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Abstract: The dual generalized order statistics or sometimes called lower generalized order statistics is a combined structure of

examining random variables in decreasing order. In this paper, some simple recurrence relations for single and product moments of

dual generalized order statistics from Fréchet-Weibull distribution have been derived and its special cases are discussed. The

characterization results are also presented based on the recurrence relations.
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1 Introduction

The Fréchet-Weibull distribution was introduced by [1] as a generalization of some of the commonly used distributions
for modeling lifetime data, such as the generalized new extended Weibull distribution, Lindley Weibull distribution, the
half-logistic generalized Weibull distribution and Weibull distribution. The tremendous application of Fréchet-Weibull
distribution has not been found in extreme values (earthquakes, floods,) but also in several areas such as quality control,
engineering, physics, and medicine.

The probability density function (pdf) of Fréchet-Weibull distribution is given in (1)

f (x) = αγβ λ λ αγx−1−αγ exp

{

−β α

(

λ

x

)αγ}

, x > 0, α,β ,λ ,γ > 0 (1)

where α,γ and λ ,β are shape, scale parameters.
The cumulative density function (cdf) is given by

F(x) = exp

{

−β α

(

λ

x

)αγ}

, x > 0, α,β ,λ ,γ > 0. (2)

We note that from (1) and (2)

F(x) =
x1+αγ

αγβ λ λ αγ
f (x). (3)

[2] introduced and extensively studied the model of reversed ordered variables, popularly known as dual (lower)
generalized order statistics (dgos). This model unifies to study the properties of decreasing order variables, (from highest
to lowest life length arranged of an electric bulb). Lower record values and reversed order statistics are of main interest to
this technique.

The joint pdf of n dgos is given by

k

(

n−1

∏
j=1

γ j

)(

n−1

∏
i=1

[F(xi)]
mi f (xi)

)

[F(xn)]
k−1 f (xn), (4)
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In literature, the moments properties of some specific distribution based on dgos are investigated by several authors.
Notable references include, [3,4,5,6,7,8].
Characterization technique plays an essential role in statistics and probability distribution. Many characterization
techniques are available in the literature. One of them is recurrence relations. Several authors have characterized the
different distribution through different approaches based on dgos. For the detailed discussion see, [9,10,11,12,13,14].
In this article, the rest of the findings are outlined as follows. Relationship for moments of dgos for Fréchet-Weibull
distribution have been discussed in Section 2 and Section 3. Characterization results based on recurrence relations are
presented in Section 4. The conclusion is given in Section 5.

2 Single Moments

Here assume two cases:
Case I γi 6= γ j, i 6= j, i, j = 1,2, · · · ,n− 1.

In view of (4), pdf of the rth dgos is

fXd (r,n,m̃,k)(x) =Cr−1 f (x)
r

∑
i=1

ai(r)[F(x)]γi−1
, −∞ < x < ∞, (5)

where

Cr−1 =
r

∏
i=1

γi,

and

ai(r) =
r

∏
j( 6=i)=1

1

(γi − γ j)
, γi 6= γ j, 1 ≤ i ≤ r ≤ n

Case II mi = m j = m, i, j = 1,2, · · · ,n− 1.

The pdf of the rth dgos is

fXd (r,n,m,k)(x) =
Cr−1

(r− 1)!
[F(x)]γr−1 f (x)gr−1

m [F(x)], −∞ < x < ∞, (6)

where,

γi = k+(n− i)(m+ 1), hd
m(x) =

{

− 1
m+1

xm+1, m 6=−1

− log(x), m =−1

and
gd

m(x) = hd
m(x)− hd

m(1), x ∈ [0,1).

Theorem 2.1. The single moments of rth dgos (1 ≤ r ≤ n) for Fréchet-Weibull distribution is related as

E[X
j

d(r,n,m̃,k)] = E[X
j

d(r−1,n,m̃,k)]−
j

αγβ λ λ αγ γr

E[X
j+αγ

d(r,n,m̃,k)]. (7)

Proof. [15] have shown that

E[ξ{Xd(r,n, m̃,k)}]−E[ξ{Xd(r− 1,n, m̃,k)}] =−Cr−2

∫ ∞

−∞
ξ

′
(x)

r

∑
i=1

ai(r)[F(x)]γi dx.

Let ξ (x) = x j. Then

E[X j

d(r,n,m̃,k)
]−E[X j

d(r−1,n,m̃,k)
] =− jCr−2

∫ ∞

0
x j−1

r

∑
i=1

ai(r)[F(x)]γi dx.

In context of (3), we have

E[X
j

d(r,n,m̃,k)]−E[X
j

d(r−1,n,m̃,k)] =− jCr−2

∫ ∞

0
x j−1

r

∑
i=1

ai(r)[F(x)]γi−1

[

x1+αγ

αγβ λ λ αγ

]

f (x)dx.
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After simplification posses (7).
This completes the proof of Theorem 2.1.

Corollary 2.1. Let mi = m j = m, then the single moments of Fréchet-Weibull distribution will be

E[X
j

d(r,n,m,k)
] = E[X

j

d(r−1,n,m,k)
]−

j

αγβ λ λ αγ γr

E[X
j+αγ

d(r,n,m,k)
].

Remark 2.1. The relation given in (7) reduces to relationship for order statistics as follows,

E[X
j

n−r+1:n] = E[X
j

n−r+2:n]−
j

αγβ λ λ αγ (n− r+ 1)
E[X

j+αγ
n−r+1:n]

at m = 0 and, k = 1.

Remark 2.2. The relation given in (7) reduced to single moment of kth lower record value as

E[X
j

L(r)] = E[X
j

L(r−1)]−
j

αγβ λ λ αγk
E[X

j+αγ
L(r) ], at m =−1, and k ≥ 1.

3 Product Moments

Case I γi 6= γ j.

The joint pdf of the rth and sth–dgos is,

fXd (r,n,m̃,k),Xd(s,n,m̃,k)(x,y) =Cs−1

s

∑
i=r+1

a
(r)
i (s)

(

F(y)

F(x)

)γi

[

r

∑
i=1

ai(r)[F(x)]γi

]

f (x)

F(x)

f (y)

F(y)
(8)

where

a
(r)
i (s) =

s

∏
j( 6=i)=r+1

1

(γi − γ j)
, γi 6= γ j, r+ 1 ≤ i ≤ s ≤ n.

Case II mi = m j = m.

The joint pdf of the rth and sth –dgos is,

fXd(r,n,m,k),Xd(s,n,m,k)(x,y) =
Cs−1

(r− 1)!(s− r− 1)!
[F(x)]m f (x)gr−1

m F(x)×

[hm(F(y))− hm(F(x))]s−r−1 [F(y)]γs−1 f (y), −∞ < y < x < ∞. (9)

Theorem 3.1. The product moment of rth and sth–dgos (1 ≤ r < s ≤ n, i, j > 0) for Fréchet-Weibull distribution are given
as

E[X i
d(r,n,m̃,k),X

j

d(s,n,m̃,k)
] = E[X i

d(r,n,m̃,k),X
j

d(s−1,n,m̃,k)
]−

j

αγβ λ λ αγγs

×

E[X i
d(r,n,m̃,k),X

j+2α
d(s,n,m̃,k)

]. (10)

Proof. [15] have proved that

E[ξ{Xd(r,n, m̃,k),Xd(s,n, m̃,k)}]−E[ξ{Xd(r,n, m̃,k),Xd(s− 1,n, m̃,k)}] =

−Cs−2

∫ ∞

−∞

∫ x

0

d

dy
ξ (x,y)

s

∑
i=r+1

a
(r)
i (s)

(

F(y)

F(x)

)γi

[

r

∑
i=1

ai(r)[F(x)]γi

]

f (x)

F(x)
dydx. (11)

Consider ξ (x,y) = ξ1(x)ξ2(y) = xiy j in (11). In context of (3), we get

E[X i
d(r,n,m̃,k),X

j

d(s,n,m̃,k)
]−E[X i

d(r,n,m̃,k),X
j

d(s−1,n,m̃,k)
] =

−
jCs−1

γs

∫ ∞

0

∫ x

0

{

y1+αγ

αγβ λ λ αγ

}

xiy j−1
s

∑
i=r+1

a
(r)
i (s)

(

F(y)

F(x)

)γi

[

r

∑
i=1

ai(r)[F(x)]γi

]

f (x)

F(x)

f (y)

F(y)
dydx,
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which refers to (10).
Theorem 3.1 is proved.
Theorem 3.1 corresponds to Theorem 2.1 at i = 0.

Corollary 3.1. For mi = m j = m, product moments of Fréchet-Weibull distribution is given as

E[X i
d(r,n,m,k),X

j

d(s,n,m,k)
] = E[X i

d(r,n,m,k),X
j

d(s−1,n,m,k)
]−

j

αγβ λ λ αγγs

E[X i
d(r,n,m,k),X

j+αγ
d(s,n,m,k)

]

Remark 3.1. At m = 0,k = 1 in (10) result reduced for order statistic from Fréchet-Weibull distribution is given as

E[X
i, j
n−r+1,n−s+1:n] = E[X

i, j
n−r+1,n−s+2:n]−

j

αγβ λ λ αγ(n− s+ 1))
E[X

i, j+αγ
n−r+1,n−s−1:n]

Remark 3.2. Letting m = −1,k ≥ 1 in (10) result reduced for kth lower record values from Fréchet-Weibull distribution
is given as

E[X
i, j

L(r,s)] = E[X
i, j

L(r,s−1)]−
j

αγβ λ λ αγ k
E[X

i, j+αγ
L(r,s) ]

4 Characterization

The following theorems contain, the characterization of Fréchet-Weibull distribution based on dgos.

Theorem 4.1. Let X be a continuous r.v. having cdf F(x) and pdf f (x). Suppose 0 < F(x)< 1, for all x > 0, then

E[X
j

d(r,n,m,k)
]−E[X

j

d(r−1,n,m,k)
] =−

j

αγβ λ λ αγγr

E[X
j+αγ

d(r,n,m,k)
] (12)

if and only if

F(x) = exp

{

−β α

(

λ

x

)αγ}

, x > 0, α,β ,λ ,γ > 0. (13)

Proof. From Theorem 2.1 necessary part follows with m̃ = m. On the contrary, if the relation (12) is satisfied, then (12)
can be rearranging as

Cr−1

(r− 1)!

∫ ∞

0
x j[F(x)]γr−1gr−1

m [F(x)] f (x)dx−
Cr−1(r− 1)

(r− 1)!γr

∫ ∞

0
x j[F(x)]γr+mgr−2

m F(x) f (x)dx =

−
j

αγβ λ λ αγγr

∫ ∞

0
x j+αγ [F(x)]γr−1gr−1

m [F(x)] f (x)dx

Cr−1

(r− 1)!

∫ ∞

0
x j[F(x)]γr gr−2

m [F(x)] f (x)

[

gmF(x)

F(x)
−

(r− 1)[F(x)]m

γr

]

dx =−
j

αγβ λ λ αγγr

Cr−1

(r− 1)!
×

∫ ∞

0
x j+αγ [F(x)]γr−1gr−1

m F(x) f (x)dx. (14)

Let,

h(x) =
[F(x)]γr gr−1

m F(x)

γr

. (15)

Differentiating (15) both sides, we get

h
′
(x) =−[F(x)]γr gr−2

m [F(x)] f (x)

[

gm[F(x)]

[F(x)]
−

(r− 1)[F(x)]m)

γr

]

.

Thus
Cr−1

(r− 1)!

∫ ∞

0
x jh

′
(x)dx =

j

αγβ λ λ αγγr

Cr−1

(r− 1)!

∫ ∞

0
x j+αγ [F(x)]γr−1gr−1

m [F(x)] f (x)dx. (16)

c© 2022 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 11, No. 2, 455-460 (2022) / www.naturalspublishing.com/Journals.asp 459

Integrating LHS in (16) by parts and substituting the value of h(x),

Cr−1

(r− 1)!γr

∫ ∞

0
jx j−1[F(x)]γr gr−1

m [F(x)]dx−
j

αγβ λ λ αγγr

Cr−1

(r− 1)!

∫ ∞

0
x j+αγ [F(x)]γr−1gr−1

m [F(x)] f (x)dx = 0

which reduces to,
Cr−1

(r− 1)!

∫ ∞

0
x j−1[F(x)]γr )gr−1

m [F(x)] f (x)

[

F(x)

f (x)
−

x1+αγ

αγβ λ λ αγ

]

dx = 0. (17)

Making use of the Müntz-Szász theorem (see [16]) to (17), we get.

F(x,α,β ,λ ,γ) =
x1+αγ

αγβ λ λ αγ
f (x)

which is (3) and this relationship holds between pdf and cdf of Fréchet-Weibull distribution.

Theorem 4.2. As stated in Theorem 4.1. Fix positive integers i and j. A necessary and sufficient condition for Fréchet-
Weibull distributed as follows

E[X i
d(r,n,m,k),X

j

d(s,n,m,k)
] = E[X i

d(r,n,m,k),X
j

d(s−1,n,m,k)
]−

j

αγβ λ λ αγγs

E[X i
d(r,n,m,k),X

j+αγ
d(s,n,m,k)

]. (18)

Proof. From Theorem 3.1, necessary part follows from with m̃ = m. On the contrary if the relation (18) is satisfied, that is

E[X i
d(r,n,m,k),X

j

d(s,n,m,k)]−E[X i
d(r,n,m,k),X

j

d(s−1,n,m,k)] =−
j

αγβ λ λ αγ γs

E[X i
d(r,n,m,k),X

j+αγ
d(s,n,m,k)].

Now by [15], for ξ (x,y) = xiy j,

−
jCs−1

γs(r− 1)!(s− r− 1)!

∫ ∞

0

∫ x

0
xiy j−1[F(x)]m f (x)gr−1

m [F(x)] [hm(F(y))− hm(F(x))]s−r−1 [F(y)]γs dydx =

−
jCs−1

γs(r− 1)!(s− r− 1)!αγβ λ λ αγ
×

∫ ∞

0

∫ x

0
xiy j+αγ [F(x)]m f (x)gr−1

m [F(x)] [hm(F(y))− hm(F(x))]s−r−1 [F(y)]γs f (y)dydx

jCs−1

γs(r− 1)!(s− r− 1)!

∫ ∞

0

∫ x

0
xiy j−1[F(x)]m f (x)gr−1

m [F(x)] [hm(F(y))− hm(F(x))]s−r−1 ×

[F(y)]γs−1

[

F(y)

f (y)
−

y1+αγ

αγβ λ λ αγ

]

dydx = 0. (19)

Concerning the extension of Müntz-Szász theorem to (19), we obtain

F(y)

f (y)
=

y1+αγ

αγβ λ λ αγ
, y > 0, α,β ,λ ,γ > 0

and hence the result.
Theorem 4.2 reduces to Theorem 4.1 at i = 0.

5 Conclusion

In this study, moments properties of Fréchet-Weibull distribution have been derived based on dgos. Several deductions are
also discussed. The characterization results are presented. The outcomes of this article might be of use for researchers in
reversed ordered random variables and applied sciences (industrial).
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