Appl. Math. Inf. Sci.7, No. 5, 2011-2018 (2013) =) 2011

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/070541

Numerical Study for the Fractional Differential Equations
Generated by Optimization Problem Using Chebyshev
Collocation Method and FDM

M. M. Khader:2*, N. H. Sweilam® and A. M. S. Mahdy*

1Department of Mathematics and Statistics, College of Science, Al-lmanaMoted Ibn Saud Islamic University, Riyadh, Saudi
Arabia

2Department of Mathematics, Faculty of Science, Benha Universityh&ebgypt

3Department of Mathematics, Faculty of Science, Cairo University, Gggpt

4Department of Mathematics, Faculty of Science, Zagazig Universibazig, Egypt

Received: 3 Feb. 2013, Revised: 4 Jun. 2013, Accepted: 5 Ju8. 20
Published online: 1 Sep. 2013

Abstract: This paper is devoted with numerical solution of the system fractionalrdiffeal equations (FDEs) which are generated
by optimization problem using the Chebyshev collocation method. The fradtiterivatives are presented in terms of Caputo sense.
The application of the proposed method to the generated system of FREtdezigebraic system which can be solved by the Newton
iteration method. The method introduces a promising tool for solving mgsiess of non-linear FDEs. Two numerical examples
are provided to confirm the accuracy and the effectiveness of tipwped methods. Comparisons with the fractional finite difference
method (FDM) and the fourth order Runge-Kutta (RK4) are given.
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Nomenclature been the focus of many studies due to their frequent
appearance in various applications in fluid mechanics,

a. . N
DY:  The Caputo fractional derivative of order biology, physics and engineeringd][ Consequently,

IFIOI’T T?ﬁese;e?;r?g r;za;ucrgzor;]urt];b%résr,] ote the smallest considerabl_e attention ha§ been given' to the solutions of
i.nteger greater than or equaldo FDEs and integral equations of phy_su:al interest. Most

0 The set of all real numbers: FDEs _do not have gxact anal_ytlcal solutions, so

Oh(x): The gradient of the functioﬁ(x); approximate and numerical technique$ 3] must be

u: An auxiliary penalty variable; used. Several numerical methods to sollve FDEs have

5: A constant: ' been given such as, homotopy perturbation mettgd [

homotopy analysis metho@] collocation method{, 14]

Ta(X):  The Chebyshev polynomial of degree and others12]

Representation of a function in terms of a series
1 Introduction expansion using orthogonal polynomials is a fundamental
concept in approximation theory and form the basis of the
In last decades, fractional calculus has drawn a widesolution of differential equationslp, 16]. Chebyshev
attention from many physicists and mathematicians,polynomials are widely used in numerical computation.
because of its interdisciplinary application and physicalOne of the advantages of using Chebyshev polynomials as
meaning [, 2]. Fractional calculus deals with the a tool for expansion functions is the good representation
generalization of differentiation and integration of of smooth functions by finite Chebyshev expansion
non-integer order. Fractional differential equationsehav provided that the functiog(x) is infinitely differentiable.

* Corresponding author e-mamhohamedmbd@yahoo.com

© 2013 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.12785/amis/070541

2012 NS 2 M. M. Khader et al: Numerical Study for the Fractional Differential Btjons...

The coefficients in Chebyshev expansion approach zer@.1 The fractional derivative in the Caputo
faster than any inverse powerrirasn goes to infinity. sense

Optimization theory is aimed to find out the optimal
solution of problems which are defined mathematically The Caputo fractional derivative operafdf of ordera is
from a model arise in wide range of scientific and defined in the following form
engineering disciplines. Many methods and algorithms
have been developed for this purpose since 1940. Thenq (X) = 1 /X f(m (&) dE
penalty function methods are classical methods for F(m—a)Jo (x—§&)a—mi=’
solving non-linear programming (NLP) problerh7] 19].
Also, differential equation methods are alternative wherem—1<a <m meN, x> 0.
approaches to find solutions to these problems. In thisSimilar to integer-order differentiation, Caputo fractad
type of methods the optimization problem is formulated derivative operator is linear
as a system of ordinary differential equations so that the
equilibrium point of this system converges to the local D (c1p(x) + C2q(x)) = €1D p(x) +c2D*q(x),
minimum of the optimization problenip, 21].

a >0,

wherec; andc; are constants. For the Caputo’s derivative
In this article, we will compare our approximate e have

solution with those numerical obtained using the implicit pac _— 0, Cis a constant 1)
finite difference method. It has been shown that FDM is a ’
powerful tool for solving various kinds of

problems P2, 23. Also, this technique reduces the o 0, for ne Noandn < [af;
problem to a system of algebraic equations. Many authors X = %xﬂﬂ’, for ne Ngandn> [a].
have pointed out that the FDM can overcome the 2

difficulties arising in the calculation of some numerical

.. We use the ceiling functiona| to denote the smallest
methods, such as, finite element method. 9 fa

integer greater than or equal toandNp = {0,1,2,...}.
The main aim of the presented paper is concernedRecall that fora € N, the Caputo differential operator

with the application of the Chebyshev collocation methodcoincides with the usual differential operator of integer

and fractional finite difference method to obtain the order.

numerical solution of the system of FDEs which is For more details on fractional derivatives definitions and

generated from the non-linear programming problems andheir properties see (], [24]).

study the convergence analysis of the proposed method.

The structure of this paper is arranged in the following e . )

way: In section 2, we introduce some basic definitions2-2 Optimization problem and its corresponding

about Caputo fractional derivatives, the definition of the System of FDES

optimization problem and its generated system of FDEs.

In section 3, we derive an approximate formula for Consider the non-linear programming problem with

fractional derivatives using Chebyshev series expansiorquality constraints defined by

and estimate an upper bound of the resulting error of the

proposed formula. In section 4, numerical examples are minimize f (x), subject tax e M, 3

given to solve the system of FDEs which obtained from

the non-linear programming problem and show thewith M = {x e O": h(x) = 0}, wheref : 0" — O and

accuracy of the presented methods. Finally, in section 5h= (hy,hy,...,h ) ;0" — 0P (p < n). Itis assumed that

the paper ends with a brief conclusion and some remarksthe functions in the problem are at least twice
continuously differentiable, that a solution exists, amak t
Oh(x) has full rank. To obtain a solution of3), the
penalty function method solves a sequence of
unconstrained optimization problems. A well-known

.. . . enalty function for this problem is given b
2 Preliminaries and notations P y . g y

p
Foom) =100 +ag 3 (0P @
/=1

In this section, the formulation of the optimization where 8 > 0 is a constant angt > 0 is an auxiliary
problem and its corresponding system of FDEs are giverpenalty variable. The corresponding unconstrained
and we present some necessary definitions an@ptimization problem of3) is defined as follows
mathematical preliminaries of the fractional calculus

theory required for our subsequent development. minimize F(x,u) s.t. xe O (5)
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For more details about NLP problem can be found in (The functionx(t), which belongs to the space of square

[12-14), [17], [19)]). integrable functions off0,L], may be expressed in terms
We can write the NLP problem in a system of of shifted Chebyshev polynomials as

fractional differential equations as follows:

Consider the unconstrained optimization problés)) é&n .

approach based on fractional dynamic system can be X(t):.Z.JC‘Ti ®), (10)

described by the following FDEs =

(o)

where the coefficients are given by (foi = 1,2,...)

DIx(t) = —OxF (X, 1), O<a<l, (6)
with the initial condition(tg) =¢;, i=1,2,...,n. / < /
Note that, a poinke is called an equilibrium point of6] \/Lt —t VLt —t
if it satisfies the right hand side of EG)( Also, we can .
rewrite the fractional dynamic syster) (n more general In practice, only the firsm+- 1)-terms of sh|fted
form as follows Chebyshev polynomials are considered. Then we have
Daxi(t):gi(t7l~l7xl7x2>'“7xn)a I :1527"'7n' (7) o

Xm(t) = % G T (). (12)
The steady state solution of the non-linear system of FDEs i=
(7) must be coincided with local optimal solution of the
NLP problem 8). Theorem 3.1 (Chebyshev truncation theoren2g
The error in approximating(t) by the sum of its firsim
terms is bounded by the sum of the absolute values of all

3 Derivation an approximate formula for the neglected coefficients. If
fractional derivatives using Chebyshev series m
expansion xm(t) = ) & Tk(t), (13)

The well known Chebyshev polynomial®d] are defined
on the interva[—1,1] and can be determined with the aid then

0

of the following recurrence formula Er(m) = [X(t) — X(t)| < Z . 14)
Thi1(2) = 2ZTn(2) — Ta-1(2), k=1
To(2=1 M@=z n=12... for all x(t), all m, and allt € [—1,1].

The main approximate formula of the fractional derivative
The analytic form of the Chebyshev polynomid@jgz) of  of xi(t) is given in the following theorem.
degreenis given by
) Theorem 3.2 Let x(t) be approximated by Chebyshev
2

Ta(2) = n Z)(_l)i on-2i-1 (n—i—1)! A2 (g) polynomials as12) and also suppose > 0, then
£ (
=

Nn—2i)° -

where [n/2] denotes the integer part ofi/2. The DY (xm(t)) = Z Z CiWﬁ()tk*a» (15)
orthogonality condition is al k=[a

1 T(AT T, for i=j=0; wherew'?) is given by

/ 'I'.(zl)TJ(ZZ)dZZ{’ZT, for i=j#0; X
1 V1-7 i £ |
0, for i#j. W(a) _ )i—k 22ki(i+k—1)”—(k+1) (16)

In order to use these polynomials on the interf@al| we K LK = k) (2! (k+1—a)’

define the so called shifted Chebyshev polynomials by . , . . o
introducing the change of variatte- %t — 1. The shifteq Proof. Since the Caputo’s fractional differentiation is a

Chebyshev polynomials are defined as linear operation we have
Ti(t) = Ta(t — 1) = Ton(y/t/L). The analytic form of

. . . m
g:sef]hgf;ed Chebyshev polynomialy (t) of degreen is DY (X(t)) = .Z)Ci DY(T(t)). (17)
=
n 2% (n+k—1)! -
() — _ 1)k Kk on— Employing Eqgs 1) and @) on the formula @) we have
T (1) nkzo( 1) Lk(2k)!(n—k)!t , N=23 ...
9) DYT*(t) =0, i=01,.,[a]-1 oa>0 (18)
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Also, fori = [a],[a] +1,...,m, and by using Eqsl] and

(2), we get
(1)
k;oﬂ

i s (1)K gZK(i+k71)!r(k+1) K a
k:%ﬂ Lk(i— k)1 (2K)! T (k+1—a)

(19)
A combination of Eqs18), (19) and (L6) leads to the
desired result 5 and completes the proof of the
theorem.

ik 2%(i+k—1)!

LK(i —K)! (2K)! Dt

DT () =i

Theorem 3.3 The Caputo fractional derivative of order

for the shifted Chebyshev polynomials can be expresse
terms of the shifted Chebyshev polynomials

in
themselves in the following form

i k—[a

]
DY(T*(t)) = O i kTH (1), 20
(T (1) kgﬂ ,Zo dk Ty () (20)

where (forj=0,1,...)

(—1)2i(i+k-D)!T (k—a+3)
(- 3) (=R (k—a— 1) (ke j—a+ LK

O jk=

Proof. We concern the properties of the shifted

Chebyshev polynomials2p] and expandingt‘—? in
Eq.@9) in the following form

k—[a]

Z) i Ti" (1),
=

wherecy; can be obtained usindg.{) wherex(t) = tha
then

tha (21)

Ckj dt, hg=2h;j=1j=12,...

Z/Ltk‘“ﬂ*@
hjmjo Lt—t2

At j =0 we find

LTy 0 1 M(k—a+1/2)
“=nh Ve valk-atl

also, at anyj and using the formuladj we can find that
5l i—r (j4r—11R227 1 (ktr—a+1/2)
Cj = \/_TTZI’ZO(_]')J (-0 (krr—a+1Lr
for j =1,2,.... Employing Egs19) and @1) gives
DY(TH (1) = Sheja S0’ @kTy (©), i =[al,[al+1,...,
where

Gjk=
(=) K (i+k=1)12%KI T (k—a+3)

TR a2 =0
(D k2% o (D (D T kr—akd)
T (1 a) (RNl X 2r=0 (i@ ka0 1 =12

After some lengthly manipulatio® jx can put in the
following form (for j =0,1,...)

(—1)K2i(i+k—1)!T (k—a+3)
hil (k+3) (i—K)!' T (k—a—j+1) T (k+j—a+1)Lk’
(22)

O k=

and this completes the proof of the theorem.

Theorem 3.4 The error|Er (m)| = |DIX(t) — D%xn(t)| in
approximatingd?x(t) by DXy (t) is bounded by

[Er(m)| < ‘i:irlci(ki%ﬂ kj_g@.,j,k)\- (23)

%roof. A combination of Eqs0), (12) and @0) leads to

[Er(m)] = | DX(t) ~ D Xm()

Y i k—[a] .
3503, & o)

but|T;(t)| < 1, so, we can obtain

7

b

) i k—[a]
Ermi<| 5 a( PP @.ix)

and subtracting the truncated series from the infinite serie
bounding each term in the difference, and summing the
bounds completes the proof of the theorem.

4 Numerical implementation

In order to illustrate the effectiveness of the proposed
method, we implement them to solve the following
system of FDEs which is generated from the non-linear
programming problem.

4.1 Optimization problem 1:

Consider the following non-linear programming problem
[26]

minimize f (x) = 100(u? —v)2 4 (u—1)?, (24)
subjecttoh(x) = u(u—4) —2v+12=0.

The optimal solution ix* = (2,4), wherex = (u,v). For
solving the above problem, we convert it to an
unconstrained optimization problem with quadratic
penalty function 4) for 6 = 2, then we have
F(x M) =100U? — V)2 + (u—1)2+ L p(u(u—4) — 2v+12)2,
where u € 07 is an auxiliary penalty variable. The
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corresponding non-linear system of FDEs froB) (s
defined as

DYu(t) = —400W? — v)u—2(u—1)
D7v(t)

— p(2u—4) (W —du—2v+12),
= 200U —V) +2u(W? —4u—2v+12), O<a <1,

(25)
with the following initial conditions u(0) = 0 and
v(0) =0.

1.I: Implementation of Chebyshev approximation

Also, by substituting Eq26) in the initial conditions
u(0) = v(0) =0, we can find

m

,;(—1)‘&-

Equations 29) and @0), together the equations of the
initial conditions B1), give (2m+ 2) of non-linear
algebraic equations which can be solved using the
Newton iteration method, for the unknowrs and

=0, i(—l)i bi = 0.

(31)

Consider the system of fractional differential equationsbi, i =0,1,...,m,
(25). In order to use the Chebyshev collocation method,

we first approximatei(t) andv(t) as

m m
)= a Tt )= bT*(t 26
) i; i (1) ) i; i (). (26)
From Eqs.26) and Theorem 3.2 we have
il i (a) k—a L * 2 il *
aw t°% =—400((H a T (1) — > biT'(t))
i:%ﬂ k=Ta a i;) i;)

<iaﬂ*<t>>—2(_2&1*@)—1)—u<2ian*a>—
(3 AT -4(3 aT(0) 23 BT0)+ 12,
- " @7)
;k_ by Iktk a — 200(( %a.T —ibﬂi*(t))
+2u((y a T ( aT (1) —2(Y biT*(t)) +12).
TG AT
We now collocate Eq2() and @8) at (m+1— [a])
pointst, (p=0,1,....m+1—[a]) as
i% k izma WS T = —a00((5 AT (1)~ 3 BT ()
(ia T (tp)) — Z(ia T (t) —1) —u(2 ia T (tp)
—H((T aT(tp)) 74 a T (tp)) bi T (tp)) +12),
R
% ; biwi )t~ = 200(( zoaT
%bl )+ 2u( %aT Zja.T (tp))
))+12).

—2( Z}b.

(30)

For suitable collocation points we use the roots of shiftedequations.

Chebyshev polynomial; ., [tﬂ(t)

L.11: Implementation of fractional FDM

In this section, the fractional finite difference method
with the discrete formula (7], [28]) is used to estimate
the timea-order fractional derivative to solve numerically
the system of FDE26). Using ( [27], [28]) the restriction
of the exact solution to the grid points centeredat=

nk,n=1,2,....N,in Eqs.@5)
n
Oaky wj<C{> (Un—j+1— Un_j) +O(K) = —400(U2 — Vq)Un
=1
—2(Un—1) — p(2un — 4).(U2 — 4up — 2vy + 12),
(32)
@)
Oak y @ (Vn-j+1—Vn-j) +O(K)
"2, (33)
= 200(U2 — V) + 2 (U2 — 4up — 2V, + 12),
@)
Oak Y @ (Un—j41—Un—j) = —400(U; — Vn)Un
j=1
—2(Un—1) — p(2un — 4).(U2 — Aun — 2vn 4 12) + TEy(t),
(34)
@
Oak Y @ (Vo-j1—Vnj) = 2003 — Vn)
= (35)
42U (U2 — 4Up — 2vh +12) + TE3(1),

whereTE;(t) andTE,(t) are the truncation terms. Thus,

according to Eqs34) and @5), the numerical scheme is

consistent, first order correct in time. The resulting finite
difference equations are defined by

n

Tak y wfa)(unfjﬂ —Un_j) = —400(UZ — V) un
=1
—2(Un— 1) — (2un — 4).(U2 — dup — 2vn + 12),
(36)
c ) 2
Oak Y W (Vn—j+1—Vn—j) = 200(Uj — Vn)
2% " (37)
+2u(W2 —4un— 2V +12), n=1,2,....N

This scheme presents a non-linear system of algebraic
In our calculation, we used the Newton
iteration method to solve this system.
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Fig. 1: The behavior of the Chebyshev collocation solution with Fig. 2: The behavior of the Chebyshev collocation solution with
m= 4, FDM solution withk = 0.002 and RK4 solution at = 1. m= 4 and FDM solution wittkk = 0.002 ata = 0.85.

Table 1: The numerical solution of the systerd(j using the

In figures 1 and 2, we presented a comparisonChebyshev collocation methodat= 1.
between the approximate solution(), v(t)) using the t ] x() Xo(t) x3(t) Xa(t) Xs(t)
Chebyshev collocation method witm = 4, numerical 0 2 2 2 2 2
solution using the fractional finite difference method with | 2 | 1.19101} 1.35954| 1.47404| 1.64153| 1.67921
k = 0.002 and the solution using Runge-Kutta method for| 10 | 1.19108 | 1.36252| 1.47278| 1.63476| 1.67914
a =1 anda = 0.85, respectively. From these figures, we | 1> | 1.191091 1.36253| 1.47277) 1.63474| 1.67913
can conclude that the obtained numerical solutions of the 20 | 1191091 1.36253| 1.47277| 1.63474| 1.67913
proposed methods are in excellent agreement with thos S0 | 1.19109) 1.36253] 1.47277| 1.63474] 1.67913

obtained from Runge-Kutta method.

we have
4.2 Optimization problem 2: 1 3
PO = f0+5K S ()% @9)
=1

Consider the equality constrained optimization problem
where p € O is an auxiliary penalty variable. The

[26]
. corresponding non-linear system of FDEs froB) (s
minimize f(x) = (x1 — 1)2+ (X1 — %2)? + (X2 — X3)? defined as
X3 — Xa)* —xg)*
0= xa)7 0 —x6)", DIx(t) = —Of(x) — uOh(x)h(x), O<a <1, (40)
subjecttohy (x) = x; + X3 4+X3 —2—3vV2=0,
2 B -~ with the following initial conditionsx(0) = (2,2,2,2,2)"
EZEX; =X X32+X40+2 2v2=0, that is not feasible.
3(X) = X1 X5 — £ = U.
(38) The obtained numerical results of the probled®)(

using the proposed methods are presented in tables 1-5,

The solution of 88) is x* = (1.19,1.362,1.47,1.64,1.68) where in table 1, we presented the numerical solution
and this is not an exact solution. For solving the abovex(t) = (x1(t),X(t),...,xs(t)) using Chebyshev collocation
problem, we convert it to an unconstrained optimizationmethod withm=>5 ata = 1 and in table 2, we presented
problem with quadratic penalty functiofé)(for 6 =2,then  the numerical solution using the fractional FDM with
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Table 2: The numerical solution of the system(j using the generated from the NLP problem. The fractional
fractional FDM ata = 1. derivative is considered in the Caputo sense. The

t ] xft) Xo(t) xa(t) Xa(t) %s(t) properties of the Chebyshev polynomials are used to
0 2 2 2 2 2 reduce the system of fractional differential equations to
2 |1 119101} 1.35954| 1.47404| 1.64153| 1.67920 the solution of system of algebraic equations. It is evident

10 | 1.19108| 1.36252| 1.47278| 1.63476| 1.67914
15 | 1.19109| 1.36253| 1.47277| 1.63474| 1.67913
20 | 1.19109| 1.36253| 1.47277| 1.63474| 1.67913
30 | 1.19109| 1.36253| 1.47277| 1.63474| 1.67913

that the overall errors can be made smaller by adding new
terms from the serie26) . The convergence analysis of
the proposed method and derivation an upper bound of
the error are introduced. From illustrative examples, it ca
be seen that the proposed numerical approach can obtain
very accurate and satisfactory results. The numerical
comparison among the fourth order Runge-Kutta= 1)

and the solution obtained using finite difference method
with the proposed methods shows that our technique

Table 3: The numerical solution of the system(j using the
RK4 method atr = 1.

t ] oa® | el | %O [ %O [ %0

0 2 2 2 2 2 . . .

> | 1.19101| 1.35954| 1.47404| 1.64153| 1.67921 per.for.m r_ap|d convergence to the optimal §o|ut|ons of. the
10 | 119108| 1.36252| 1.47278| 1.63476| 1.67914 optimization problems. Also, from the obtained numerical
15 | 1.19109| 1.36253| 1.47277| 1.63474| 1.67913 results we can conclude that our results are in excellent
20 | 1.19109!| 1.36253| 1.47277| 1.63474| 1.67913 agreement with the exact solution and those from the RK4
30 | 1.19109| 1.36253| 1.47277| 1.63474| 1.67913 method. All numerical results are obtained using Matlab.

Table 4: The numerical solution of the systerQj using the ~ Acknowledgement
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