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Abstract: The exponential power distribution (EP) is a lifetime model that can exhibit increasing and bathtub hazard rate function. This

paper aims to propose a new class of distributions called the exponential power power series (EPPS) class of distributions. The hazard

function of the proposed class can be increasing, decreasing, modified bathtub (increasing-decreasing-increasing) and bathtub shaped.

Among others, the exponential power geometric (EPG) distribution is presented as a special case of the proposed family. A defective

version of EPG distribution is defined to estimate the fraction of long-term survivors in a population. The moments of the defective

EPG distribution are obtained. More importantly, owing to the proposed defective distribution, a cure rate regression model is proposed

for modelling lifetime data contains long-term survivors with associated covariates. The maximum likelihood method and Bayesian

method are used for estimating the unknown parameters. The performance of these estimation methods is examined by conducting a

simulation study. The importance of the proposed family is illustrated by means of three distinctive real data sets.

Keywords: Exponential power distribution, Power series distributions, Cure rates, Long-term survivors, Defective distributions,

Censored data, Regression model.

1 Introduction

The exponential power (EP) distribution with bathtub shape or increasing hazard rate is proposed by Smith and Bain [1].
Its distribution function is given by

FEP(x) = 1− e
−
(

eλxα
−1

)

, (1)

where α > 0 is a shape parameter and λ > 0 is a scale parameter. This distribution may be thought of as a truncated
extreme-value distribution with a Weibull type parametrization rather than the usual location-scale parametrization.

An extension of EP distribution has been proposed by Barriga et al. [2], called complementary exponential power
(CEP) distribution, based on the exponentiated type family of distributions. Based on modification of the EP distribution,
Chen [3] proposed two parameter distribution with bathtub or increasing hazard rate function. Xei et al. [4] proposed an
extension of Chen’s model, known as the Weibull extension model, by adding scale parameter. It has been further extended
by Pappas et al. [5] using the technique of Marshall and Olkin [6]. Another extension proposed by Chaubey and Zhang
[7] using exponentiated type family of distribution.

When modelling survival data, all individuals in the study population are assumed to be susceptible to the interested
event. However, such assumption may be violated because some individuals in the population may never experience the
event of interest, such individuals are often called cured or immune or long-term survivors. The proportion of cured
individuals are known in the literature as cure rate or the fraction of long-term survivors.

In order to model the cure rates, a strategy is needed to make the survival function tends to a value p ∈ (0,1),
representing the cure rate, as time increases. The standard mixture model is commonly used for modelling cure rates, [8].
This model is a mixture of cured and uncured individuals, that is, F̄(t) = p+(1− p)F̄0(t), where p ∈ (0,1) is the cure
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rate and F̄0(t) is proper survival function for the uncured individuals. Common choices for F̄0(t) are the exponential,
Weibull, log-logistic, log-normal and Gompertz distributions.

An alternative model is due Yakovlev et al. [9] who proposed the promotion time cure model (PTCM) as a different
approach for modelling survival data with long term survivors. In this type of models the cumulative hazard function is

defined as Hpt(x) = λ F0(x), where λ > 0. Thus the improper survival function is then given by F̄pt(x) = e−λ F0(x) and the

cure fraction is limx→∞ F̄pt(x) = e−λ .

Another interesting way for modelling cure rates is to use defective distributions. A defective distribution is
characterized by having probability density function integrated to values less than 1, when changing the usual domain for
some of its parameters. In this case, the survival function approaches a proportion p ∈ (0,1) as time increases. Gompertz
and inverse Gaussian distributions are examples of such distributions, Balka et al. [10]. Rocha et al. [11] derived a new
property for Marshall-Olkin class of distributions which allows one to generate new defective distributions.

This paper aims to propose an extension to exponential power distribution by compounding the EP distribution and
power series distributions. The compounding procedure is based on competing risks problems, see [12], following the
technique of Marshall and Olkin. The new class called exponential power power series (EPPS) class of distributions. The
EPPS contains the exponential power geometric (EPG) distribution as a special case which can be redefined as a defective
distribution by changing the usual domain for some of its parameters. The defective EPG distribution can be used to model
survival data with long-term survivors and censoring data in presence of covariates. Therefore, we propose a regression
model that allows us to estimate cure rates based on defective EPG distribution.

The organization of the paper is as follows: Section 2 proposes the EPPS family. Section 3 presents some
characteristics for the density function of the EPPS family. The quantile function and ordinary moments are also
provided in this section. In section 4, special cases of the proposed family are presented. The defective EPG distribution
and its regression model are defined in section 5. The ordinary moments for defective EPG distribution is also derived in
this section. Estimation of the parameters using maximum likelihood and Bayesian methods are addressed in section 6.
Further, in this section, detailed simulation studies are performed to examine the accuracy of the maximum likelihood
and Bayesian estimators. Finally, section 7 explore applications to real datasets that illustrate the superiority of the EPPS
family over other models.

2 The exponential power power series family of distributions

Consider Xi, i = 1, . . . ,N be independent and identically distributed random variables following exponential power
distribution with cumulative distribution function (cdf) in (1) with corresponding survival function and probability
density function (pdf) given by

F̄EP(x) = e
−
(

eλxα
−1

)

, (2)

and

fEP(x) = λ αxα−1e−(eλxα
−1)+λ xα

, (3)

respectively. These random variables represent lifetimes of a series system of N components. Here, N is a zero truncated
discrete random variable following a power series distribution with probability function

pn = P{N = n}=
anθ n

C(θ )
,n = 1,2, . . . , (4)

where the coefficient an ≥ 0 depends only on n and C(θ ) = ∑∞
n=1 anθ n. Table 1 shows useful quantities of some power

series distributions such as Poisson, logarithmic, geometric and binomial (with m being the number of replicas)
distributions.
The cdf of the exponential power power series (EPPS) class of distributions is the marginal distribution of the first order

statistics X(1) = min{Xi : i = 1, . . . ,N} which given by

FEPPS (x) =
n

∑
i=1

{1− F̄EP(x)
n} P{N = n} . (5)

Therefore, the cdf for the EPPS family is given by

FEPPS(x) = 1−
C(θe−(eλxα

−1))

C(θ )
. (6)
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Table 1: Useful quantities of some power series distributions.

Distribution an C(θ ) C′(θ ) C′′(θ ) C−1(θ )

Poisson n!−1 eθ −1 eθ eθ log(θ +1) θ ∈ (0,∞)

Logarithmic n−1 − log(1−θ ) (1−θ )−1 (1−θ )−2 1−e−θ θ ∈ (0,1)

Geometric 1 θ (1−θ )−1 (1−θ )−2 2(1−θ )−3 θ (θ +1)−1 θ ∈ (0,1)

Binomial





m

n



 (θ +1)m −1 m(θ +1)m−1 m(m−1)
(θ+1)2−m (θ −1)1/m −1 θ ∈ (0,1)

The survival function, pdf and hazard function for EPPS random variable are, respectively, given by

F̄EPPS(x) =
C(θe−(eλxα

−1))

C(θ )
. (7)

fEPPS(x) = θλ αxα−1e−(eλxα
−1)+λ xα C′(θe−(eλxα

−1))

C(θ )
. (8)

hEPPS(x) = θλ αxα−1e−(eλxα
−1)+λ xα C′(θe−(eλxα

−1))

C(θe−(eλxα
−1))

. (9)

3 Properties

3.1 Density function

The following propositions discuss the limiting behaviour and some other characteristics of the EPPS family.

Proposition 3.1. For the pdf of EPPS family of distributions we have

limx→0 fEPPS(x) =











∞, if 0 < α < 1

0, if α > 1
θC′(θ)
C(θ)

, if α = 1

and limx→∞ fEPPS(x) = 0.

Proposition 3.2. The pdf of EPPS family is monotone decreasing if α ≤ 1 and has at least a mode if α > 1.

Proof. We have that

d log fEPPS(x)

dx
= 0 =⇒

(α − 1)eu

αu
= (1− e−(u−1))+θe−(u−1)C

′′(θe−(u−1))

C′(θe−(u−1))
(10)

where u = λ xα > 0 and C′′(.),C′(.) > 0 . If α ≤ 1 the above equation does not have a solution, for u > 0. Therefore,

fEPPS(x) is monotone decreasing. For α > 1, let g1(u) =
(α−1)eu

αu
and g2(u) = (1−e−(u−1))+θe−(u−1)C′′(θe)

C′(θe) . It is obvious

that g1(u)→∞ and g2(u)→ θe
C′′(θe)
C′(θe) as u→ 0, g1(u)→ 0 and g2(u)→ 1 as u→∞. With this and Proposition 3.1, equation

(10) has at least one root and hence the density fEPPS(x) has at least a mode. �

Proposition 3.3. The exponential power distribution is a limiting distribution of the EPPS family when θ → 0+.

Proof. Using C(θ ) = ∑∞
n=1 anθ n, we have

lim
θ→0+

FEPPS(x) =1− lim
θ→0+

∑∞
n=1 an(θe−(eλxα

−1))n

∑∞
n=1 anθ n

=1− lim
θ→0+

a1e−(eλxα
−1)+∑∞

n=2 nan−1θ n−1e−n(eλxα
−1)

a1 +∑∞
n=2 nan−1θ n−1

=1− e−(eλxα
−1) = FEP(x).
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Table 2: Closed-form expressions for νk,n.

Distribution νk,n

Poisson θ k

(1−e−θ )k!

Logarithmic −1
log(1−θ)k

(

θ
1−θ

)k

Geometric θ k−1

(1−θ)k

Binomial
θ k(1+θ)m−k

(1+θ)m−1









m

k









�

Proposition 3.4. The pdf of the EPPS family can be written as a linear combination of density of
X(1) = min{X1,X2, . . . ,Xn}.

Proof. Using C′(θ ) = ∑∞
n=1 nanθ n−1 in (8), it follows that

fEPPS(x) =
∞

∑
n=1

pn fX(1)
(x), (11)

where fX(1)
(x) = n fEP(x)(1−FEP(x))

n−1. �

An interesting representation of the pdf of EPPS can be formulated as follows: Using binomial theorem, (11) can be
written as

fEPPS(x) =
∞

∑
n=1

n

∑
k=1

(−1)k−1k

(

n

k

)

pn fEP(x)FEP(x)
k−1

=
∞

∑
n=1

n

∑
k=1

(−1)k−1 pn

(

n

k

)

fCEP(x)

where

fCEP(x;λ ,α,k) = kλ αxα−1e−(eλxα
−1)+λ xα

[

1− e−(eλxα
−1)

]k−1

(12)

is the pdf of the complementary exponential power distribution. Changing the order of the double summation to write

fEPPS(x) =
∞

∑
k=1

(−1)k−1νk,n fCEP(x),x > 0, (13)

where νk,n = ∑∞
n=k pn

(

n

k

)

. Table 2 shows closed expressions of νk,n for Poisson, logarithmic, geometric and binomial

distributions. Therefore, the pdf of EPPS class of distribution can be represented as an infinite mixture of CEP density.
The CEP distribution, as presented by Barriga et al. [2] with parametrization fCEP(x;1/α,β ,θ ), is a flexible lifetime
distribution which can handle bathtub shaped, unimodal, increasing and decreasing hazard rate functions.

Theorem 3.1. Let X follows EPPS(α,λ ,θ ). Then:

(i)EPPS is closed under scale transformation, i.e., cX follows EPPS(α,λ/cα ,θ ), c > 0.
(ii)EPPS is closed under power transformation, i.e., X c follows EPPS(α/c,λ ,θ ), c > 0.

(iii)EPPS is closed inverse power transformation , i.e., X−1 has the inverse EPPS distribution.

Proof. (i) Let c > 0, Z = cX . Thus, FZ(z) = P(Z ≤ z) = P(X ≤ z
c
) = FX(

z
c
;α,λ ,θ ). So that, fZ(z) = c−1 fX (

z
c
;α,λ ,θ ) is

given by

fZ(z) =c−1θλ α(
z

c
)α−1e−(eλ( z

c )
α
−1)+λ ( z

c )
α C′(θe−(eλ( z

c )
α
−1))

C(θ )
.

= fEPPS(z;α,λ/cα ,θ ).

The proofs of (ii) and (iii) are similar to the previous proof and therefore are omitted. �
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3.2 Quantile function, Bowley skewness and Moors kurtosis

The quantile function of EPPS class of distribution is given by

Q(u) = λ−α−1
log

{

1+ logθ − log{C−1((1− u)C(θ ))}
}α−1

(14)

where u has a uniform U(0,1) distribution. The effect of the shape parameter θ on the skewness and kurtosis of the
distribution can be studied using Q(u). The Bowley skewness [13] and Moors kurtosis [14] can be utilized for such
investigation.
Bowley skewness is

sk =
Q
(

3
4

)

+Q
(

1
4

)

− 2Q
(

2
4

)

Q
(

3
4

)

−Q
(

1
4

) .

Moors kurtosis is

ku =
Q
(

3
8

)

−Q
(

1
8

)

+Q
(

7
8

)

−Q
(

5
8

)

Q
(

3
4

)

−Q
(

1
4

) .

3.3 Moments and mean deviations

The moments of a distribution is important for studying some of the most important features and characteristics of the
distribution such as tending, dispersion, skewness and kurtosis. Let X be a random variable following the EPPS distribution
with pdf (8). Using (13), the rth moment is given by

E(X r) = kλ α
∞

∑
k=1

(−1)k−1νk,n

∫ ∞

0
xr+α−1e−(eλxα

−1)+λ xα
[

1− e−(eλxα
−1)

]k−1

dx

Using binomial theorem and let y = eλ xα
, we get

E(X r) = k
∞

∑
k=1

∞

∑
i=0

(−1)i+k−1νk,n

(

k− 1
i

)

ei+1λ− r
α I1

where I1 =
∫ ∞

1 (logy)
r
α e−(i+1)ydy.

For the positive integer values of ( r
α ), the integral I1 = ( r

α )! E
r
α

0 (i+ 1) , where

E j
s (z) =

(−1) j

j!

∂ jΓ (1− s,z)

∂ s j

=
1

j!

∫ ∞

1
(logt) jt−se−ztdt, j ∈N0;s,z ∈C

(15)

is the generalized integro-exponential function, for properties and numerical tables see Milgram [15]. Note that, Er
0(z) =

Er−1
1 (z)

z
, E0

1 (z) = Γ (0,z), where Γ (s,z) =
∫ ∞

z ts−1e−tdt is the upper incomplete gamma function.

Using Meijer G-function, G
m,n+1
p+1,q+1

(

zy |
aaap

bbbq

)

, where aaap = a1, . . . ,an;an+1, . . . ,ap and bbbq = b1, . . . ,bm;bm+1, . . . ,bq ,

the generalized integro-exponential function can be written as

E j
s (z) = G

j+2,0
j+1, j+2

(

z |
;s, . . . ,s

0,s− 1, . . . ,s− 1;

)

(16)

For the positive real values of ( r
α ), the integral I1 requires to be computed numerically. In this case, an extension of

the generalized integro-exponential function, introduced by Pogany et al. [16], can also be used to calculate the integral
I1. They derived triple power series expansion of the generalized integro-exponential function Eτ

s (z) for real τ > 0. Thus,

the function E
j
s(z) can be presented as

E
τ
s (z) = ∑

l≥0

(s+ 2)l

l!
Φ

(0,1)
µ,1 (−l,τ + 1,1) 1F1(s+ l+ 2;s+ 2;−z),
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where Φ
(ρ ,σ)
µ,ν (z,s,u) = ∑n≥0

(µ)ρnzn

(ν)σn(n+u)s is the Lin-Srivastava generalized Hurwitz-Lerch Zeta function, [17]. Here (s+

2)l =
Γ (s+l+2)

Γ (s+2) denotes the generalized Pochhammer symbol and 1F1(a;b;x) =∑n≥0
(a)nxn

(b)nn!
is the confluent hypergeometric

function - Kummer’s function [18].

µ ′
r = E(X r

EPPS) = k
∞

∑
k=1

∞

∑
i=0

(−1)i+k−1νk,n

(

k− 1
i

)

ei+1λ− r
α (

r

α
)! E

r
α
0 (i+ 1). (17)

The mean deviation about the mean and the mean deviation about the median are defined by

D(µ) =

∞
∫

0

|x− µ | f (x)dx, D(M) =

∞
∫

0

|x−M| f (x)dx

respectively, where µ = E (X) = µ
′

1 and M = Median(X) = Q(0.5). These measures can be expressed as

D(µ) = 2µF (µ)− 2

µ
∫

0

x f (x)dx, D(M) = µ − 2

M
∫

0

x f (x)dx.

4 Special Cases

4.1 Exponential power Poisson distribution

The exponential power Poisson (EPP) distribution is a special case of EPPS distribution with an =
1
n!

and C(θ ) = eθ − 1.
Using cdf (6) the cdf of EPP distribution is given by

FEPP(x) = 1−
eθe−(eλxα

−1)
− 1

eθ − 1
(18)

The pdf and the hazard rate function of EPG distribution are given, respectively, by

fEPP(x) = θαλ xα−1eλ xα−(eλxα
−1) eθe−(eλxα

−1)

eθ − 1
(19)

hEPP(x) = θαλ xα−1eλ xα−(eλxα
−1) eθe−(eλxα

−1)

eθe−(eλxα
−1)

− 1
(20)

4.2 Exponential power logarithmic distribution

The exponential power logarithmic distribution (EPL) is a special case of EPPS distribution with an = n−1 and C(θ ) =
− log(1−θ ). Using cdf (6) the cdf of EPL distribution is given by

FEPL(x) = 1−
log(1−θe−(eλxα

−1))

log(1−θ )
(21)

The pdf and the hazard rate function of EPG distribution are given, respectively, by

fEPL(x) =
θαλ xα−1eλ xα−(eλxα

−1)

(θe−(eλxα
−1)− 1) log(1−θ )

(22)

hEPL(x) =
θαλ xα−1eλ xα−(eλxα

−1)

(θe−(eλxα
−1)− 1) log(1−θe−(eλxα

−1))
(23)
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4.3 Exponential power geometric distribution

The exponential power geometric distribution (EPG) is a special case of EPPS distribution with an = 1 and C(θ ) =
θ (1−θ )−1. Using cdf (6) the cdf of EPG distribution is given by

FEPG(x) = 1−
(1−θ )e−(eλxα

−1)

1−θe−(eλxα
−1)

,x > 0, (24)

and the survival function is given by

F̄EPG(x) =
(1−θ )e−(eλxα

−1)

1−θe−(eλxα
−1)

,x > 0, (25)

The pdf and the hazard rate function of EPG distribution are given, respectively, by

fEPG(x) =
(1−θ )αλ xα−1eλ xα−(eλxα

−1)

(1−θe−(eλxα
−1))2

(26)

hEPG(x) =
αλ xα−1eλ xα

1−θe−(eλxα
−1)

(27)

where α,λ > 0 and θ ∈ (0,1). Equation (26) is a proper density function even for θ ≤ 0. The hazard function for the EPG
distribution has increasing, decreasing, increasing-decreasing-increasing shaped. Fig. 1 shows the possible shapes for the
pdf and the hazard function of the EPG distribution.

3.3, 2 , 0.6

1.5, 1.5, 0.75

4 , 1 , 0.2

0.4, 0.5, 0.4

0.2, 1 , 0.05

0.75, 0.75, 0.8

1.5, 0.3, 0.95

2 , 0.15, 0.5

(a) (b)

Fig. 1: (a) pdf for EPG distribution (b) hazard rate function for EPG distribution for different parameters’ values

Taking λ = 1, skewness and kurtosis of the EPG distribution are plotted as functions of θ for selected choices of
α . Fig. 2 shows plots of skewness and kurtosis of the EPG distribution which reveal that the shapes of the proposed
distribution have strong dependence on the values of the parameter θ . Further, the EPG distribution can be used to model
positive and negative skewness as well as symmetric datasets.

Table 3 shows the first four moments and some descriptive statistics of EPG distribution. These results show that, the
first four moments increase while the skewness and kurtosis decrease as the parameter θ decreases.

5 Cure rate modelling

This section presents a defective version of EPG distribution in order to model survival data contains cured individuals.
Further, it discusses an approach on how to include covariates information to the proposed model.
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0.5

0.8

1.5

3

5

0.5

0.8

1.5

3

5

Fig. 2: Bowley skewness andMoors kurtosis measures of the EPG distribution for some parameters’ values

Table 3: The first four moments and some descriptive statistics for the EPG distribution where λ = 1.

α θ µ
′

1 µ
′

2 µ
′

3 µ
′

4 sk ku D(µ) D(M)

0.5 0.9 0.0988 0.0913 0.1620 0.3944 5.8770 50.4194 0.1376 0.0968

0.5 0.3403 0.4029 0.7675 1.9200 2.8271 13.5243 0.3617 0.3077

-0.5 0.6729 0.9947 2.0823 5.4523 1.7136 6.5880 0.5604 0.5259

-1 0.7857 1.2352 2.6671 7.1019 1.4938 5.6357 0.6098 0.5822

-2 0.9618 1.6501 3.7352 10.2208 1.2203 4.6454 0.6735 0.6549

1.5 0.9 0.2796 0.1401 0.0988 0.0855 1.6203 5.8556 0.1876 0.1767

0.5 0.5335 0.3899 0.3403 0.3335 0.5817 2.7252 0.2668 0.2645

-0.5 0.7440 0.6702 0.6729 0.7275 0.0142 2.3377 0.2826 0.2826

-1 0.8001 0.7562 0.7857 0.8717 -0.1236 2.3894 0.2803 0.2799

-2 0.8783 0.8837 0.9618 1.1061 -0.3121 2.5577 0.2732 0.2720

2.5 0.9 0.4259 0.2347 0.1556 0.1180 0.8348 3.3934 0.1838 0.1807

0.5 0.6520 0.4917 0.4082 0.3631 0.0441 2.3695 0.2130 0.2130

-0.5 0.8117 0.7204 0.6774 0.6642 -0.4738 2.7372 0.2015 0.2001

-1 0.8513 0.7833 0.7580 0.7607 -0.6095 2.9749 0.1947 0.1926

-2 0.9048 0.8722 0.8762 0.9071 -0.8014 3.4178 0.1832 0.1802

5.1 Defective exponential power geometric

The defective version of the EPG distribution is defined by changing the usual domain of the parameters λ and θ to be
λ < 0 and θ > 1. The density and survival functions for the defective EPG distribution are given by

F̄(x) =
(1−θ )e−(eλxα

−1)

1−θe−(eλxα
−1)

,x > 0,λ < 0,α > 0,θ > 1, (28)

and

f (x) =
(1−θ )αλ xα−1eλ xα−(eλxα

−1)

(1−θe−(eλxα
−1))2

,x > 0,λ < 0,α > 0,θ > 1, (29)
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respectively. So that, modelling survival data with long-term survivors using defective EPG distribution is available with
cure rate given as follows

p = lim
x→∞

F̄(x) =
θ − 1

θ − e−1
∈ (0,1) (30)

The density function of the defective EPG distribution in (29) is a positive density integrated to the proportion 1−e−1

θ−e−1 ∈

(0,1). The following theorem presents the ordinary moments for a defective EPG distributed random variable.

Theorem 5.1. Let X be a random variable following the defective EPG distribution with density function (29), then the
rth ordinary moments of the random variable X is given by

E(X r) = ∑
k,i≥0

(−λ (i+ 1))−
r
α
(1−θ )(k+ 1)i+1

θ k+2ek+1

Γ ( r
α + 1)

Γ (i+ 2)
(31)

where Γ (z) =
∫ ∞

0 yz−1e−ydy is gamma function and α > 0,λ < 0,θ > 1.

Proof. By definition, the rth ordinary moments of the random variable X is given by

E(X r) =
∫ ∞

0
(1−θ )αλ xr+α−1eλ xα−(eλxα

−1){1−θe−(eλxα
−1)}−2dx

by expanding the binomial and the exponential terms it follows

E(X r) = αλ ∑
k,i≥0

(1−θ )(k+ 1)i+1

θ k+2ek+1i!

∫ ∞

0
xr+α−1e(i+1)λ xα

dx

The result is obtained by setting y =−(i+ 1)λ xα . �

5.2 Model with covariates

Here, a regression model is discussed in order to include covariates information to the defective EPG distribution.
Following the work of de Castro et al [19] and Leão et al. [20], the proposed cure rate regression model considers
reparameterizing the EPG distribution in terms of the cure rate (30) such that

θ =
pe−1 − 1

p− 1
(32)

where p ∈ (0,1) is the cure rate parameter. Consequently, the covariates can be included directly through the cure rate
imposing that the cure rate p(zzz) satisfies the functional relation

g(p(zzz)) = βββ T
zzz,

where zzz = (1,z1,z2, . . . ,zk)
T be a vector of covariates and βββ = (β0,β1, . . . ,βk)

T be a vector of regression coefficients.
Different choices for the link function g(.) cen be considered. Due to the direct interpretation of the parameters in terms
of odds, in this paper we consider the logit link. Thus

g(p(zzz)) = log(
p(zzz)

1− p(zzz)
).

Under this parametrization, the cure rate is given by

p(zzz) =
eβββ T

zzz

1+ eβββT
zzz

(33)

This approach is attractive because the cure rate is easily calculated through the logit function. So that, the cure rate

depends directly on the regression coefficients, making it very easy to interpret. If βββ T
zzz increases, so does the cure rate

towards 1. If βββ T
zzz decreases, so does the cure rate towards 0.
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The defective EPG cure rate regression mode is given by the survival function

F̄(x|zzz) =
p(zzz)(1− e−1)e−(eλxα

−1)

(1− e−1p(zzz))e−(eλxα
−1)− (1− p(zzz))

,

and the pdf

f (x|zzz) =

(

1− e−1
)

αλ (p(zzz)− 1)p(zzz)xα−1e
λ xα−

(

eλxα
−1

)

(

(p(zzz)− 1)− (p(zzz)e−1 − 1)e1−eλxα
)2

,

where λ < 0,α > 0.

6 Estimation and simulation

6.1 Maximum likelihood method

In order to estimate the parameters of the EPPS class, we utilize the maximum likelihood (MLE) method. Assume that
the lifetimes are independently distributed and independent from the censoring mechanism. Consider a sample of size
n and the observed time is Xi = min(Ti,Ci), where Ci denote the censored time and Ti the time to event of interest, that

is, if the censoring indicator δi = 1 then Xi = Ti and δi = 0 otherwise, i = 1, . . . ,n. The MLE Θ̂ΘΘ = (λ̂ , α̂ , θ̂ ) for the
vector parameter ΘΘΘ = (λ ,α,θ ) is obtained from maximizing the likelihood function, or equivalently maximizing the
log-likelihood function, corresponding to the EPPS class. The log-likelihood function is given by

ℓ(ΘΘΘ) =
n

∑
i=1

δi log(λ αθ )− n log(C(θ ))+ (α − 1)
n

∑
i=1

δi logxi +
n

∑
i=1

δi

{

λ xα
i − (eλ xα

i − 1)
}

+
n

∑
i=1

δi logC
′
(θe−(eλxα

i −1))+
n

∑
i=0

(1− δi) logC(θe−(eλxα
i −1)).

(34)

Assume that for each i, an explanatory variable vector zzziii = (1,zi1,zi2, . . . ,zik)
T independent of xi. Let ηηη = (λ ,α,βββ )

corresponds to the regression model, proposed in section 5.2, be the vector of (k+3) unknown parameters to be estimated
using the method of maximum likelihood. The log-likelihood function of ηηη is then given by

ℓ(ηηη) =n log(1− e−1)+
n

∑
i=1

log(pi)+
n

∑
i=1

δi log(αλ )+
n

∑
i=1

δi(pi − 1)+ (α − 1)
n

∑
i=1

δi log(xi)

+λ
n

∑
i=1

δixi
α −

n

∑
i=1

(eλ xi − 1)−
n

∑
i=1

(1+ δi) log
(

(pi − 1)− (pie
−1 − 1)eeλxi

α
−1
)

(35)

The log-likelihood functions (34) and (35) can be maximized directly using a mathematical software, i.e. Mathematica
(NMaximize and FindMaximum functions), R (optim and MaxLik functions).

Confidence intervals for the parameters were based on asymptotic normality. If η̂ηη is MLE for ηηη , then its well known
that the distribution of η̂ηη − ηηη can be approximated by a (k + 3)−variate normal distribution with zero means and
covariance matrix I−1(η̂ηη), where I(ηηη) is the observed information matrix defined by

I(ηηη) =−

[

∂ℓ(ηηη)

∂ηηη∂ηηηT

]

The asymptotic 100(1− γ)% confidence interval for η j is

ν̂ j ±Z γ
2
se(η̂ j),

where Z γ
2

is the upper
γ
2

percentile of standard normal distribution and se(η̂ j) is the asymptotic standard error of η̂ j. Note

that se(η̂ j) is the square root of the jth diagonal element of the matrix I−1(η̂ηη).
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The estimated cure fraction p̂ is calculated as a function of the estimated parameters. The delta method with first order
Taylor’s approximation can be used to estimate the variance of the estimated p̂, [21]. Let p̂ = g(η̂ηη), this function can be
expanded as

g(η̂ηη) = g(ηηη)+ g′(ηηη)(η̂ηη −ηηη).

Since η̂ηη −ηηη is approximated by a (k+ 3)−variate normal distribution with zero means and covariance matrix I−1(η̂ηη),
then g(η̂ηη) can be approximated by a univariate normal distribution with mean g(η̂ηη) and variance DDD(η̂ηη)T I−1(η̂ηη)DDD(η̂ηη),

where the column vector DDD(η̂ηη), with (k+ 3) component, is the first order partial derivative
∂g(ηηη)

∂ηηη |η=η̂ .

6.2 MLE simulation

Here, the performance of the MLEs of the parameters of the EPPS family are examined. We considered EPG distribution
and generated random samples using the inverse transformation method for different parameter combinations. The
simulation study is repeated 1000 times each with sample sizes n = 20,50,80,100,150 and 200 for different values of
the parameters λ ,α and θ , where the shape of the density function (26) varies between symmetric, left-skewed and
right-skewed. As a result of this simulation study, the mean square errors (MSEs) and the average biases (ABs) are
obtained and presented in Table 4. We noticed from these results that: (i) the MSEs and ABs decrease toward zero as the
sample size increases, (ii) the average widths (AWs) of the 95% asymptotic confidence intervals of the parameters
decreases as the sample size increases, and (iii) the coverage probability (CPs) are quite close to 0.95. Similar results are
obtained when generating random samples from EPP or EPL distributions and therefore are omitted.

Table 4: MSEs, ABs, AWs and CPs for the parameters of EPG distribution.

λ = 1.5 α = 1.5 θ = 0.5

n MSE AB AW CP MSE AB AW CP MSE AB AW CP

20 0.2190 0.1155 2.0046 0.964 0.2199 0.1094 2.6646 0.989 0.4770 0.2205 4.2579 0.933

50 0.0703 0.0500 1.2413 0.955 0.1102 0.0172 1.7041 0.98 0.3181 0.1886 2.8004 0.941

80 0.0521 0.0405 0.9918 0.952 0.0819 0.0141 1.3747 0.967 0.2324 0.1594 2.1792 0.932

100 0.0425 0.0411 0.8907 0.943 0.0694 0.0105 1.2166 0.959 0.2310 0.1535 1.9069 0.937

150 0.0298 0.0276 0.7386 0.951 0.0531 0.0022 1.0057 0.965 0.1283 0.1064 1.4461 0.952

200 0.0240 0.0363 0.6397 0.934 0.0394 0.0102 0.8676 0.972 0.1028 0.1001 1.2214 0.958

λ = 0.5 α = 2.5 θ =−0.5

n MSE AB AW CP MSE AB AW CP MSE AB AW CP

20 0.0455 0.0930 1.4901 0.897 1.7799 0.7163 6.4763 0.972 0.8982 0.2139 8.8592 0.862

50 0.0311 0.0590 1.0627 0.908 0.6822 0.3673 4.0732 0.971 0.7873 0.0969 6.4663 0.875

80 0.0237 0.0415 0.8948 0.925 0.4329 0.2580 3.2374 0.974 0.7044 0.0518 5.5708 0.882

100 0.0222 0.0257 0.8507 0.922 0.3787 0.1920 2.9546 0.961 0.7138 0.0311 5.4221 0.893

150 0.0176 0.0220 0.7177 0.934 0.2639 0.1479 2.4554 0.964 0.5588 0.0223 4.4541 0.906

200 0.0150 0.0084 0.6419 0.94 0.1931 0.0910 2.1434 0.969 0.5473 0.0535 4.0246 0.916

λ = 1 α = 0.5 θ =−0.75

20 0.0611 0.0745 1.9754 0.968 0.0472 0.1149 1.4166 0.996 0.8121 0.2169 9.748 0.906

50 0.0421 0.0641 1.3817 0.958 0.0261 0.0676 0.8979 0.972 0.7782 0.1332 7.8380 0.898

80 0.0336 0.0640 1.1042 0.958 0.0169 0.0552 0.7015 0.978 0.7426 0.1436 6.296 0.896

100 0.0279 0.0539 0.9924 0.964 0.0135 0.0484 0.6280 0.978 0.7038 0.0855 5.8343 0.908

150 0.0252 0.0214 0.8287 0.956 0.0102 0.0211 0.5023 0.97 0.6612 0.0743 5.0881 0.912

200 0.0209 0.0175 0.7380 0.952 0.0086 0.0152 0.4483 0.96 0.6102 0.0194 4.2179 0.924

In order to conduct a simulation study to examine the performance of the maximum likelihood estimates and the
asymptotic confidence intervals of the parameters of the proposed regression model, we consider

logit(p(zzz)) = β0 +β1zi, i = 1, . . . ,n.

Random samples of size n are generated using the following algorithm:
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–Determine the parameters’ values, λ < 0,α > 0, β0 and β1 > 0 and then evaluate the cure rates p0 and p1 using
equation (33).

–Generate a covariate zi ∼ Bernoulli(0.5) for i = 1, . . . ,n.
–For zi = 0, generate a random variable Mi ∼ Bernoulli(1− p0).

–Take t
′

i = F−1
EPG(u) where

F−1
EPG(u) =

{

1

λ
log(1+ log(

1−θu

1− u
))

} 1
α

,u ∼Uni f orm(0,1− p0)

–Repeat steps 3 and 4, for zi = 1, replacing p0 with p1.

–Set δi = 1 if Mi = 1 and t
′

i = min(t
′

i ,u
′

i); Otherwise set δi = 0 if Mi = 0 or u
′

i = min(t
′

i ,u
′

i).

We generated 1000 random samples each of sizes n = 50,100,150,200,400,600 and parameter vector
ηηη = (−1,1.5,1,−1.5). The cure rates for each group is p0 = 0.731 and p1 = 0.378. Table 5 shows the MSEs and the
absolute value of ABs for the model parameters and the cure rates. Table 6 shows the AWs and CPs for the asymptotic
confidence intervals. From the simulation, we can conclude that: (i) the MSEs decrease and approach zero as the sample
size increases; (ii) the MLEs of the model’s parameters are asymptotically not biased since the ABs approach zero as the
sample size increases; (iii) the MSEs and ABs of the estimated cure rates is generally much less than for the other
parameters; (iv) the coverage probability for all parameters are very close to 0.95; (v) the AW of the confidence intervals
decreases as the sample size increases; (vi) the AW is very small for the cure rates.

Table 5: MSEs and ABs for the parameters of univariate defective EPG regression model and for cure rates for each group.

λ =−1 α = 1.5 β0 = 1 β1 =−1.5 p0 = 0.731 p1 = 0.378

n MSEs ABs MSEs ABs MSEs ABs MSEs ABs MSEs ABs MSEs ABs

50 1.8369 -0.4955 0.1814 0.1517 1.7951 0.5273 4.0551 1.2143 0.0336 0.0956 0.0219 0.0147

100 0.6133 -0.2695 0.0797 0.0974 0.1941 0.1521 3.0487 0.5661 0.0071 0.0355 0.0086 0.0057

150 0.2196 -0.1262 0.0477 0.0645 0.1725 0.1084 2.6188 0.3478 0.0058 0.0243 0.0058 0.0036

200 0.1741 -0.0936 0.0332 0.0459 0.0686 0.0615 2.1331 0.3980 0.0030 0.0149 0.0034 0.0019

400 0.0497 -0.0461 0.0135 0.0184 0.0338 0.0121 1.3196 0.3025 0.0013 0.0038 0.0014 0.0003

600 0.0242 -0.0111 0.0082 0.0081 0.0212 0.0031 0.1458 0.2282 0.0008 0.0003 0.0010 0.0001

Table 6: AWs and CPs for the parameters of univariate defective EPG regression model and for cure rates for each group.

λ =−1 α = 1.5 β0 = 1 β1 =−1.5 p0 = 0.731 p1 = 0.378

n AWs CPs AWs CPs AWs CPs AWs CPs AWs CPs AWs CPs

50 5.0301 0.883 1.5608 0.928 4.1151 0.973 4.7433 0.833 0.8091 0.930 0.6887 0.908

100 2.5816 0.893 1.0175 0.910 1.6686 0.958 1.8965 0.893 0.3281 0.935 0.3540 0.910

150 2.1537 0.899 0.9193 0.925 1.4502 0.960 1.5820 0.880 0.2851 0.955 0.3170 0.913

200 1.4816 0.908 0.6814 0.933 1.1131 0.960 1.2918 0.898 0.2188 0.948 0.2384 0.945

400 0.9100 0.925 0.4552 0.945 0.7530 0.960 0.8932 0.913 0.1480 0.955 0.1611 0.965

600 0.6856 0.943 0.3619 0.950 0.6031 0.963 0.7228 0.918 0.1186 0.965 0.1284 0.958

6.3 Bayesian estimation method

This section concerns with the Bayesian estimates (BSE) for the parameter of the proposed regression model. For this

purpose, we consider reparametrizing the proposed regression model in terms of λ =−λ ∗ and θ = eθ∗
, where λ ∗andθ ∗ >
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0. Thus, independent gamma prior distributions are assumed for the parameters α , λ ∗ and θ ∗ as

π1(λ
∗) ∝ λ ∗a1−1

e−b1λ ∗
, λ ∗ > 0, a1 > 0, b1 > 0,

π2(α) ∝ αa2−1e−b2α , α > 0, a2 > 0, b2 > 0,

π3(θ
∗) ∝ θ ∗a3−1

e−b3θ∗
, θ ∗ > 0, a3 > 0, b3 > 0,

(36)

where a1,a2,a3,b1,b2 and b3 are positive known hyperparameters. Whereas, independent normal prior distributions are
considered for the covariate coefficients β j, j = 0,1, . . . ,k, that is β j ∼ N(c j ,d j), where c j and d j, j = 0,1, . . . ,k, are
known hyperparameters. The hyperparameters are chosen to reflect prior knowledge about the parameters
λ ∗,α,θ ∗,β j, j = 0, . . . ,k.

In Bayesian statistics the joint posterior distribution, π(ηηη |xxx,δ ), contains all relevant information on the unknown
parameters given data. It is defined by combining the joint prior distribution with the likelihood function for the parameters
λ ∗,α,θ ∗,β j, j = 0, . . . ,k. In this work, we consider Markov chain Monte Carlo (MCMC) method to generate samples
from the posterior distributions of the parameters of interest and then compute the Bayes estimators and construct the
corresponding credible intervals (CI).

Bayesian analysis of complex statistical models using the MCMC method with a Gibbs sampling algorithm is available
in the OpenBUGS software. OpenBUGS just requires the specification of the likelihood function and the prior distributions
for the parameters in the model, Lunn et al. [22].

6.4 BSE simulation

To compute the posterior summaries, we generated sample of sizes n = 50, 150, 200, 600 assuming parameter vector
ηηη = (−1,1.5,1,−1.5). The samples were generated using the algorithm proposed in the previous section. Further, two
different types of priors are considered, i.e. informative prior (IP) and non-informative prior (WIP). We used the method
of moments to estimate the values of the hyperparameters, which yield mean approximately equal to the nominal value
of parameter with variance 0.5 for the IP case and variance 2 for the WIP case. We generated 100,000 MCMC samples,
discarding the first 5000 values as burn-in and taking every 10th variate as iid observations. The resulting study is tabulated
in table 7.

From table 7, it is noted that the posteriors means are closer to the parameters’ initial values for larger sample sizes.
The means are closer to parameters’ initials for the case of IP than of WIP. The posteriors standard deviations (sd) and
MCMC error decrease as the sample size increases and IP has the least sd as compared to the WIP cases. Further, credible
intervals for the IP are narrower than the WIP cases.

7 Application

A practical use for the proposed family is presented by applications to three real datasets one of which contains cured
individuals and censored data in presence of covariates informations.

7.1 Turbocharger data

The first dataset considered, represents the time to failure of turbocharger of a certain type of engine reported in [23].
This dataset is approximately symmetric with skewness −0.1603. The EPG and EPP distributions are fitted to this
dataset. For comparison, other alternative models are fitted to the datasets, such as exponential power distribution (EP),
complementary exponential power distribution (CEP), modified Weibull distribution (MW) and Gomperts distribution
(G). In order to compare the fitted distributions the following statistics are considered: Kolmogorov-Smirnov (KS)
distances between the empirical distribution function and the fitted distribution function (and its p-value), Akaike
information criterion (AIC), Bayesian information criterion (BIC), consistent Akaike information criterion (CAIC),
Anderson-Darling statistic (A∗) and Cramer-von Mises statistic (W ∗).
Table 8 summarizes the fitting results including MLEs (standard errors in parentheses) and the statistics used for
comparison. Furthermore, visual comparison using the empirical and fitted densities along side Kaplan-Meier and fitted
survival curves presented in fig. 3. These results show that EPG and EPP distributions provides the best fit to the dataset
which proves the superiority of the proposed family over the other models.
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Table 7: Posterior distributions summarise for defective EPG regression model.

n parameters
Mean sd MC error 95% CrI LL 95% CrI UL

IP WIP IP WIP IP WIP IP WIP IP WIP

50 λ -0.8311 0.6574 0.4000 0.4915 0.0029 0.0055 -1.7690 -1.8460 0.2365 0.0376

α 1.4370 1.3520 0.2725 0.3053 0.0018 0.0031 0.9370 0.8173 2.0050 1.9940

β0 1.0520 0.9015 0.3602 0.8299 0.0024 0.0123 0.3362 -1.0330 1.7490 2.3580

β1 -1.5160 -1.7090 0.3820 0.6929 0.0027 0.0066 -2.2680 -3.1350 -0.7737 -0.4094

p0 0.7354 0.6909 0.0691 0.1632 0.0005 0.0025 0.5833 0.2626 0.8518 0.9135

p1 0.3905 0.3330 0.0923 0.1398 0.0007 0.0017 0.2142 0.0540 0.5728 0.5888

150 λ -0.9521 0.8966 0.3141 0.3608 0.0023 0.0031 -1.6460 -1.6780 -0.4170 -0.2701

α 1.6610 1.6510 0.1990 0.2158 0.0014 0.0017 1.2810 1.2340 2.0590 2.0790

β0 0.9116 0.8821 0.2521 0.3412 0.0018 0.0034 0.4104 0.1777 1.4020 1.5130

β1 -1.6410 -1.7100 0.2977 0.3759 0.0022 0.0029 -2.2250 -2.4580 -1.0590 -0.9860

p0 0.7106 0.7027 0.0514 0.0713 0.0004 0.0007 0.6012 0.5443 0.8025 0.8195

p1 0.3287 0.3100 0.0643 0.0755 0.0005 0.0007 0.2075 0.1606 0.4579 0.4578

400 λ -1.0340 1.0380 0.1620 0.1663 0.0011 0.0011 -1.3680 -1.3760 -0.7342 -0.7271

α 1.4170 1.4180 0.0947 0.0966 0.0006 0.0007 1.2310 1.2300 1.6030 1.6090

β0 1.2020 1.2390 0.1669 0.1866 0.0011 0.0012 0.8816 0.8839 1.5360 1.6120

β1 -1.6060 -1.6500 0.2021 0.2289 0.0013 0.0015 -2.0050 -2.1070 -1.2120 -1.2110

p0 0.7675 0.7738 0.0296 0.0324 0.0002 0.0002 0.7072 0.7076 0.8228 0.8337

p1 0.4008 0.3993 0.0359 0.0373 0.0002 0.0002 0.3310 0.3275 0.4721 0.4733

600 λ -1.0490 0.9178 0.1729 0.2003 0.0012 0.0013 -1.4030 -1.3290 -0.7244 -0.5417

α 1.4920 1.4680 0.0877 0.1279 0.0006 0.0009 1.3200 1.2180 1.6650 1.7200

β0 0.9736 0.9286 0.1371 0.1590 0.0009 0.0011 0.7056 0.6087 1.2430 1.2350

β1 -1.5860 -1.5100 0.1679 0.2411 0.0011 0.0016 -1.9190 -1.9860 -1.2600 -1.0370

p0 0.7250 0.7157 0.0273 0.0324 0.0002 0.0002 0.6694 0.6476 0.7761 0.7746

p1 0.3522 0.3603 0.0314 0.0515 0.0002 0.0003 0.2915 0.2620 0.4144 0.4631

Table 8: MLEs (std. errors) and discriminant criterion for turbocharger dataset.

Model MLEs (std. errors)
K-S

(p-value)
AIC BIC CAIC W ∗ A∗

EPG(λ , α , θ )
1.4767

(0.3823)

0.4801

(0.2144)

-130.227

(242.14)

0.0396

(0.9999)
104.869 111.571 105.238 0.0143 0.1247

EPP(λ , α , θ )
0.7247

(0.1393)

1.0589

(0.2127)

-4.7955

(1.6616)

0.0416

(0.9998)
105.599 112.301 105.968 0.0162 0.1605

CEP(α , β , θ )
1.8521

(0.1775)

1.8258

(0.5166)

1.3087

(0.5471)

0.0799

(0.7701)
111.645 118.347 112.014 0.0684 0.5288

EP (λ , α)
1.9542

(0.0669)

2.1723

(0.2107)

0.0884

(0.6536)
112.055 118.757 112.424 0.0912 0.6707

MW(λ , α , θ )
0.0322

(0.0185)

0.016

(0.0532)

0.4368

(0.2116)

0.0607

(0.9607)
107.027 113.729 107.39 0.0394 0.3164

G(a, b)
0.0842

(0.0269)

1.8805

(0.2045)

0.0811

(0.7535)
107.937 112.406 108.119 .0932 0.6767
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Fig. 3: Turbocharger dataset: (a) empirical and fitted densities (b) Kaplan-Meier and fitted survival curves

Table 9: MLEs (std. errors) and discriminant criterion for glass fibres dataset.

Model MLEs (std. errors)
K-S

(p-value)
AIC BIC CAIC W ∗ A∗

EPG(λ , α , θ )
0.956

(0.3706)

1.1789

(0.4705)

-54.477

(82.642)

0.0965

(0.6)
30.4202 36.8496 30.827 0.0733 0.4605

EPP(λ , α , θ )
0.0102

(0.0083)

5.9601

(0.6208)

5.417

(3.8365)

0.1511

(0.1123)
36.0694 42.4985 36.4758 0.2117 1.2546

CEP(α , β , θ )
1.6932

(0.09614)

2.7908

(0.6706)

1.7899

(0.6946)

0.1485

(0.1238)
36.0037 42.433 36.4105 0.2113 1.1684

EP (λ , α)
0.0987

(0.0248)

3.8778

(0.3642)

0.149

(0.122)
38.4221 44.8515 38.829 0.2578 1.3911

MW(λ , α , β )
2.8815

(2.5626)

5.6146

(1.0551)

8.3201

(39.6695)

0.152

(0.1086)
36.3769 42.806 36.7837 0.2172 1.2402

G(a, b)
0.0088

(0.0047)

3.6474

(0.3457)

0.1267

(0.2635)
33.6162 37.9025 33.8162 0.1629 0.9176

7.2 Glass fibres data

This dataset represents the strength of 1.5-cm glass fibres reported in [24]. This dataset is left-skewed with skewness −0.9.
The MLEs(standard errors in parentheses), K-S statistic (its p-value), AIC, BIC, CAIC, A∗ and W ∗ are listed in Table 9.
These values verified that the EPG distribution is better than the CEP, EP, MW and Gompertz distributions in terms of
fitting to this data. Plots of the empirical and fitted densities alongside Kaplan-Meier and fitted survival curves presented
in fig. 4. These plots suggest that the EPG distribution is superior to the other fitted distributions. The EPP distribution
provides a competitive results in fitting this dataset.

7.3 Colon cancer data

This dataset arises from one of the first successful trials of adjuvant chemotherapy for colon cancer. The event of interest
here is the recurrence or death for the individual under the proposed treatment. There are 1858 observed times, of which
938 were censored (50.58 percent). A non-parametric estimate of the cure rate p is F̂(x(n)), where F̂(x(n)) is the Kaplan-

Meier estimate at the largest observed time. For this data F̂(x(n)) = 0.4651. Details of this dataset can be found in [25].

In order to compare the performance of the defective EPG distribution, the following cure rate models are fitted to
this dataset: Gompertz distribution G(a,b), inverse Gaussian distribution IG(a,b), The Marshal-Olkin cure rate models
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Fig. 4: Glass fibres dataset: (a) empirical and fitted densities (b) Kaplan-Meier and fitted survival curves

Table 10: MLEs, estimated cure rate (std. errors), AIC and BIC for colon cancer dataset.

Model Estimates (Std. errors)
p̂

(Std. error)
AIC BIC

EPG(λ ,α,θ )
-2.6571

(0.3311)

1.4294

(0.0476)

1.5452

(0.0322)

0.4631

(0.0147)
1456.29 1472.87

G(a,b)
2.0018

(0.0707)

-2.3375

(0.0901)

0.4247

(0.0396)
1518.02 1529.08

IG(a,b)
-1.6688

(0.077)

7.3406

(0.1407)

0.3654

(0.2319)
1597.47 1608.53

MOE(r,ν)
-0.5871

(0.1820)

-1.2272

(0.0703)

0.3699

(0.0279)
1531.10 1542.15

MOW(r,ν ,a)
-0.8805

(0.0495)

-3.6391

(0.3797)

1.3671

(0.0429)

0.4682

(0.0689)
1462.36 1478.94

MOWE(r,ν ,a,b)
-0.8783

(0.0495)

-8.6310

(4.8814)

11.452

(16.4843)

1.3604

(0.0431)

0.4676

(0.0140)
1464.69 1486.8

MxW(ν ,a, p)
4.9543

(0.3559)

1.2038

(0.0372)

0.4783

(0.0128)

0.4783

(0.0128)
1481.29 1497.87

PTW(ν ,a, θ )
4.2819

(0.3653)

1.2791

(0.0141)

0.7477

(0.0281)

0.4734

(0.0133)
1471.2 1487.78

with exponential, Weibull and Weibull extension, respectively denoted as MOE(r,ν), MOW(r,ν ,a) and MOWE(r,ν ,a,b),
[11], and Mixture cure rate and promotion time cure rate models with Weibull distribution as a baseline distribution,
MxW(a,b, p) and PTW(a,b,λ ).

Table 10 summarizes the fitting results for the dataset, including the MLEs, estimated cure rates (standard errors in
parentheses), AIC and BIC. The delta method is used to calculate the standard errors for the estimated cure rates p̂. The
lowest AIC and BIC are given by the defective EPG distribution, which indicates that it is the best alternative to modelling
colon cancer dataset. Furthermore, the cure rate estimated by the proposed model is 0.4631 which is closer to the one
estimated by Kaplan-Meier than for the other cure rate models. Kaplan-Meier and fitted survival curves are presented in
fig. 5.

Table 11 listed the results of Bayesian estimation for colon cancer dataset. These results are very similar to MLE
results. The hyperparameters are estimated using the method of moments as described in the simulation study section,
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Fig. 5: Fitted survival curves and Kaplan-Meier curve for colon cancer data

Table 11: Posterior summaries for colon cancer dataset.

parameters Mean sd MC error 95% CrI LL 95% CrI UL

λ -2.6380 0.2944 0.0030 -3.2330 -2.0820

α 1.4270 0.0443 0.0004 1.3390 1.5130

θ 1.5425 0.0202 0.0002 1.4823 1.6046

p 0.4616 0.0143 0.0001 0.4328 0.4889

where the MLEs are considered as initial values. The marginal posterior density estimates of the parameters and the cure
rate are and their histogram are shown in fig. 6 using the Gaussian kernel which provide evident the marginal posterior
distributions are almost symmetrical. The trace plots of the iteration number against the value of the draw of the parameters
and the cure rate at each iteration are provided in fig. 7.

Colon cancer data contains covariates information that would be expected to relate to survival experience. Two
covariates are considered in this analysis, the adherence to the surrounding organs (adhere) and the extension of local
spread (Extent). The covariate adhere assumes the value 0 if the tumer doesn’t adhere to the surrounding organs (e.g.
bladder) and 1 if it does. The covariate Extent is 1, 2, 3 or 4 if the tumer reach the cells of submucosa, muscle, serosa or
contiguous structures, respectively.

Taking one covariate at a time, the results of fitting the univariate regression models to the data are summarized in
table 12. Fig. 8 shows that the estimated survival curves capture the those estimated by the Kaplan-Meier very well for
both covariates. For covariate adhere the model provide cured fraction estimates of p0 = 0.477 and p1 = 0.383. This
means that the patients we observe adherence in the nearby organs have shorter survival times. For covariate Extent the
model provide cured fraction estimates of p1 = 0.744, p2 = 0.604, p3 = 0.445 and p4 = 0.296. The patients we observe
extension of the tumer in the contiguous structures have the shortest survival times. Similar results are obtained from
MCMC algorithm. These results are summarised in table 13.

Table 14 shows the result of fitting multiple regression models with both covariates Adhere and Extent. Fig. 9 presents
Kaplan-Meier curves for the possible scenarios from the covariate set. From these results, we can conclude that the
proposed model fit very well to the colon cancer data with covariates Adhere and Extent. We used the MLEs as initial
values to rune the MCMC algorithm to compute Bayesian estimates for the parameters and construct the corresponding
credible intervals. The hyperparameters are estimated using the method of moments. The result of the MCMC algorithm
are listed in table 15. These results are very similar to MLEs. The cure rates for the possible scenarios from the covariate
set are presented in table 16.
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Fig. 6: Histogram and kernel density estimates of the parameters and the cure rate from colon cancer dataset

Fig. 7: Trace plots for the parameters and the cure rate: Dashed lines represent the posterior means and solid lines represent lower, and

upper bounds 95% CrI interval from colon cancer dataset
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Table 12: MLEs, cure rates and standard errors for the univariate regression model and (taking one covariate at a time), AIC and BIC

for colon cancer dataset.

Parameter
Adhere Extent

Estimate Std. error Estimate Std. error

λ −2.641 0.3307 −2.8887 0.3517

α 1.4312 0.0477 1.4939 0.0484

β0 −0.0922 0.062 1.7090 0.2878

β1 −0.384 0.0154 −0.6436 0.0973

p0 0.477 0.0155 – –

p1 0.383 0.0275 0.7437 0.0368

p2 – – 0.6039 0.0251

p3 – – 0.4448 0.0145

p4 – – 0.2962 0.0254

AIC 1447.79 – 1396.79 –

BIC 1457.61 – 1406.61 –

Table 13: Posterior summaries for the univariate regression model for colon cancer dataset.

Adhere Extent

Parameters Mean sd MC error
95% CI

LL

95% CI

UL
Mean sd MC error

95% CrI

LL

95% CrI

UL

λ -2.6040 0.2866 0.0116 -3.200 -2.0660 -2.690 0.2875 0.0119 -3.2620 -2.1420

α 1.4270 0.0434 0.0015 1.3410 1.5140 1.4540 0.0437 0.0019 1.3720 1.5400

β0 -0.1018 0.0590 0.0023 -0.2178 0.0145 1.9490 0.2502 0.0077 1.4510 2.4180

β1 -0.3785 0.1104 0.0043 -0.5946 -0.1599 -0.7267 0.0854 0.0026 -0.8897 -0.5558

p0 0.4746 0.0147 0.0006 0.4458 0.5036

p1 0.3825 0.0254 0.0010 0.3334 0.4325 0.7712 0.0297 0.0009 0.7091 0.8235

p2 0.6212 0.0215 0.0007 0.5775 0.6629

p3 0.4425 0.0139 0.0005 0.4154 0.4690

p4 0.2734 0.0245 0.0008 0.2264 0.3233

Adhere 0

Adhere 1

submucosa

muscle

serosa

contiguous

(a) (b)

Fig. 8: The estimated survival curves for univariate regression models: (a) with covariate Adhere (b) with covariate Extent

c© 2022 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


440 M. Abd El-Monsef et al.: A new class of distributions with applications...

Table 14: MLEs and standard errors for multiple regression with covariates Adhere and Extent, AIC and BIC for colon cancer dataset.

Parameter λ̂ α̂ β̂0 β̂1 β̂2 AIC BIC

Estimate −2.6025 1.4464 2.0005 −0.2539 −0.7327 1391.62 1408.16

Std. error 0.3313 0.0481 0.2957 0.1193 0.1003 – –

Table 15: Posterior summaries for multivariate regression model for colon cancer dataset.

parameters Mean sd MC error 95% CrI LL 95% CrI UL

λ -2.5800 0.2983 0.0124 -3.1990 -2.0070

α 1.4440 0.0451 0.0017 1.3520 1.5280

β0 2.0050 0.2486 0.0103 1.5350 2.5040

β1 -0.2604 0.1114 0.0051 -0.4776 -0.0428

β1 -0.7368 0.0845 0.0035 -0.9050 -0.5782

submucosa

muscle

serosa

contiguous

muscle

serosa

contiguous

(a) (b)

Fig. 9: The estimated survival curves for multiple regression models with covariates Adhere and Extent (a)Adhere=0, (b)Adhere=1

Table 16: Estimated cure rates for each configuration of covariates.

Cure rate p01 p02 p03 p04 p12 p13 p14

Estimate 0.7804 0.6306 0.4508 0.2829 0.57 0.389 0.2343

Std. error 0.034 0.0252 0.0159 0.0262 0.0387 0.028 0.0271
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8 Conclusion

This paper proposed a new class of distributions, called exponential power power series (EPPS) class, by compounding
the exponential power (EP) distribution and power series distributions. The hazard function of EPPS class showed more
flexibility than the hazard function of EP distribution. Some characteristics of the density function and some basic
properties of EPPS family are discussed. The EPPS family has the exponential power geometric (EPG) distribution as a
special case which can be redefined as a defective distribution when changing the usual domains of some of its
parameters. The moments for the defective EPG distribution is derived. More importantly, owing to the proposed
defective distribution, a cure rate regression model is proposed for modeling lifetime data contain long-term survivors
with associated covariates. The maximum likelihood method and Bayesian method are used for estimating the unknown
parameters. The performance of these estimation methods is examined by conducting simulation studies. Three
applications to real datasets are given to prove the superiority of the EPPS class. The proposed cure rate regression
model is used to analyze the survival times for a group of patients who were subject to adjuvant chemotherapy after
being diagnosed with colon cancer.
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