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Abstract: In this paper we present a recursive formula to find the degree of the determinant of a bivariate polynomial matrix. The
proposed algorithm returns the optimal estimation of the degree but has a very large computational cost. The recursive formula can
be represented as an assignment problem which is solved with the Hungarian method that has a very small computational cost. The
contribution of the proposed formula is to reduce the required interpolationpoints for theevaluation–interpolationtechnique. That is,
we reduce the evaluations which are computations of determinants or inverse matrices.
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1 Introduction

The computation of a) the determinant [1], [2], [3], b) the
inverse [4], [5], [6], [7], c) the generalized inverse [8] and
d) the Drazin matrix [9] of a bivariate polynomial matrix
are some problems in control theory. We can solve
numerically the above problems with the aim of the
bivariate polynomial interpolation. In particular, we use
the techniqueevaluation–interpolation[10], [11], [12].
According to the evaluation–interpolation technique,
first, we must evaluate the values of the determinant or
the inverse matrix and in sequence interpolate at the
evaluate values. In the above procedure we have the
critical problem to define the number of initial values
which is the number of interpolation points. The number
of initial values must be the minimum because the initial
values are determinants of inverse matrices. The number
of interpolation points depends on the degree of the
interpolating polynomial (determinant or element of
inverse matrix) [13], [14], [15]. The optimal degree
estimation of the determinant is the aim of this work.
Let a two variable polynomial matrixA(x,y) ∈ R[x,y]m×m

where

A(x,y) =







a1,1(x,y) . . . a1,m(x,y)
...

. ..
...

am,1(x,y) · · · am,m(x,y)







We define the total degree matrixD ∈ N
m×m where

D =







d1,1 . . . d1,m
...

.. .
...

dm,1 · · · dm,m







with di, j = deg[ai, j(x,y)] where deg[.] denotes the total
degree of polynomial.
Similarly, we define the degree matrix in terms ofx,
Dx ∈ N

m×m where

Dx =







dx
1,1 . . . dx

1,m
...

. . .
...

dx
m,1 · · · dx

m,m







with dx
i, j = degx [ai, j(x,y)] where degx[.] denotes the

greatest degree in terms of variablez and the degree
matrix in terms ofy, Dy ∈ N

m×m where

Dy =







dy
1,1 . . . dy

1,m
...

. . .
...

dy
m,1 · · · dy

m,m







with dy
i, j = degy [ai, j(x,y)] where degy[.] denotes the

greatest degree in terms of variabley. For the above
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elements hold that

di, j ≤ dx
i, j +dy

i, j ≤ 2·di, j

According to [5], [8], [6], [7] the upper bound of degree of
the determinant of polynomial matrixA(x,y) is

n1 = m·d whered = max
1≤i, j≤m

{

di, j
}

In this case we need

N1 =

(

n1+2
n1

)

interpolation points. Additionally, the upper bound of
degree of the determinant of polynomial matrixA(x,y) is
n2 where

n2 = min

{

m

∑
i=1

(

max
1≤ j≤m

{

deg[ai, j(x,y)]
}

)

,

m

∑
j=1

(

max
1≤i≤m

{

deg[ai, j(x,y)]
}

)

}

In this case we need

N2 =

(

n2+2
n2

)

interpolation points.
With the same way we define

nz
3 = (m·dz) wheredz = max

1≤i, j≤m

{

dz
i, j

}

with z∈ {x,y} and

nz
4 = min

{

m

∑
i=1

(

max
1≤ j≤m

{

degz[ai, j(x,y)]
}

)

,

m

∑
j=1

(

max
1≤i≤m

{

degz[ai, j(x,y)]
}

)

}

In these cases we need

N3 = (nx
3+1) · (ny

3+1)

and
N4 = (nx

4+1) · (ny
4+1)

interpolation points respectively.

Example 1.Let the polynomial matrix

A(x,y) =





x3−x2y2 2x+3y 5x+2
x6+y4−6x4y3 x2+y2+2 x3−2y

x3 y 4





The polynomial matrixA(x,y) has total degree matrix,
degree matrix in terms ofx and degree matrix in terms of
y respectively,

D =





4 1 1
7 4 3
4 1 0





and

Dx =





3 1 1
6 2 3
2 0 0





and

Dy =





2 1 0
4 2 1
2 1 0





Then,d = 7, dx = 6, dy = 4 andm= 3 thus

n1 = m·d = 3·7= 21

nx
3 = m·dx = 18

and
ny

3 = m·dy = 12

Additionally, we have

n2 = min

{

m

∑
i=1

(

max
1≤ j≤m

{

deg[ai, j(x)]
}

)

,

m

∑
j=1

(

max
1≤i≤m

{

deg[ai, j(x)]
}

)

}

=

= min{4+7+4, 7+4+3}= 14

nx
4 = min

{

m

∑
i=1

(

max
1≤ j≤m

{

degx[ai, j(x,y)]
}

)

,

m

∑
j=1

(

max
1≤i≤m

{

degx[ai, j(x,y)]
}

)

}

=

= min{3+6+2, 6+2+3}= 11

and

ny
4 = min

{

m

∑
i=1

(

max
1≤ j≤m

{

degy[ai, j(x,y)]
}

)

,

m

∑
j=1

(

max
1≤i≤m

{

degy[ai, j(x,y)]
}

)

}

=

= min{2+4+2, 4+2+1}= 7

The numbers of interpolation points are presented in Table
1.
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Table 1: The number of interpolation points for all cases

N1 N2 N3 N4

253 120 247 96

2 Main propose

In the previous approaches, we compute the upper bounds
of the total degree or the degrees in terms of variablesx or
y of the determinant respectively, as well as the number of
points which are required for each case. Then, we will
define a recursive formula for the computation of the
degree of the determinant. The construction of the
recursive formula is based on the corresponding recursive
formula for the calculation of the determinant.
Let the polynomialsf (x,y) andg(x,y). We know that

deg[ f (x,y) ·g(x,y)] = deg[ f (x,y)]+deg[g(x,y)]

and

deg[ f (x,y)+g(x,y)] = max{deg[ f (x,y)],deg[g(x,y)]}

Moreover, the calculation of the determinant of the
polynomial matrix A(x,y) is based on operations of
multiplication and addition between the polynomials.
Consequently, the respective operations in degrees of
polynomials is the sum of the degrees of polynomials
when the polynomials multiplied and the maximum
degree of polynomials when the polynomials added.
Therefore, we apply the recursive formula for the
calculation of the determinant on matrixD by replacing
the multiplication with the operation of addition and the
adding with the maximum selection. This returns us the
degree of polynomial matrixA(x,y).
The above computational procedure is given by the
recursive formula

DegDet(D) =

{

max
1≤ j≤m

{

di, j +DetDeg(Di, j)
}

m> 2

max{d1,1+d2,2,d1,2+d2,1} m= 2
(1)

whereDi, j ∈ N
(m−1)×(m−1) is a sub-matrix of matrixD

without thei row and thej column.

Example 2.Let the total degree matrix of the Example1

D =





4 1 1
7 4 3
4 1 0





Then

DegDet(D) = max{d1,1+DegDet(D1,1) ,

d1,2+DegDet(D1,2) ,d1,3+DegDet(D1,3)}

where

DegDet(D1,1) = max{d2,2+d3,3,d3,2+d2,3}= 4

DegDet(D1,2) = max{d2,1+d3,3,d2,3+d3,1}= 7

DegDet(D1,3) = max{d2,1+d3,2,d2,2+d3,1}= 8

Thus

DegDet(D) = max{4+4,1+7,1+8}= 9

instead ton1 = 21 andn2 = 14.

2.1 Optimal computation of the degree

The disadvantage of the recursive formula (1) is its
computational complexity which is ofO(n!). For the
computation ofDegDet we needn! combinations ofn
elements from each column and each row. These elements
must be from different rows and different columns. We
get the sumsSk wherek = 1, ...,n! of these combinations
and we compute the degree

DegDet= max
k=1,...,n!

{Sk}

Therefore, this computation can be written as an
assignment problem in linear programming. In particular,
the objective function is

max z=
m

∑
i=1

m

∑
j=1

(di, j ·xi j )

subject to
m

∑
j=1

xi j = 1 i = 1,2, . . . ,m

and
m

∑
i=1

xi j = 1 j = 1,2, . . . ,m

with xi j = {0,1} for all i, j.
The above assignment problem can be solved with the
Hungarian method or algorithm [16] which has
computational complexity ofO(n3). [17] show that the
computational complexity is reduced toO(n2 logn). The
matrix D of the Example2 with the Hungarian method
will be





4 1 1
7 4 3
4 1 0





Hungarian
method−→





0 0 0
0 0 1
0 0 1





In the last matrix 2 combinations of 3 independent zeros
exists which means the solutions of the problem is the
elements(3,1),(2,2),(1,3) or (2,1),(3,2),(1,3) and the
objective function is equal to

d3,1+d2,2+d1,3 = 9

or
d2,1+d3,2+d1,3 = 9
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Table 2: The degree of the determinant and the number of
interpolation points for all cases

N1 N2 N3 N4 N5 N6

253 120 247 96 55 48

Example 3.Let the polynomial matrix A(x,y) of the
Example1 which has total degree matrix, degree matrix in
terms ofx and degree matrix in terms ofy respectively,

D =





4 1 1
7 4 3
4 1 0



 ;Dx =





3 1 1
6 2 3
2 0 0



 ;Dy =





2 1 0
4 2 1
2 1 0





We have
n5 = DegDet(D) = 9

nx
5 = DegDet(Dx) = 7

instead tonx
3 = 18 andnx

4 = 11 and

ny
5 = DegDet(Dy) = 5

instead to ny
3 = 12 and ny

4 = 7. The numbers of
interpolation points are presented in Table2.

From the Table2 we conclude that the reduction of the
required interpolation points is significantly large.

3 Conclusions

The proposed recursive formula (1) reduces a lot the
interpolation points which are required for the calculation
of the determinant. This is the advantage of this formula
for the techniqueevaluation–interpolation, because the
interpolation points are determinants or adjoint matrices
of evaluating matrices which have a very large
computational cost. Additionally, the recursive formula
(1) is represented as an assignment problem and the
computational complexity is ofO(n2 logn). Finally, this
formula can be used in one variable polynomial
evaluation–interpolation problems such as the
computation of the determinant, inverse, Smith form of a
polynomial matrix.
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