
 

*Corresponding author e-mail: adewale.folaranmi@lmu.edu.ng 
 

 
  © 2022 NSP 
   Natural Sciences Publishing Cor. 

J. Stat. Appl. Pro. 11, No. 2, 499-512 (2022) 499 
  

Journal of Statistics Applications & Probability 
An International Journal 
 

http://dx.doi.org/10.18576/jsap/110211 

 

A New Two-Parameter Estimator in the Linear Regression 
Model with Correlated Regressors 
 
Abiola T. Owolabi1, Kayode Ayinde2, Janet I. Idowu 1, Olasunkanmi J. Oladapo1 and Adewale F. 

Lukman3,* 
1Department of Statistics, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria 
2Department of Statistics, Federal University of Technology, Akure, Nigeria 
3Department of Physical Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria 
 
Received: 4 Jan. 2021, Revised: 20 Mar. 2021, Accepted: 24 May 2021. 
Published online: 1 May 2022. 
 

Abstract: The inefficiency of the ordinary least square estimator for the parameter estimation of a linear regression model 
with multicollinearity problem has led to the development of various ridge regression estimators. These estimators are 
recently classified as one-parameter and two-parameter ridge-type estimators. This paper proposes a new two-parameter 
estimator following a newly developed one-parameter ridge estimator to handle multicollinearity in the linear regression 
model. Theoretical and simulation results show that, under some conditions, the proposed estimator performs better than 
some popular existing estimators in that it has a smaller mean square error. Furthermore, we used real-life data to illustrate 
the paper's findings establishes the same results from theory and simulation.  
Keywords: Proposed Estimator, Ridge Estimator, Monte Carlo Simulation, Multicollinearity, Mean Square Error. 
 
 

1 Introduction 
 

Consider the general linear regression model define in matrix form as: 
 ,                              (1) 

where is a  vector of the response variable, is a known full-rank matrix of predictor variables,  is a 
vector of unknown regression parameters to be estimated, and is vector of random error such that E( ) =  0 

and Cov ( ) =  . Equation (1) can be written in a canonical form as: 
                                                                                                                                                           (2) 

where , and Q is the orthogonal matrix whose columns constitute the eigenvectors of . Then 

, 

where > 0 are the ordered eigen values . The ordinary least square estimator (OLSE) of  in (1) can 
be defined as:  
                               (3) 

where  is the design matrix. 
The OLSE is considered the Best Linear Unbiased Estimator (BLUE) when the assumptions of the classical linear 
regression model are not violated [1,2] One of the assumptions is that the explanatory variables are independent [3]. 
Literature has shown that the OLS will not be the best in the presence of multicollinearity. The problem of multicollinearity 
arises whenever two or more explanatory variables are related. Multicollinearity is a situation where there is an exact (or 
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nearly exact) linear relation among two or more of the explanatory variables [4,5] Whenever multicollinearity exists, the 
OLSE suffers a set back by yielding regression coefficients whose regression coefficients produce wrong signs with large 
standard error, imprecise confidence intervals and incorrect small t-ratios [6,7]. 
Some biased estimators have been developed to deal with the problem of multicollinearity. These estimators include the 
Stein estimator [8] the principal component estimator [9] the ordinary ridge regression estimator by Hoerl and Kennard 
[10] , the modified ridge regression by Swindel [11] Dawoud and Kibria [12,13] The ordinary ridge regression estimator by 
Hoerl and Kennard [10], which is one of the most widely used among these estimators, helps overcome multicollinearity by 
adding a positive value, k, to the diagonal elements of the Z'Z matrix.  This constant k is known as the biasing parameter. A 
major problem of the ridge regression parameter is the choice of k because the biasing parameter k plays a very significant 
role in controlling the regression's bias toward the mean of the dependent variable [14]. There are several works on the 
choice of biasing parameter k. Some of them are Hoerl and Kennard [10], Hoerl et al.[15] McDonald and Galarneau [16], 
Hocking et al.[17], Lawless and Wang [18], Nomura[19], Firinguetti [20], Kibria [21], Batach et al.[22], among many 
others.  
Liu [23] proposed another estimator where d is the biasing parameter. This estimator combined the advantages of the Stein 
estimator [8] and the ordinary ridge regression estimator by Hoerl and Kennard[10]. Liu Estimator is a linear function of 
biasing parameter d, while the ridge regression estimator is a nonlinear function of the biasing parameter k. This makes the 
choice of a suitable k remains difficult and the Liu Estimator becomes a preferred choice allowing an appropriate selection 
of d [24]. The objective of this paper is to propose a new two-parameter ridge-type estimator for the regression. The 
performance of the proposed estimator is compared with OLSE, ridge regression, Liu estimator, Ozkale and Kanciranlar 
two-parameter estimator [25], Modified Ridge Type (MRT) by Lukman et al. [26] and Kibria and Lukman [27]. 
2 Some Alternative Biased Estimators and the Proposed Estimator 

2.1 Some Ridge Estimators as Alternative to OLS 
Ridge-type estimators have been proposed as alternative to the OLSE. The canonical form of OLSE is written in Equation 
(3). Following this, the ordinary ridge regression (RE) proposed by Hoerl and Kennard [10] is given as: 
                                           (4) 
where k is the non-negative constant known as the biasing parameter.       
The Liu estimator (LE) is defined as: 
                                                                                   (5) 
where d is the biasing parameter of Liu Estimator. 
The Kibria-Lukman (KL) estimator is given as: 
                            (6) 
The two parameter estimator by Ozkale and Kaciranlar [25] is given as: 

                                                                                                                (7) 
where k and d is the biasing parameter of Liu Estimator 
The Modified Ridge Type Two (MRT) Parameters proposed by Lukman et al.[26] is given as: 
                         
(8) 
2.2 The Proposed Estimator 

The proposed Two Parameter Estimator of is obtained by minimizing  subject to 

, where c is a constant. 

                         (9) 

where k and d are the Langrangian multipliers 

Following Kibria and Lukman (KL) [27] as defined in equation (6), the solution to (9) gives the solution to the proposed 

estimator as follows:  
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                          (10) 

                            (11) 

 where and , k>0 and 0<d<1. 

Some of the differences between the proposed estimator and Kibria-Lukman estimator are: 

i. The KL estimator is a one-parameter estimator while the proposed estimator is a two parameter estimator. 

This also makes their Mean Squared Error different from each other. 

ii. The KL estimator is a function of biasing parameter k while the proposed estimator is a function of biasing 

parameters k and d. 

iii. The KL estimator is obtained based on the objective function 

 while the objective function used in  obtaining the 

proposed estimator is . 

iv. The KL estimator is a special case of the proposed estimator when d=1. Hence, the  proposed estimator is a 

general estimator. 

Properties of the Proposed Estimator 

                                                                                                                                         (12) 

                                                                                                                               (13) 

                                                                                                                   (14) 

                                                      (15) 
The following lemmas are used to make some theoretical comparisons among estimators and to prove the statistical 
properties of the proposed estimator. 
Lemma 1. Let n x n matrices M > 0 and N > 0 (or N ), Then, M > N if and only if where  

is the largest eigenvalue of matrix  [28]. 
Lemma 2. Let M be an n x n positive definite matrix, that is, M > 0 and  be some vector, then,  if and 
only if  [29]. 
Lemma 3. Let , i = 1, 2, be two linear estimators of . Suppose that , where 

 denotes the covariance matrix of and . Consequently, 

                      (16) 

if and only if  [30] 

2.3 Comparison among the Estimators 
In this section, theoretical comparison was carried out among the estimators to examine the performance of the proposed 
modified two-parameter estimator, over other estimators; , , , , , . 

 2.3.1 Comparison between  

The MSEM of the estimator  is as follows: 
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                                                                                                                              (17) 
The difference between (15) and (17)    

              (18) 
Let k > 0 and 0 <d < 1. Thus, the following theorem holds. 
Theorem 1: The proposed estimator  is superior to  if and only if  

                            (19) 

Proof:  

                                                                                                                                  

(20) 

 will be pdf if and only if . By lemma 3 the proof is completed. 

2.3.2  Comparison between and  

The bias vector, covariance matrix and MSEM of the estimator are as follows: 

                                    (21) 

                                 (22) 

                                       (23) 

where .  
The difference between (15) and (23)    

 

                                          (24) 
Let k > 0 and 0 <d < 1. Thus, the following theorem holds. 
Theorem 2: The proposed estimator  is superior to  if and only if  

if and only if 
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Proof: Considering the dispersion matrix difference between  and  
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It is observed that Dd is positive definite. By lemma 3, the proof is completed. 
 

 2.3.3 Comparison between and  

The bias vector, covariance matrix and MSEM of the estimator are as follows: 
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                     (29) 
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( ) ( )[ ] ( ) 1'''' 10
1

10
1

10
12

10 <-L-L-
--- asa IZZZZZZIZZ

( ) ( )( ) ( )10
1

10
12 ''.ˆˆ ZZZZdkDD pOLS

-- L-L=- saa

( )
( )

p

iii

i

i kd
kd

diag
1

2

2
2 1

=
ïþ

ï
ý
ü

ïî

ï
í
ì

+

-
-=

ll
l

l
s

10
1

10
1 '' ZZZZ -- L-L ( ) ( ) 022 >--+ kdkd ii ll

( )kREâ ( )dkp ,â
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( )dLEâ ( )dkp ,â
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The difference between (15) and (29) becomes:   

 
                                                                                                                                                                                               (30) 
Let k > 0 and 0 <d < 1. Thus, the theorem 3 holds.  
Theorem 3: if and only if

                                   (31) 

Proof: Considering the dispersion matrix difference between  and  

 

 

 

                                         (32) 
It is observed that Dd is positive definite. By lemma 3, the proof is completed. 
 
2.3.4 Comparison between and  

The bias vector, covariance matrix and MSEM of the estimator are as follows: 
                           (33) 

                         (34) 

               (35) 
The difference between (15) and (35)   becomes: 
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It is observed that Dd is positive definite. By lemma 3, the proof is completed.    
 
2.3.5 Comparison between and  

The bias vector, covariance matrix and MSEM of the estimator are 
as follows: 

                                (41) 

                            (42) 

                                                                        (43) 

Where . Let k > 0 and 0 < d < 1. Thus, the following theorem holds.   

Theorem 5:  The proposed estimator  is superior to  if and only if  

if and only if 

                      
(44) 
Proof: Considering the dispersion matrix difference between  and  
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that By lemma 3, the proof is completed. 

2.3.6. Comparison between and  

The bias vector, covariance matrix and MSEM of the estimator are as 
follows: 
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10
1

10
2

10
1

10
2 '''' ZZZZRRRRDd

-- L-L= ss
( )( ) ( )( ) ( )( ) ( ) ( ) 11121112 ' ------ +L-LL+L-L-+L+LL+L+L= kdIkdIkdIkdIkIkdIkIkdIDd ss



J. Stat. Appl. Pro. 11, No. 2, 499- 512 (2022) / http://www.naturalspublishing.com/Journals.asp                                                        505 
  

 
 
         © 2022 NSP 
           Natural Sciences Publishing Cor. 

 

                                                                                                          (50) 

will be pdf if and only if  For 0 < d < 1 and k > 0, it was observed that

By lemma 3, the proof is completed. 
 
2.4 Determination of Biasing Parameters k and d 
There is a need to find an appropriate parameter for practical purpose. Following different authors such as Dorugade [31], 
Saleh et al. [32], Lukman et al. [7], Aslam and Ahmad [24] among others, the optimal values of k and d is determined for 
the new estimator. In determining the optimal value of k, d is fixed. The optimal value of the k can be considered to be 
those k that minimize 
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Let ; 

                                                                               (56)                             

For practical purpose,  and  are replaced with  and , respectively. Consequently, (56) becomes  

                                                                                                         

(57)  

The selection of the estimators of the parameters d and k in  is obtained iteratively as follows: 

Step 1: Obtain an initial estimate of d using  

Step 2: Obtain from (53) using  in step 1. 

Step 3: Estimate in (55) by using  in step 2. 

Step 4: Incase  is not between 0 and 1 use . 

3 Results and Discussion 

3.1 Simulation Technique 
 

The simulation procedure used by McDonald and Galarneau [16], Wichern and Churchill [33], Gibbons [34], Kibria [21], 
Lukman and Ayinde [6], Lukman et al. [1, 2, 3] was used to generate the explanatory variables in this study: This is given 
as: 

, ,                        (58) 

where  is an independent standard normal distribution with mean zero and unit variance, is the correlation between 
any two explanatory variables and p is the number of explanatory variables. For this study, we considered the values of ρ to 
be 0.8, 0.9, 0.95 and 0.99. Also, explanatory variables (p) were taken to be three (3) and seven (7) for the simulation study. 
The error terms, , were generated following Firinguetti [20] such that . The values of   
(Newhouse and Oman [35]). The standard deviations in this simulation study were σ = 3, 5 and 10. 
 

Table 1: Estimated MSE when n=50 and 100, p=3. 
 

 N   OLS RIDGE LIU K-L MRT TP Prop 
50 3 0.8 1.0528 0.7644 1.0470 0.5537 0.6162 1.0317 0.4029 

0.9 1.8795 1.2325 1.8610 0.7772 0.9289 1.8312 0.5470 
0.95 3.5664 2.1649 3.5124 1.2412 1.5600 3.4730 0.6962 
0.99 17.1271 9.5370 16.7288 5.0822 6.5795 16.8416 1.9589 

5 0.8 2.9244 2.2014 2.9098 1.6517 1.8033 2.8692 1.0682 
0.9 5.2210 3.7336 5.1809 2.6324 2.9531 5.1253 1.4745 
0.95 9.9066 6.8429 9.8003 4.6473 5.2952 9.7490 2.0049 
0.99 47.5752 31.7442 46.8546 20.9350 24.0636 47.1657 13.4065 
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10 0.8 11.6976 9.6859 11.6598 8.0159 8.3859 11.5845 4.1898 
0.9 20.8839 16.9539 20.7858 13.7504 14.4754 20.7057 6.2594 
0.95 39.6264 31.7708 39.3798 25.4601 26.8886 39.3576 11.0181 
0.99 190.3009 150.7865 188.7337 119.6239 126.5438 189.6824 86.3245 

100 3 0.8 0.5704 0.4470 0.5693 0.3450 0.3702 0.5652 0.2301 
0.9 1.0379 0.7391 1.0339 0.5053 0.5742 1.0233 0.3530 
0.95 1.9852 1.2962 1.9718 0.7980 0.9600 1.9509 0.5631 
0.99 9.5857 5.5742 9.4573 3.1060 3.9285 9.4638 0.3726 

5 0.8 1.5843 1.2481 1.5812 0.9737 1.0419 1.5674 0.6721 
0.9 2.8830 2.1481 2.8734 1.5710 1.7290 2.8476 1.0048 
0.95 5.5145 3.9414 5.4857 2.7615 3.0998 5.4465 1.3080 
0.99 26.6269 18.1832 26.3776 12.3070 13.9893 26.4281 2.8950 

10 0.8 6.3374 5.3203 6.3280 4.4602 4.6409 6.2908 2.5367 
0.9 11.5321 9.4841 11.5067 7.7854 8.1578 11.4544 3.7661 
0.95 22.0581 17.8991 21.9880 14.5129 15.2666 21.9325 5.6125 
0.99 106.5074 85.3099 105.9113 68.4960 72.1983 106.1641 35.0003 

NOTE: Minimum MSE value is bolded in each row. 
 

Table 2: Estimated MSE when n=50 and 100, p=7. 
 

n   OLS RIDGE LIU K-L MRT TP Prop 
50 3 0.8 2.2424 1.4519 2.2295 0.8785 1.0703 2.1930 0.3147 

0.9 4.1854 2.5279 4.1491 1.3895 1.7866 4.0960 0.4942 
0.95 8.1092 4.6698 8.0153 2.4199 3.2154 7.9659 0.7282 
0.99 39.5775 21.8209 38.9229 10.8728 14.7011 39.1638 4.2039 

5 0.8 6.2289 4.4384 6.2017 3.0570 3.4578 6.1384 1.0425 
0.9 11.6262 8.0473 11.5570 5.3516 6.1471 11.4860 1.5664 
0.95 22.5255 15.3191 22.3528 9.9867 11.5669 22.3191 2.3369 
0.99 109.9375 73.6814 108.7922 47.3930 55.1157 109.3904 29.2026 

10 0.8 24.9156 20.3003 24.8520 16.3816 17.2232 24.7688 5.4781 
0.9 46.5048 37.5459 46.3502 30.0007 31.6241 46.2968 9.4971 
0.95 90.1019 72.3905 89.7209 57.5421 60.7254 89.8081 21.0711 
0.99 439.7499 351.9615 437.4033 278.7677 294.2755 439.0564 209.8385 

100 3 0.8 1.2201 0.8559 1.2172 0.5689 0.6532 1.2040 0.1643 
0.9 2.2888 1.4785 2.2792 0.8808 1.0751 2.2531 0.2681 
0.95 4.4426 2.6944 4.4126 1.4861 1.8983 4.3726 0.4809 
0.99 21.7118 12.2811 21.4355 6.3423 8.3875 21.4765 0.6029 

5 0.8 3.3891 2.5067 3.3818 1.7967 1.9882 3.3516 0.5826 
0.9 6.3577 4.5312 6.3364 3.1115 3.5138 6.2902 0.9727 
0.95 12.3405 8.5848 12.2803 5.7481 6.5684 12.2275 1.3925 
0.99 60.3107 40.9795 59.7948 26.8679 30.9547 59.9790 5.8783 

10 0.8 13.5563 11.1643 13.5374 9.1104 9.5369 13.4848 2.8074 
0.9 25.4307 20.7223 25.3797 16.7266 17.5697 25.3191 4.3164 

s r
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0.95 49.3619 39.9786 49.2247 32.0813 33.7531 49.1911 6.7165 
0.99 241.2427 194.3242 240.1605 155.1759 163.3945 240.8127 79.1807 

NOTE: Minimum MSE value is bolded in each row. 
 

From Table 1 and 2, the simulation results show that the proposed estimator outperforms other estimators used in this 
study. The proposed estimator performs best at the two different sample sizes (n = 50 and 100), three sigma levels ( = 3, 
5 and 10) and four different levels of multicollinearity levels ( = 0.8. 0.9, 0.95 and 0.99). It provides smaller MSE when 
compared with other estimators in the study when the number of parameters is three and seven. The OLS estimator is the 
least performed estimator as expected. The following observations were also deduced from the result:  

i. An increase in the numbers of level of correlation results in an increase in the MSE for all  the estimators. 
ii. The MSE increases for each estimator as the level of error variances increases. 
iii. Increase in the sample size, n, leads to decrease in the MSE for all the estimators. 

 

 
Fig. 1: The Estimators and their Estimated MSE when n=100 and =10. 

 

 
Fig.2: The Estimators and their Estimated MSE when n=50 and =0.9. 

 
From Figure 1 where n=100, =10 and p = 3 and 7, it appears that MSE increases as  increases. For the proposed 
estimator, it has the least MSE among all other existing estimators. Figure 2 shows the graph of n=50, = 0.9 and p = 3 
and 7. It reveals that MSE increases as  increases. The proposed estimator in figure 2 also has the least MSE among all 
the existing estimators. Figure 3 depicts the graph of n=100, = 0.8 and p = 3 and 7, which shows that MSE increases as 
the level of  increases. Also looking at Figure 3, the proposed estimator has the least MSE among all the other six 
estimators it is being compared with. It appears from Figure 4 where  = 5, = 0.95 and p = 3 and 7 that MSE decreases 
as sample size increases. For the proposed estimator, it has the least MSE among all the existing estimators. Just as in 
Figure 4, Figure 5 also shows that MSE decreases as sample size increases. For  = 3, = 0.99 and p = 3 and 7, the 
proposed estimator has the least MSE among all estimators. 
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Fig. 3: The Estimators and their Estimated MSE when n=50 and =0.8. 
 

 
 

Fig. 4: The Estimators and their Estimated MSE when =5 and =0.95. 
 

 
 

Fig. 5: The Estimators and their Estimated MSE when =3 and =0.99 
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3.2 Numerical Example 
 

In this section, Portland cement data was used to demonstrate the performance of the proposed estimator. The Portland 
cement data originally adopted by Woods et al. [36] and was later adopted by Li and Yang [37], Ayinde et al. [38]. The 
data set is widely known as the Portland cement dataset. The regression model for these data is defined as: 
  

where  = heat evolved after 180 days of curing measured in calories per gram of cement,  = tricalcium aluminate, 

 = tricalcium silicate,  = tetracalcium aluminoferrite, and  = -dicalcium silicate. The variance inflation 

factors are VIF1 = 38.50, VIF2 = 254.42, VIF3 = 46.87, and VIF4 = 282.51. Eigenvalues of  matrix are λ1 = 
44676.206, λ2 = 5965.422, λ3 = 809.952, and λ4 = 105.419, and the condition number of  is approximately 424. The 
VIFs, the eigenvalues, and the condition number all indicate that severe multicollinearity exists. The estimated parameters 
and the MSE values of the estimators are presented in Table 3. The proposed estimator performs best among other 
estimators as it gives the smallest MSE value. 
 
 

Table 3: The results of regression coefficients and the corresponding MSE values. 
 

  OLS RIDGE LIU KL MRT TP PROP 

  62.40537 8.587048 27.649 -45.2313 32.37233 6.229118 27.60677 

  1.551103 2.104613 1.900972 2.658123 1.859986 2.128821 1.909055 

  0.510168 1.06485 0.870142 1.619532 0.819705 1.089162 0.868809 

  0.101909 0.668088 0.462094 1.234267 0.417863 0.692863 0.468037 

  -0.14406 0.399594 0.208183 0.943248 0.159323 0.423419 0.207454 

K -            0.008 - 0.008 0.008 0.008 0.306 
d   0.44 - 0.44 0.44 0.0015 
MSE 4912.09 2989.829 2170.963 14180.4 2237.804 2222.368 2170.96 

4 Conclusions 

In this paper, a new two-parameter estimator was proposed to solve the problem of multicollinearity for the linear 
regression models. The proposed estimator was theoretically compared with six other existing estimators. A simulation 
study was then conducted to compare the performance of the proposed estimator and the six existing estimators [OLS, Liu 
estimator [23], Ridge estimator [10], KL estimator [27], Modified Ridge Type estimator [26], Two-parameter estimator by 
Ozkale and Kaciranlar [25]. It is obvious from the theoretical comparison that the proposed estimator performs best among 
the existing estimators considered in this research work.  
Simulation study also supports the theoretical study as the proposed estimator performs best among all the existing 
estimators. Finally, application of real-life data further established the superiority of proposed estimator as it gives the best 
result among the existing estimators using the Mean Square Error criterion. The proposed estimator is hereby 
recommended for use of researchers in different fields. 
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