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Abstract: Kroopnick (2010) discussed the bounded solutions of certain non-autonomous differential equations of the second order by
using the integral test. In this paper, instead of the integral test, we study theresults of Kroopnick [9] by using the Liapunov’s function
approach. We compare the established results with that of Kroopnick [9]. We also give some additional results on the equi-bounded
solutions and uniformly-bounded solutions, and an example is given forthe illustrations.
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1 Introduction

In 2010, Kroopnick [9] first considered the nonlinear
differential equation of the second order

x′′+q(t)b(x) = f (t), (1)

whereq(.) is a continuously differentiable function fort ≥
0, q(t) > q0 > 0 for some constantq0, b(.) andq(.), f (.)
are continuous onℜ and[0,∞), respectively.

Kroopnick [9] proved a result on the bounded solutions
of Eq. (1) with appropriate conditions onq(t), b(x) and
f (t).

It is worth mentioning that equations in the form of
Eq. (1) are quite important in applied mathematics.
Consider such examples as the harmonic oscillator
x′′ + k2x = 0 (see Kroopnick [[9], p. 829]), the theory of
nonlinear oscillations and conservative systems
x′′ + f (x) = 0 (see Kroopnick [[9], p. 829]) or Duffing’s
equationx′′ + ax+ bx3 = K sin(Ω t) (see Kroopnick [[9],
p. 829]). Eq.(1) characterizes all of the mentioned
applications. It is worth noting, too, that the linear
homogeneous equationx′′+ p(t)x′+a(t)x= 0 used in the
study of electrical and mechanical systems (see
Kroopnick [[9], p. 829]) may be transformed into Eq. (1)

using the transformationx = yexp(−1/2
t
∫

0
p(s)ds (see

Kroopnick [[9], p. 829]), which should give the reader an
idea of the robustness of this equation. For two

outstanding surveys of applications see Kroopnick [[9], p.
829].

The Hill equation x′′ + a(t)x = 0 is significant in
investigation of stability and instability of geodesic on
Riemannian manifolds where Jacobi fields can be
expressed in form of the Hill equation system (see Gallot
et. al. [4]). This fact has been used by some physicists to
study dynamics in Hamiltonian systems (see Pettini and
Valdettaro [11]).

It should be noted that Kroopnick [9] first proved the
following theorem by using the integral test.

Theorem 1.(Kroopnick [ 9, Theorem 1]). Consider the
differential equation

x′′+q(t)b(x) = f (t).

Suppose b(.) is continuous on(−∞,+∞) and B(x) =
x
∫

b(u)du → ∞ as |x| → ∞. Moreover, suppose q(.)

belongs to C1[0,∞) such that q(t)> q0 > 0 and q′(.) does
not change sign on[0,∞). If f (.) is continuous and an
element of L1[0,∞), then all solutions to Eq. (1) are
bounded as t→ ∞. Furthermore, if xb(x) > 0 for x 6= 0,
then the derivates are also bounded.

In the same paper, [9], Kroopnick also considered the
nonlinear differential equation of the second order

x′′+c(t,x,x′)+q(t)b(x) = f (t), (2)
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where q(.) is a continuously differentiable function for
t ≥ 0, q(t) > q0 > 0 for some constantq0 andc(.), b(.)
and f (.) are continuous on[0,∞)× ℜ2, ℜ and [0,∞),
respectively.

Kroopnick [9] proved the second result on the
bounded solutions of Eq. (2) with appropriate conditions
onc(t,x,x′), q(t), b(x) and f (t).

In [9], by using the integral test, Kroopnick proved the
following theorem.

Theorem 2.(Kroopnick [9, Theorem 3]). Given the
differential equation

x′′+c(t,x,x′)+q(t)b(x) = f (t).

Suppose that c(t,x,y) is continuous on[0,∞)× ℜ2

such that c(t,x,y)y ≥ 0, b(.) is continuous on(−∞,+∞)

with B(x) =
x
∫

b(u)du→ ∞ as |x| → ∞, q(.) belongs to

C1[0,∞) such that q(t) > q0 > 0 and q′(.) does not
change sign on[0,∞). If f (.) is continuous and an
element of L1[0,∞), then all solutions to Eq. (2) are
bounded as t→ ∞.

The motivation for this paper comes from the paper of
Kroopnick [9] and the papers mentioned above. By
defining certain Liapunov functions, sufficient conditions
for the bounded solutions are obtained. On the other hand,
to see some recent works on the qualitative behaviors of
the solutions and certain important roles of linear and
nonlinear differential equations of second order in many
scientific areas, we refer the readers to the books of
Ahmad and Rama Mohana Rao [1], Braun [2], Davis [3],
Sanchez ([12], [13]), and Wylie [19] and the papers of
Kroopnick ([6]-[8]), Tenenbaum and Pollard [14], Tunç
[15], C. Tunç and E. Tunç [17] and the references cited in
these sources.

Before stating our main results, we give two basic
results on equi-bounded and uniformly-bounded solutions
of a general non-autonomous system.

Consider a system of differential equations

dx
dt

= F(t,x), (3)

where x is an n− vector. Suppose thatF(t,x) is
continuous in(t,x) on I ×D, whereI denotes the interval
0≤ t < ∞ andD is a connected open set inℜn. It is also
assumed without loss of generality thatF(t,0) = 0 andD
is a domain such that‖x‖< H, H > 0.

Theorem 3.(Yoshizawa [18].) Suppose that there exists a
Liapunov function V(t,x) defined on I×ℜn which satisfies
the following conditions;

(i) a(‖x‖) ≤ V(t,x), where a(r) ∈ CI, a(r) → ∞ as
r → ∞ (CI denotes the families of continuous increasing
functions),

(ii) V̇(t,x)≤ 0.
Then, the solutions of (3) are equi-bounded.

Theorem 4.(Yoshizawa [18].) Suppose that there exists a
Liapunov function V(t,x) defined on0≤ t < ∞, ‖x‖ ≥ R,
where R may be large, which satisfies the following
conditions;

(i) a(‖x‖) ≤ V(t,x) ≤ b(‖x‖), where a(r) ∈ CI,
a(r) → ∞ as r → ∞ and b(r) ∈ CI (CI denotes the
families of continuous increasing functions),

(ii) V̇(t,x)≤ 0.
Then, the solutions of (3) are uniformly-bounded.

2 Main results

Our first main result is the following theorem.

Theorem 5.We assume that c(t,x,y) is continuous on
[0,∞)×ℜ2 such that c(t,x,y)y≥ 0, b(.) is continuous on

(−∞,+∞) with B(x) =
x
∫

b(u)du → ∞ as |x| → ∞,

q(.) ∈C1[0,∞) such that q(t)> q0 ≥ 1 (or q(t) is positive
and bounded away from 1) and q′(.) does not change sign
on [0,∞). If f (.) is continuous and an element of L1[0,∞),
then all solutions to Eq. (2) are bounded as t→ ∞.

Proof(Proof of Theorem5). Instead of Eq. (2), we consider
it as a system

x′ = y,

y′ = − c(t,x,y)−q(t)b(x)+ f (t). (4)

We now consider two cases.
Case 1.Let q′(.)≥ 0.
For this case, we define a Liapunov function as

V(t,x,y) =

√

√

√

√2

x
∫

0

b(s)ds+
1

q(t)
y2

for x2+y2 ≥ R2.
First, we find thatV(t,x,y) > 0 for all (x,y) 6= (0,0).

Secondly, sinceB(x) → ∞ as |x| → ∞, V(t,x,y) ≤ K
implies |x| ≤ K1 and|y| ≤ K2, where the constantsK1 and
K2 depend upon the constantK. Thus, we only need to
show thatV(t,x,y) is bounded along every trajectory of
(4) ast → ∞.

Along a trajectory of (4), the time derivative of the
Liapunov functionV(t,x,y) results in

d
dt

V(t,x,y) =
1

√

2
x
∫

0
b(s)ds+ 1

q(t)y
2

×{2b(x)y− q′(t)
q2(t)

y2+
2

q(t)
y(−c(t,x,y)−q(t)b(x)+ f (t))}

⇒

√

√

√

√2

x
∫

0

b(s)ds+
1

q(t)
y2 d

dt
V(t,x,y) =− q′(t)

q2(t)
y2− 2

q(t)
c(t,x,y)y+

2 f (t)
q(t)

y

⇒V(t,x,y)
d
dt

V(t,x,y)≤ 2| f (t)|
q(t)

|y| ≤ 2| f (t)|
√

q(t)
|y|

⇒V(t,x,y)
d
dt

V(t,x,y)≤ 2{ |y|
√

q(t)
+
√

2B(x)} | f (t)| ,
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where

B(x) =

x
∫

0

b(s)ds.

It should be noted thatV(t,x,y) 6= 0 (except possibly
whenx(t), y(t) and f (t) vanish simultaneously). Also, by
the Cauchy’s inequality, we have

(
|y|

√

q(t)
+
√

2B(x) ≤
√

2V(t,x,y).

Hence, we obtain

d
dt

V(t,x,y)≤ 2
√

2| f (t)| .

Integrating this inequality from 0 tot, we get

V(t,x(t),y(t))≤V(0,x(0),y(0))+2
√

2

t
∫

0

| f (s)|ds.

Since, by the assumptionf ∈ L1[0,∞), the last integral
inequality converges whent → ∞. Hence, we can
conclude thatV(t,x(t),y(t)) is bounded for allt ≥ 0. This
shows that for the caseq′(.)≥ 0 every solution of Eq. (2),
together with its derivative, is bounded ast → ∞.

Case 2.Let q′(.)≤ 0.
For this case, we define a Liapunov function as

V1(t,x,y) =

√

√

√

√2q(t)

x
∫

0

b(s)ds+y2

for x2+y2 ≥ R2.
It follows thatV1(t,x,y) > 0 for all (x,y) 6= (0,0). On

the other hand, sinceB(x)→ ∞ as|x| → ∞, V1(t,x,y)≤C
implies |x| ≤C1 and|y| ≤C2, where the constantsC1 and
C2 depend upon the constantC. Thus, we only need to
show thatV1(t,x,y) is bounded along every trajectory of
(4) ast → ∞.

Along a trajectory of (4) the time derivative of the
Liapunov functionV1(t,x,y) gives

d
dt

V1(t,x,y) =
1

√

2q(t)
x
∫

0
b(s)ds+y2

× {2q′(t)

x
∫

0

b(s)ds+2q(t)b(x)y

+ 2y(−c(t,x,y)−q(t)b(x)+ f (t))}

⇒

√

√

√

√2q(t)

x
∫

0

b(s)ds+y2 d
dt

V1(t,x,y)

= 2q′(t)

x
∫

0

b(s)ds−2c(t,x,y)y+2 f (t)y

⇒

√

√

√

√2q(t)

x
∫

0

b(s)ds+y2 d
dt

V1(t,x,y)

≤ 2q′(t)

x
∫

0

b(s)ds−2c(t,x,y)y+2| f (t)| |y|

≤ 2| f (t)| |y|
≤ 2(|y|+

√

2q(t)B(x) ) | f (t)| ,

where

B(x) =

x
∫

0

b(s)ds.

⇒V1(t,x,y)
d
dt

V1(t,x,y)≤ 2(|y|+
√

2q(t)B(x) ) | f (t)| .

It should be noted thatV1(t,x,y) 6= 0 (except possibly
whenx(t), y(t) and f (t) vanish simultaneously). Also, by
the Cauchy’s inequality, we have

(|y|+
√

2q(t)B(x) )≤
√

2V1(t,x,y).

Hence, we obtain

d
dt

V1(t,x,y)≤ 2
√

2| f (t)| .

Integrating this inequality and using the assumptionf ∈
L1[0,∞), we can conclude for the caseq′(.)≤ 0 that every
solution of Eq. (2), together with its derivative, is bounded
ast → ∞.

Our second main result is the following theorem.

Theorem 6.We assume that all the assumptions of
Theorem 5 hold. Then all solutions to Eq. (2) are
uniformly bounded.

Proof(Proof of Theorem6). We now consider two cases.
Case 1.Let q′(.)≥ 0.
For this case, we define a Liapunov function as

V2(t,x,y) =

√

√

√

√2

x
∫

0

b(s)ds+
1

q(t)
y2−2

t
∫

0

| f (s)|ds

for x2+y2 ≥ R2.
We note thatV2(t,x,y) satisfies the condition (i) of
Theorem4 for x2+y2 ≥ R2 :
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√

2
x
∫

0
b(s)ds+ 1

q(t)y
2−2

t
∫

0
| f (s)|ds≤V2(t,x,y)≤

√

2
x
∫

0
b(s)ds+ 1

q0
y2.

Along a trajectory of (4), the time derivative of the
Liapunov functionV2(t,x,y) results in

d
dt

V2(t,x,y) =
1

√

2
x
∫

0
b(s)ds+ 1

q(t)y
2

×{− q′(t)
q2(t)

y2+2b(x)y+
2

q(t)
y(−c(t,x,y)−q(t)b(x)+ f (t))}

−2| f (t)|

⇒

√

√

√

√2

x
∫

0

b(s)ds+
1

q(t)
y2 d

dt
V2(t,x,y) =

− q′(t)
q2(t)

y2− 2
q(t)

c(t,x,y)y

+
2 f (t)
q(t)

y−

√

√

√

√8

x
∫

0

b(s)ds+
4

q(t)
y2 | f (t)|

⇒

√

√

√

√2

x
∫

0

b(s)ds+
1

q(t)
y2 d

dt
V2(t,x,y)≤

− q′(t)
q2(t)

y2− 2
q(t)

c(t,x,y)y

+
2 f (t)
q(t)

y− 2| f (t)|
√

q(t)
|y|

⇒

√

√

√

√2

x
∫

0

b(s)ds+
1

q(t)
y2 d

dt
V2(t,x,y)≤

− q′(t)
q2(t)

y2− 2
q(t)

c(t,x,y)y

+
| f (t)|
√

q(t)
|y|− | f (t)|

√

q(t)
|y|

⇒

√

√

√

√2

x
∫

0

b(s)ds+
1

q(t)
y2 d

dt
V2(t,x,y)6− q

′
(t)

q2(t)
y2− 2

q(t)
c(t,x,y)y

⇒ d
dt

V2(t,x,y)≤ 0.

This shows that for the caseq′(.) ≥ 0 all solutions of Eq.
(2) is uniformly bounded.

Case 2.Let q′(.)≤ 0.

For this case, we define a Liapunov function as

V3(t,x,y) =

√

√

√

√2q(t)

x
∫

0

b(s)ds+y2−2

t
∫

0

| f (s)|ds

for x2+y2 ≥ R2.
It follows thatV3(t,x,y) > 0 for all (x,y) 6= (0,0) for

x2+y2 ≥ R2. On the other hand, sinceB(x)→ ∞ as|x| →
∞,V3(t,x,y)≤ D implies|x| ≤ D1 and|y| ≤ D2, where the
constantsD1 andD2 depend upon the constantD. Thus, we
only need to show thatV3(t,x,y) is bounded along every
trajectory of (4) ast → ∞.

Along a trajectory of (4) the time derivative of the
Liapunov functionV3(t,x,y) results in

d
dt

V3(t,x,y) =
1

√

2q(t)
x
∫

0
b(s)ds+y2

×{2q′(t)

x
∫

0

b(s)ds+2q(t)b(x)y+2y(−c(t,x,y)−q(t)b(x)+ f (t))}

−2| f (t)|

⇒

√

√

√

√2q(t)

x
∫

0

b(s)ds+y2 d
dt

V3(t,x,y) =

2q′(t)

x
∫

0

b(s)ds−2c(t,x,y)y+2 f (t)y

−

√

√

√

√8q(t)

x
∫

0

b(s)ds+4y2 | f (t)|

⇒V3(t,x,y)
d
dt

V3(t,x,y)≤

2q′(t)

x
∫

0

b(s)ds−2c(t,x,y)y+2| f (t)| |y|−2| f (t)| |y|

= 2q′(t)

x
∫

0

b(s)ds−2c(t,x,y)y

⇒ d
dt

V3(t,x,y)≤ 0.

This shows that for the caseq′(.) ≤ 0 all solutions of Eq.
(2) are uniformly bounded

The proof of Theorem6 is now completed.

Remark.Theorem6 gives an additional result to that of
Kroopnick [ 9, Theorem 3]). The assumptions of
Theorem 6 also guarantee the equi-boundedness of the all
solutions of Eq. (2).
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Example 1.We consider the non-autonomous differential
equation of second order:

x′′+ax′+b(t +1)x= 0, (5)

wherea andb are positive constants.
Eq. (5) can be written in the system form:

x′ = y,

y′ = −ay−b(t +1)x

so that
c(t,x,y)y= ay2 ≥ 0, t ≥ 0

q(t) = t +1,

q(t)> 1, q0 = 1,

q′(t) = 1> 0,

that is,q′(.) does not change sign on[0,∞),

b(x) = bx,

B(x) =

x
∫

0

b(u)du= b

x
∫

0

udu=
1
2

x2 → ∞ as |x| → ∞.

On the other hand, for the caseq′(.)≥ 0, it follows that

V(t,x,y) =

√

√

√

√2

x
∫

0

b(s)ds+
1

q(t)
y2

=

√

√

√

√2

x
∫

0

bsds+
1

t +1
y2

=

√

bx2+
1

t +1
y2.

It can be shown thatV=V(t,x,y) satisfies the condition (i)
of Theorem4 for x2+y2 ≥ R2, and

dV
dt

=
1
2
(bx2+

1
t +1

y2)−
1
2 {2bxy− 1

(t +1)2 y2+
2

t +1
y(−ay−b(t +1)x}

=−1
2
(bx2+

1
t +1

y2)−
1
2 { 1

(t +1)2 y2+
2a

t +1
y2}

⇒ (bx2+
1

1+ t
y2)

1
2

d
dt

V(t,x,y) =−1
2
{ 1
(t +1)2 y2+

2a
t +1

y2}

⇒ d
dt

V(t,x,y)≤ 0.

Thus, we conclude that all solutions of the above equation
for the caseq′(.)≥ 0 are bounded ast → ∞.

Remark.It can be easily shown that all solutions of Eq. (5)
are equi-bounded and uniformly bounded.

Example 2.We consider the non-autonomous differential
equation of second order:

x′′+(4−e−t + |x|+x′2)x′+

(

4+
1

1+ t2

)

x5 =
1

1+ t2 .

(6)
This equation can be written in the system form:

x′ = y,

y′ = −(4−e−t + |x|+y2)y−
(

4+
1

1+ t2

)

x5+
1

1+ t2

so that

c(t,x,y)y= (4−e−t + |x|+y2)y2 ≥ 0, t ≥ 0

q(t) = 4+
1

1+ t2 ,

q(t)> 3> 1, q0 = 3,

q′(t) =− 2t
(1+ t2)2 ≤ 0,

that is,q′(.) does not change sign on[0,∞),

b(x) = x5,

B(x) =

x
∫

0

b(u)du=

x
∫

0

u5du=
1
6

x6 → ∞ as |x| → ∞,

f (t) =
1

1+ t2 ,

∞
∫

0

| f (t)|dt =

∞
∫

0

1
1+ t2 dt =

π
2
< ∞,

that is, f (t) is an element ofL1[0,∞).
On the other hand, for the caseq′(.)≤ 0, it follows that

V4(t,x,y) =

√

√

√

√2q(t)

x
∫

0

b(s)ds+y2−
t

∫

0

| f (s)|ds

=

√

5+4t2

3+3t2 x6+y2−
t

∫

0

1
1+s2 ds

=

√

5+4t2

3+3t2 x6+y2−arctgt.

It can be shown thatV4(t,x,y) satisfies the condition (i) of
Theorem4 for x2+y2 ≥ R2, and

d
dt

V4(t,x,y) = −2(
5+4t2

3+3t2 x6+y2)−
1
2

{ t
3(1+ t2)2 x5+(4−e−t + |x|+y2)y2}

− 1
1+ t2

c© 2014 NSP
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⇒ (
5+4t2

3+3t2 x6+y2)
1
2

d
dt

V4(t,x,y) =

−2{ t
3(1+ t2)2 x5+(4−e−t + |x|+y2)y2}

−2(
5+4t2

3+3t2 x6+y2)
1
2

1
1+ t2

⇒ d
dt

V4(t,x,y)≤ 0.

Thus, we conclude that all solutions of the above equation
for the caseq′(.)≤ 0 are bounded ast → ∞.

Remark.When f (t) = 0, instead off (t) = 1
1+t2

, in Eq. (6),
it can be shown that all solutions of Eq. (6) are
equi-bounded and uniformly bounded.

Corollary 1.Consider the differential equation

x′′+q(t)b(x) = f (t).

Suppose b(.) is continuous on(−∞,+∞) and B(x) =
x
∫

b(u)du → ∞ as |x| → ∞. Moreover, suppose

q(.) ∈C1[0,∞) such that q(t) > q0 > 0 and q′(.) does not
change sign on[0,∞). If f (.) is continuous and an
element of L1[0,∞), then all solutions to Eq. (1) are
bounded as t→ ∞. Furthermore, if xb(x) > 0 for x 6= 0,
then the first derivates of all solutions of Eq. (1) are also
bounded.

Corollary 2.We assume that all the assumptions of
Corollary 1 hold. Then all solutions to Eq. (1) are
uniformly bounded.

Remark.It follows that Eq. (2) includes Eq. (1) and the
assumptions of Theorem5 and Theorem6 reduce to that
of Corollary 1 and Corollary 2 , respectively, when
c(t,x,x′) = 0, therefore, it is sufficient to give the proofs
of Theorem5 and Theorem6.

Remark.Because of Remark2, we only gave the proofs of
Theorem5 and Theorem6.

Remark.Kroopnick [9] proved Theorem1 and Theorem2
by using the integral test ast → ∞. Instead of this test, we
prove the boundedness of solutions of Eq. (1) and Eq. (2)
by using the Liapunov’s function approach [10] whent →
∞. It follows that the conditions of Theorem5 and6 are
the same as that in Kroopnick [[9], Theorem 1, Theorem
3]) exceptq0 > 1 or q(t) is positive and bounded away
from 0 instead ofq0 > 0. The procedure will be used in
the proof of Theorem5 and Theorem6 is very clear and
comprehensible, and it can be easily seen the boundedness
of solutions of Eq. (1) and Eq. (2).
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