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Abstract: Kroopnick (2010) discussed the bounded solutions of certain nomaunous differential equations of the second order by
using the integral test. In this paper, instead of the integral test, we studysihiés of Kroopnick ] by using the Liapunov’s function
approach. We compare the established results with that of Kroop@jicWg also give some additional results on the equi-bounded
solutions and uniformly-bounded solutions, and an example is givahddHustrations.
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1 Introduction outstanding surveys of applications see Kroopnié&k [p.
829].
In 2010, Kroopnick 9] first considered the nonlinear The Hill equationx” + a(t)x = 0 is significant in
differential equation of the second order investigation of stability and instability of geodesic on
Riemannian manifolds where Jacobi fields can be
X' +at)b(x) = f(t), (1)  expressed in form of the Hill equation system (see Gallot

. . ] ) ) et. al. {]). This fact has been used by some physicists to
whereq(.) is a continuously differentiable function foi= study dynamics in Hamiltonian systems (see Pettini and
0, q(t) > go > O for some constart, b(.) andq(.), f(.)  valdettaro L1]).
are continuous ofil and|0, «), respectively. . It should be noted that Kroopnicle] first proved the

Kroopnick [9] proved a result on the bounded solutions fg|lowing theorem by using the integral test.
of Eqg. (1) with appropriate conditions oq(t), b(x) and
f(t). Theorem 1(Kroopnick [ 9, Theorem 1])Consider the

It is worth mentioning that equations in the form of differential equation
Eq. ) are quite important in applied mathematics.
Consider such examples as the harmonic oscillator X" +q(t)b(x) = f(t).
X" +k?x = 0 (see Kroopnick ], p. 829]), the theory of
nonlinear oscillations and conservative systemsy
X"+ f(x) = 0 (see Kroopnick ], p. 829]) or Duffing’s  [b(u)du — « as [x| — . Moreover, suppose (9
equationx” + ax+ bx® = K sin(Qt) (see Kroopnick [g],
p. 829]). EqQ.l) characterizes all of the mentioned X ) !
applications. It is worth noting, too, that the linear NOt change sign ori0,e). If f(.) is continuous and an
homogeneous equatiafi + p(t)X +a(t)x = 0 used in the element of E[0,), then all solutions to Eq.1) are
study of electrical and mechanical systems (seg?ounded as t- w. Furthermore, if xifx) > 0 for x # 0,
Kroopnick [[9], p. 829]) may be transformed into Eq)(  then the derivates are also bounded.

t

using the transformatiox = yexp(—1/2 [ p(s)ds (see In the same paperd], Kroopnick also considered the
0 nonlinear differential equation of the second order

Suppose p) is continuous or(—e,+) and BX) =

belongs to &[0,) such that gt) > go > 0 and d(.) does

Kroopnick [[9], p. 829]), which should give the reader an
idea of the robustness of this equation. For two X" +c(t,x,X) +q(t)b(x) = f(t), 2
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whereq(.) is a continuously differentiable function for
t >0, q(t) > go > 0 for some constartp andc(.), b(.)
and f(.) are continuous orj0,e) x 02, O and [0,),
respectively.

Kroopnick [9] proved the second result on the
bounded solutions of Eq2) with appropriate conditions
onc(t,x,x), q(t), b(x) and f (t).

In [9], by using the integral test, Kroopnick proved the
following theorem.

Theorem 2(Kroopnick [9, Theorem 3]) Given the
differential equation

X" +c(t,x,X) +q(t)b(x) = f(t).

Suppose that (¢,x,y) is continuous on0,) x 12
such that €t,x,y)y > 0, b(.) is continuous or(—oo, +0)
X

with B(x) = [b(u)du — o as |x] — o, q(.) belongs to

C10,») such that @) > go > 0 and d(.) does not
change sign on[0,). If f(.) is continuous and an
element of E[0,«), then all solutions to Eq.2) are

bounded as t- .

Theorem 4(Yoshizawa 18].) Suppose that there exists a
Liapunov function Vt,x) defined ord <t < o, ||x|| > R,
where R may be large, which satisfies the following

conditions;

() a(Ixlh < V(t,x) < b(||Ix|]), where dr) € ClI,
a(r) - o as r— o and Khr) € Cl (Cl denotes the
families of continuous increasing functions),

(i) V(t,x) <O0.

Then, the solutions oBJ are uniformly-bounded.

2 Main results

Our first main result is the following theorem.

Theorem 5We assume that(tx,y) is continuous on
[0,00) x (2 such that ¢t,x,y)y > 0, b(.) is continuous on
X

(—o0,+w) with B(x) = [b(u)du — « as |x| — o,

q(.) € Ct[0,) such that @t) > go > 1 (or q(t) is positive
and bounded away from 1) andig does not change sign
on[0,). If f(.) is continuous and an element of[Q, »),
then all solutions to Eq.2) are bounded as+ o.

The motivation for this paper comes from the paper of Proof(Proof of Theorerb). Instead of Eq.2), we consider
Kroopnick [9] and the papers mentioned above. By itas asystem
defining certain Liapunov functions, sufficient conditions y —

for the bounded solutions are obtained. On the other han
to see some recent works on the qualitative behaviors

Ahmad and Rama Mohana Raf,[Braun [2], Davis [3],
Sanchez @2], [13]), and Wylie [19] and the papers of
Kroopnick ([6]-[8]), Tenenbaum and Pollard§], Tung
[15], C. Tunc and E. Tunc][7] and the references cited in
these sources.

Before stating our main results, we give two basic
results on equi-bounded and uniformly-bounded solution

of a general non-autonomous system.
Consider a system of differential equations

dx
— =F(t,x 3
4t = F(tx). 3)
where x is an n— vector. Suppose thaf(t,x) is
continuous in(t,x) onl x D, wherel denotes the interval
0<t < o andD is a connected open set . It is also
assumed without loss of generality tii&tt,0) = 0 andD

is a domain such thaix|| <H, H > 0.

Theorem 3(Yoshizawa 18].) Suppose that there exists a
Liapunov function Vt, x) defined on i 0" which satisfies
the following conditions;

() a(|[x|]) < V(t,x), where gr) € Cl, a(r) — « as

r — oo (Cl denotes the families of continuous increasing

functions),
(i) V(t,x) <O0.
Then, the solutions o8] are equi-bounded.

&~ ~ clt.xy) —abeO+ (1)

o]
the solutions and certain important roles of linear and
nonlinear differential equations of second order in many
scientific areas, we refer the readers to the books of

4)
We now consider two cases.

Case lletq(.) >0

For this case, we define a Liapunov function as

V(t,x,y) = J 2/b(s)ds+

0

1
aw”

for X2 +y? > R%.
First, we find thaV (t,x,y) > 0 for all (x,y) # (0,0).

SSecondly, sinceB(x) — o as |x| — o, V(t,xy) < K

implies |x| < K3 and|y| < Ky, where the constantsl and
Ko depend upon the constalit Thus, we only need to
show thatV(t,x,y) is bounded along every trajectory of
(4) ast — oco.

Along a trajectory of 4), the time derivative of the
Liapunov functiorV (t, x,y) results in

1

d

v _

giy txy) - -
2% b(S)dS+ Wyz

2
x {2b(x)y — q2(t)y2+ WV(—C(LXJ) —a(t)b(x) + (1))}
/ 1.,d dv), 2 21 (t)
i s g% VN =g I g Y
g 2010 |, _ 2110)
= V({txy) Vv txy) a Iyl < 0 1yl
VX GV <20+ V2BE) 110
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where
X

/b@ms

0

B(x) =

It should be noted that (t,x,y) # O (except possibly
whenx(t), y(t) and f (t) vanish simultaneously). Also, by
the Cauchy’s inequality, we have

ly|
(q®+

Hence, we obtain

2B(x) < V2V(t,xy).

%vmxwgaﬁuwy

Integrating this inequality from 0 tg we get

V(LX().y(1) <V(0.X(0)y +2f/|f )ids

Since, by the assumptiof € L[0, ), the last integral
inequality converges whert — . Hence, we can
conclude tha¥/ (t,x(t),y(t)) is bounded for alt > 0. This
shows that for the cagg(.) > 0 every solution of Eq.2),
together with its derivative, is boundedtas; c.

Case 2Letq(.) <0

For this case, we define a Liapunov function as

Vi(t, X, y) = \l 2q(t)/b(s)d$+y2
0

for X2 +y? > R2.

It follows thatV4(t,x,y) > 0 for all (x,y) # (0,0). On
the other hand, sind8(x) — o as|x| — o, V4 (t,x,y) <C
implies |x| < C; and|y| < Cy, where the constant; and
C, depend upon the consta@t Thus, we only need to
show thatVi(t,x,y) is bounded along every trajectory of
(4) ast — co.

Along a trajectory of 4) the time derivative of the
Liapunov functionvi (t,x,y) gives

¢mo

x {29 (t)

1

d
avl(L X, y) -
b(s)ds+ y?

—x

b(s)ds+2q(t)b(x)y

O\x o

+ 2y(—c(t,xy) —q(t)b(x) + f (1))}

= \l2q(t)/b(s)ds+y2§tV1(t,X,y)
0

X

zzdax/b@ms—zqnxwy+2muy
0

= \l2q(t)/b(s)ds+y2:tV1(t,X,Y)
0

\ /\

X
/b s)ds— 2c(t,x,y)y+2|f(t)] |y
0

2[E®O1 lyl

2(lyl+v29(t)B(x) ) [f(t)

where

IAN N

B(x) =
:>V]_(t7X,y)

at 2(jy1+v2at)B(X) ) | F(t)

It should be noted that; (t,x,y) # 0 (except possibly
whenx(t), y(t) and f (t) vanish simultaneously). Also, by
the Cauchy’s inequality, we have

(Il +v/2a(1)B(X) ) < V2 (t.x.y).

Hence, we obtain

Vl(t X,y) <

d

Integrating this inequality and using the assumptfoa
L[0,), we can conclude for the cagé.) < 0 that every
solution of Eq. ), together with its derivative, is bounded
ast — .

Our second main result is the following theorem.

Theorem 6We assume that all the assumptions of
Theorem5 hold. Then all solutions to EQ.2] are
uniformly bounded.

Proof(Proof of Theoreng). We now consider two cases.
Case lletq(.)>0
For this case, we define a Liapunov function as

Vo(t, X, y) = \l /b ds+—y2 2/|

for 2 4+y? > R2.
We note thatVi(t,x,y) satisfies the condition (i) of
Theoremt for x2 +y? > R?
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X t X
/2({b(s)ds+ Wll)yz—zof\f(s)\dsg Va(t,x,y) < lng(s)ds—i— aY2

Along a trajectory of 4), the time derivative of the
Liapunov functiorva(t, x,y) results in

%Vz(txy) - !
2/ b(s)ds+ k)2
0
L 9 2 B
{ qz(t)yz b(x)y -+ a0’ y(—c(t,x,y) —q(t)b(x) + f(t))}
—2[f(t)]
- 2 bisst 2 Sviy -
J q(t)
q(t) 2
—qz(t)yz—WC(t,x,y)y

L2f() 7
R Jso/b ds+—y2 (1))

i 1 .d
= J 20/b(s)ds+ q(t)yzavz(t,x,w <
I OF
< ) | (v
v’ van "

X
N J 2/b s+ s (;jtVZ(t,x,y) <
0

g

7 (t)yz t)c(t X,Y)y

\ (t)] [f()l
) ly| — 0] 1yl

/

q () 2
Gretxy) < 7 (t)yz— EC(t.,x,y)y

X
: 1 d
= 2/bsds+—2
/ (s) a0

d
—\V5(t <0
dt 2( ?X7y) —_—
This shows that for the cagg(.) > 0 all solutions of Eq.
(2) is uniformly bounded.
Case 2Letq(.) <0

=

For this case, we define a Liapunov function as

X t
Va(t,xy) = J 2q(t) [ blgids+y2—2 [ [(9)/ds
0 0

for x2 +y? > R2.

It follows thatVs(t,x,y) > O for all (x,y) # (0,0) for
X% 4+y? > R?. On the other hand, sind&x) — o as|x| —
00, V3(t,%,y) < D implies|x| < D; and|y| < D2, where the
constant®; andD, depend upon the constdnt Thus, we
only need to show thats(t,x,y) is bounded along every
trajectory of @) ast — co.

Along a trajectory of 4) the time derivative of the
Liapunov functionvs(t, x,y) results in

1

2q(t) Ofxb(s)ds+ y2

d
av?y(tﬁ X, y) =

x {20/ (1) [ b(s)ds+ 2q(t)b(XY-+ 2v(~c(t.xy) ~ A + (1))}
0

—2[f®)l

= $ 2q(t)/b( )ds+y2(;jV3(t Xy) =
0

() / b(s)ds— 2¢(t, X, y)y + 2f (t)y

_ J 8q(t) / b(s)ds+4y2 | (t)]

0

d
= V3(t, X y) Vs(t X,y) <

2 ’(t)/b(s)dS—ZC(LXJ)erZIf(t)l Iyl =2[f(t)] Iyl
0

[ t)/b(s)ds— 2c(t, x,y)y

d
— <
= dtv3(t7X,y) = 0
This shows that for the casg(.) < 0 all solutions of Eqg.
(2) are uniformly bounded
The proof of Theorens is now completed.

RemarkTheorem6 gives an additional result to that of
Kroopnick [ 9, Theorem 3]). The assumptions of
Theorem 6 also guarantee the equi-boundedness of the all
solutions of Eq. 2).
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Example 1We consider the non-autonomous differential Example 2Me consider the non-autonomous differential

equation of second order:
X' +axX +b(t+1)x=0, (5)

wherea andb are positive constants.
Eq. () can be written in the system form:

X =y,
y = —ay—b(t+1)x
so that

c(t,x,y)y=ay*>0,t >0

qt)=t+1,
qt)>1, go=1,
qt)=1>0,

that is,q (.) does not change sign @, «),

b(x) = bx,
x <
B(x) :/b(u)du: b/udu= Exz — 00 as|x| — o.
0

On the other hand, for the cagé.) > 0, it follows that

V(t,xy) =

7 1
2 0/ bis)ds ¢ i5Y?

X
1
= (2 o\
/ bsdst =7V
0
1
— 2 2
bx +H_1y .
It can be shown thatf=V(t,x,y) satisfies the condition (i)

of Theorem for X2 +y? > R?, and

dv 1
@t 2™

yz
1 1

E(bxz-q— tjlyz)’? {

2
— VPt H—ly(fayf b(t+ 1)x}

2 )

t+1

101
Sl

1
T (t+1)2

1 ot

(t+1)2

2y

= (b + 1

1 1d
m)’z) at V(t,xy) =

d
= — <
dtV(t,x,y) <0

Thus, we conclude that all solutions of the above equation

for the casey(.) > 0 are bounded as— co.

RemarKt can be easily shown that all solutions of E§) (
are equi-bounded and uniformly bounded.

equation of second order:

1 1
/ — —t 2 5:
X'+ (4—e "+ x| +X )x’+<4+ 1+t2)x e

(6)
This equation can be written in the system form:
X =y,
1 1
)/ 4 e +|X|+y2 ( l+tz)x5+l+t2
so that
ot xy)y=(4—e ' +x+y*)y*>0,t>0
1
t)y=4+-—
q(t) =4+ T
q(t) >3> 17 QO:37
2t
/

=——=<

that is,q (.) does not change sign ¢, o
b(x) = x°,
X X
5 1s
B(x) :/b(u)du:/u du= gk as|x| — oo,
0 0
1
ft)=—
®) 1+t2°

00

T 1 s
/|f(t)|dt:0/1+t2dt:2<00,

0

that is, f (t) is an element oE*[0, o).
On the other hand, for the cagé.) <0, it follows that

Va(t, x,y) = J /b (9)ds+y2 /\f (9)|ds

5+42 /t 1
3+3t2 ) 1+
54 4t? 5

34_3t2x6+y —arctgt.

It can be shown tha\u(t,x, y) satisfies the condition (i) of

Theoremd for x> +y? > R?, and
5+4t2 1
a\/‘l(t Xay) - 3+3tz +y2 2
t -t
{mxs+(4—e + X +YA)y?}
1
112
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5+4t2

3+3t2 X+ yP)2 Vg (tx,y) =
Z{WXS+(4 e+ X +y2 )y}
5+ 4t? 1
—2 3+3t2 X +y’) 21+t2
d
— <
:>dtv4(taxvy)—0

Thus, we conclude that all solutions of the above equation

for the casey(.) < 0 are bounded as— .

RemarkWhenf (t) = 0, instead off (t) = t2’ in Eq. 6),
it can be shown that all solutlons of Eq6)( are
equi-bounded and uniformly bounded.

Corollary 1.Consider the differential equation

X"+ q(t)b(x) = f(t).
Suppose p) is continuous on(—o,+0) and Bx) =
Jb(u)du — o« as

q(.) € C1[0,0) such that qt) > go > 0 and d(.) does not
change sign on[0,). If f(.) is continuous and an
element of E[0,c), then all solutions to Eq.1) are
bounded as t-» . Furthermore, if xtfx) > 0 for x # O,
then the first derivates of all solutions of EQ) @re also
bounded.

Ix| — co. Moreover, suppose

Corollary 2.We assume that all the assumptions of

Corollary 1 hold. Then all solutions to Eq.1) are
uniformly bounded.

Remarkt follows that Eq. @) includes Eg. ) and the
assumptions of Theoremand Theoren® reduce to that
of Corollary 1 and Corollary 2 , respectively, when
c(t,x,X)
of Theoremb and Theoren®.

RemarkBecause of Remarg, we only gave the proofs of
Theoremb and Theoren®.

RemarkKroopnick [9] proved Theoreni and Theoren?
by using the integral test as— «. Instead of this test, we
prove the boundedness of solutions of EQ.gnd Eq. 2)
by using the Liapunov’s function approact0] whent —
0. It follows that the conditions of Theoremand6 are
the same as that in Kroopnick9]f Theorem 1, Theorem

3]) exceptgp > 1 or ((t) is positive and bounded away
from O instead ofgy > 0. The procedure will be used in

the proof of Theorenb and Theoren® is very clear and

[11] Pettini,

[13] Sanchez,

= 0, therefore, it is sufficient to give the proofs
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