 0.059 < 0.15

Finally, the PLDM formulate it’s SODM problem (39)-(41) as:

max f31 (x,y) =
(
−x2

1 − 4x2
2 − x2

3 + 6x2 + 7
)

y3,

sub ject to
(
−x2

1 − 2x2
2 − x2

3 + 9
)

y3 ≥ 0.984,

(
x2

1 + 3x2 + 5
)

y1 = 1,

(
x2

2 + 3x1 + 1
)

y2 = 1,

(
x2

3 + 5x2 + 2
)

y3 = 1,

x1 = 0.295,

x2 = 0.443,

3.6x1 + 6.2x2 + 1.6x3 ≤ 29,

4.2x1 + 7.4x2+ 2.6x3 ≤ 32,

2.6x1 − 0.4x2+ 13.2x3 ≤ 17.4,

3.4x1 + 0.2x2+ 14.4x3 ≤ 18.8,

6.2x2 + 7.2x3 ≥ 11.6,

7.4x2 + 8.4x3 ≥ 13.6,

where δ32 = (b32 − a32) s3 + a32 = 0.984, so the PLDM solution is
(
xF

1 ,x
S
2,x

T
3

)
= (0.295, 0.443, 1.23) and s3 = 0.6, is

given by the PLDM.

Now, the SLDM test function, equation (42), will be utilized to decide whether the solution (0.295,0.443,1.23) is
acceptable or not:

‖F2 (0.295,0.443,1.23)−F2 (0.295,0.443,1.23)‖2

‖F2 (0.295,0.443,1.23)‖2

= 0 < 0.05

So
(
xF

1 ,x
S
2,x

T
3

)
= (0.295,0.443,1.23) is the preferred solution to the ML-MOQFP problem.

Using Lingo software package , the compromise solution of the ML-MOQFP problem with fuzzy parameters in
the constraints using the proposed interactive algorithm is obtained as (x1,x2, x3) = (0.295, 0.443, 1.23) with objective
function values f11 (xxx) = 1.593, f12 (xxx) = 1.113, f21 (xxx) = 4.154, f22 (xxx) = 7.034, f31 (xxx) = 1.27, f32 (xxx) = 1.223,
and their corresponding membership function µ11 = 0.98, µ12 = 0.843,µ21 = 0.61, µ22 = 0.92, µ31 = 0.99, µ32 = 0.97.

The comparison among the results obtained by the proposed FGP approach in [5], the proposed interactive approach
and the method of Lachhwani [9] for solving the ML-MOQFP problem with fuzzy parameters in the constraints is given
in Table 2. The results show that the values of the objective functions and the membership functions obtained by the
proposed FGP approach [5], the proposed interactive approach and the latter method presented by Lachhwani in [9] are
close to one another.

Table 2: The comparison among the FGP approach in [5], the interactive approach and the method of Lachhwani in [9].

FGP approach [5] Interactive approach Lachhwani [9]

f11 = 1.527

f12 = 1.325

f21 = 2.54

f22 = 3.55

f31 = 1.22

f32 = 1.02

µ11 = 0.95

µ12 = 0.95

µ21 = 0.438

µ22 = 0.589

µ31 = 0.977

µ32 = 0.895

f11 = 1.593

f12 = 1.113

f21 = 4.154

f22 = 7.034

f31 = 1.27

f32 = 1.223

µ11 = 0.98

µ12 = 0.843

µ21 = 0.61

µ22 = 0.92

µ31 = 0.99

µ32 = 0.97

f11 = 1.516

f12 = 1.33

f21 = 2.248

f22 = 3.739

f31 = 1.164

f32 = 0.926

µ11 = 0.94

µ12 = 0.95

µ21 = 0.41

µ22 = 0.61

µ31 = 0.959

µ32 = 0.857
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6 Conclusion

In this paper the interactive approach was exhibited for solving ML-MOQFP problems with fuzzy parameters in the
constraints. Based on the α-level properties and partial order relation, a numerical general model is constructed. Firstly,
the quadratic fractional objective functions in each level are transformed into nonlinear objective functions based on a
proposed transformation, thus the ML-MOQFP problem transformed into ML-MONP problem. Then, the stocktickerFGP
and the interactive approach are used to solve ML-MONP problem.
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