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Abstract: The classical Wilks’ statistic is mostly used to test hypotheses in the one-way multivariate analysis of variance

(MANOVA), which is highly sensitive to the effects of outliers. The non-robustness of the test statistics based on normal theory has

led many authors to examine various options. In 2010, Todorov and Filzmoser proposed a robust Wilks’ statistic depends on

reweighted minimum covariance determinant estimator (RMCD) and constructed its approximate distribution. In this paper, we

presented a robust version of the Wilks’ statistics based on reweighted minimum covariance determinant estimator and reweighted

minimum volume ellipsoid estimator, and constructed it’s another approximate distribution depends on the weights of observations,

where the weights are calculated based on Hampel weight function. A comparison was made between the proposed statistics, classical

Wilks’ statistic, and the robust Wilks’ statistic which is proposed by Todorov and Filzmoser. The Monte Carlo studies are used to

obtain performance assessment of test statistics in different data sets. Moreover, the results of the type I error rate and the power of test

were considered as statistical tools to compare test statistics. The study reveals that, under normally distributed, the type I error rates

for the classical and the proposed Wilks’ statistics are close to the true significance levels, and the power of the test statistics are so

close. In addition, in the case of contaminated distribution, the proposed statistics is the best. A real data are used to further evaluate

the proposed robust statistics in this study.

Keywords: One-Way Multivariate Analysis of Variance, Outliers, Robustness, Minimum Covariance Determinant Estimator,

Minimum Volume Ellipsoid Estimator, Wilks’ Statistic.

1 Introduction

One-way MANOVA deals with testing the null hypothesis H0 of equal mean vectors of multivariate normal groups. To
formalize the hypothesis, let us assume that there are many independent random groups, say k ≥ 2 groups, for every
sample there are ni multivariate normal observations yi j, i = 1,2, . . . ,k, j = 1,2, . . . ,ni of p dimension with mean vector
µµµ i and equal covariance matrix ΣΣΣ . Then, the null and alternative hypotheses can be written as:

H0 : µµµ1 = µµµ2 = ...= µµµk,

H1 : µµµ i 6= µµµ j f or at least one i 6= j.

Many of statistics used for testing H0, one of the most widely used is Wilks’ statistic Λ which is defined as (see Rencher,
(2002) [1]):

Λ =
|WWW |

|W +BW +BW +B| , (1)

where BBB and WWW are the ”between” and ”within” of p× p matrices, respectively, having the formulas:

BBB =
k

∑
i=1

ni(yi.− y..)(yi.− y..)
t , (2)
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WWW =
k

∑
i=1

ni

∑
j=1

(yi j − yi.)(yi j − yi.)
t , (3)

where

yi. =
1

ni

ni

∑
i=1

yi j, y.. =
1

n

k

∑
i=1

ni

∑
j=1

yi j, and n =
k

∑
i=1

ni.

The hypothesis H0 is reject if Λ 6 Λα ,p,vW ,vB
where Λα ,p,vW ,vB

is the exact critical values for Wilks’ table with level of
significance α and degrees of freedom p, vW = n− k and vB = k− 1.
Assuming that all the groups are originate from the multivariate normal distribution, many classical statistics are
extremely sensitive to the influence of outliers (see [2]). Several statistics have been presented which are robust against
possible outliers in the data. In 1985, Nath and Pavur [3] presented an alternative statistic for the one-way MANOVA
depend on the rank order of the data. In the one-group, Hotelling’s statistic is the basic tool for inference about the mean
of a multivariate normal distribution. Willems et al. (2002) [4] introduced a robust Hotelling’s statistic depend on the
minimum covariance determinant (MCD) estimator. Candan and Aktas (2003) [5] proposed another robust Hotelling’s
statistic upon minimum volume ellipsoid (MVE) estimator. In 2010, Todorov and Filzmoser [6] introduced a robust
Wilks’ statistic for the one-way MANOVA depend on MCD estimator. Van Aelst and Willems (2011) [7] used S and
MM-estimators to construct a robust Wilks’ statistic for testing the hypotheses in the one-way MANOVA.
The effect of outliers on the Wilks’ statistic will be explained in the simulation study in Section 5. Therefore, we
introduce another alternative robust Wilks’ statistics to the classical Wilks’ statistic and has approximation differs from
those suggested by Todorov and Filzmoser. The MCD and MVE estimators that proposed by Rousseeuw in (1984)[8],
and (1985)[9], respectively, are highly robust estimator of location and scatter, for this purpose they are used. To increase
efficiency while retaining high robustness, one can apply reweighted steps for MCD estimator (RMCD), and MVE
estimator (RMVE) which are summarized in Section 2. The robust Wilks’ statistics are reviewed in section 3. In Section
4, we construct the proposed approximations and examine their accuracy. A simulation study is used to evaluate the
proposed statistical performance and to compare the different test statistics in different distribution cases in terms of
significance level, the power of the test and robustness. Section 5 describes the simulation study and its results. To further
evaluate the proposed robust statistics, a real data set are used in Section 6.

2 Robust Estimators

To construct the robust Wilks’ statistics, we want to estimate the multivariate parameters of the data set. The MCD and
MVE estimators of Rousseeuw (1984)[8], and (1985) [9], respectively, are a highly robust estimators of multivariate
location and scatter. MCD estimator looks for a subset of h observations with the lowest determinant of the sample
covariance matrix, where the subset size h is selected between half and the full size of sample. The mean observations of
the subset h represent the MCD location estimate TTT and a multiple of its covariance matrix is the MCD scatter estimate
CCC. The effective algorithm for calculating the MCD estimates is found in most known statistical software packages such
as R, S|Plus, SAS, and Matlab. The minimum volume ellipsoid (MVE) estimator was the first popular high breakdown
point estimator of location and scatter. It was searches for the ellipsoid of minimal volume containing at least half of the
points in the data set YYY of n observations. The location estimate is defined as the center of this ellipsoid and the covariance
estimate is provided by its shape. The effective algorithm for calculating the MVE estimates is found in the statistical
software packages R. To increase the efficiency of the MCD and MVE estimators, a reweighted version is used. Several
methods have been proposed to estimate the common covariance matrix. The method which was introduced by He and
Fung (2000) [10] for S estimates and by Hubert and Van Driessen (2004) [11] for MCD estimates is used. In this method,
the observations yi j are centered and pooled as a single sample ZZZ = zi j to estimate the covariance matrix. First, it starts
by computing the location estimates ti, i = 1,2, . . . ,k for each group as the MCD or MVE location estimates. These
group means are swept from the original observations for centralized observations zi j = yi j − ti. Second, the common

covariance matrix Σ̂̂Σ̂Σ z is estimated as the MCD or MVE covariance matrix of the centered observations ZZZ. Finally, the
location estimate µ̂̂µ̂µz of ZZZ is used to adjust the group means µ̂̂µ̂µ i = µ̂̂µ̂µz +ttti, i = 1,2, . . . ,k.

3 The Robust Wilks’ Statistic

Assuming that all groups arise from the multivariate normal distribution, the classical Wilks’ statistic is very sensitive to
the influence of outliers. Therefore, Nath and Pavur [3] were presented the robust Wilks’ statistic based on the ranks of
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the observations. Also, Todorov and Filzmoser [6] were introduced an alternative proposal for the Wilks’ statistic based
on RMCD estimator defined as:

ΛR =
|WWW R|

|BBBR +WWWR|
, (4)

where BBBR and WWW R are the weighted ”between” and ”within” matrices given by:

BBBR =
k

∑
i=1

wi.(ywi.
− yw..)(ywi.

− yw..)
t (5)

WWW R =
k

∑
i=1

ni

∑
j=1

wi j(yi j − ywi.
)(yi j − ywi.

)t (6)

where
wi. = ∑

ni
j=1 wi j, ywi.

= 1
wi.

∑
ni
j=1 wi jyi j , yw.. = ∑k

i=1 ∑
ni
j=1

1
w

wi jyi j , and w = ∑k
i=1 wi.

The weights wi j for each observation yi j computed by the Huber weight function defined as:

wi j =

{

1 MD(yi j)≤
√

χ2
p,0.975,

0 otherwise.

4 The proposed approximation distribution of Wilks’ statistic

The distribution of classical Wilks’ statistic Λ , which was considered by Anderson (1958) [12] as a ratio of two Wishart
distributions, is very complicated. Therefore, Bartlett introduced a good approximation of the Wilks’ statistic given by
(see [1]):

−
(

vE − 1

2
(p− vH + 1)

)

lnΛ ≃ χ2
pvH

. (7)

Todorov and Filzmoser (2007) [6] were assumed for ΛR the following approximation:

LR =− lnΛR ≃ d χ2
q , (8)

where the multiplication factor d and the degrees of freedom q of the χ2 distribution as

d =
E[LR]

q
, and q =

2E[LR]
2

Var[LR]
.

The mean E[LR] and variance Var[LR] of the robust Wilks’ statistic ΛR are not possible to obtain analytically. So, they are
determined them by simulation after repeated m times as:

ave[LR] =
1

m

m

∑
i=1

L
(i)
R , and var[LR] =

1

m− 1

m

∑
i=1

(L
(i)
R − ave[LR])

2.

The estimated parameters d and q will be reused to analyze data with the same dimension and number of groups. To
perform the robust Wilks’ statistic that proposed by Todorov and Filzmoser, it will take a lot of time during simulations
to find d and q for approximate distribution. In this the present study, we introduce the following suggestions:

– In order to increase efficiency of RMCD estimator while retaining high robustness, we followed the following
approach:

1.Compute the location estimators µ̂̂µ̂µ0
i , i = 1,2, . . . ,k and the common covariance matrix Σ̂̂Σ̂Σ 0

z based on RMCD
estimator.

2.Compute the weights wi j of the observations yi j by the Hampel weight function that is defined as (see Campbell,
(1980) [13]):

wi j =

{

1 MD(yi j)≤ d0

d/MD(yi j) MD(yi j)> d0,
(9)

c© 2022 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


548 A. A. Ameen, O. H. Abbas: On Compare Robust Wilks’ Statistics for the One-Way MANOVA

where

d = d0 exp

(

−1

2

(

MD(yi j)− d0

b2

)2
)

, d0 =
√

p+
b1√

2
, b1 = 2, b2 = 1.25,

and the Mahalanobis distances MD(yi j) =
√

(yi j − µ̂̂µ̂µ0
i )

tΣ̂0
zΣ̂0
zΣ̂0
z
−1(yi j − µ̂̂µ̂µ0

i ).

3.For g = g+ 1, compute the weighted location estimators µ̂̂µ̂µ
g
i and the weighted common covariance matrix Σ̂̂Σ̂Σ

g
z as:

µ̂̂µ̂µ
g
i =

1

∑
ni

j=1 wi j

ni

∑
j=1

wi jyi j,

Σ̂̂Σ̂Σg
z =

1

∑k
i=1 ∑

ni
j=1 wi j − 1

k

∑
i=1

ni

∑
j=1

w2
i j(yi j − µ̂̂µ̂µ

g
i )(yi j − µ̂̂µ̂µ

g
i )

t .

4.Repeat until the measure of deviation from sphericity, φ(Σ̂̂Σ̂Σ g
z ) =

(tr(Σ̂̂Σ̂Σ
g
z /p))p

det(Σ̂̂Σ̂Σ
g
z )

(see [14]) needs to be as small as

possible.
– To perform the robust Wilks’ statistic ΛR that proposed by Todorov and Filzmoser, it will take a lot of time during
simulations to find d and q for approximate distribution. Therefore, we will introduce a robust version of Wilks’
statistic is similar to ΛR in (7), namely ΛR1

, but based on RMCD estimator with Hampel weight function and
constructed its approximate distribution defined as:

−
(

vWR
− 1

2
(p− vBR

+ 1)

)

lnΛR1
≃ χ2

pvBR
. (10)

To compute the degrees of freedom vWR
, and vBR

for the robust Wilks’ statistic ΛR, the sum of squares BBBR and WWW R in
(5) and (6) can be written as:

BBBR =YYY t(QQQn −PPPn)YYY ,

WWW R =YYY t(WWW n −QQQn)YYY ,

where YYY is the data matrix, QQQn = diag(QQQii), QQQii = [ 1
wi

wi jwih] is a block diagonal matrix with k × k blocks of size

ni× ni , PPPii = [ 1
w

wi jwih] is a block matrix with k × k blocks of size ni × ni , and WWW n = diag(wii), wn = diag(wi j) ,
i = 1,2, . . . ,k, j = 1,2, . . . ,ni, h = 1,2, . . . ,ni .
So,

vWR
= trace(WWW n −QQQn) = w−

k

∑
i=1

vi

wi

, and vBR
= trace(QQQn −PPPn) =

k

∑
i=1

vi

wi

− ∑k
i=1 vi

w
,

where vi = ∑
ni
j=1 w2

i j .

– Similarly to above procedures, a robust Wilks’ statistic, namely ΛR2, depends on RMVE estimator with Hampel
weight function is introduced.

Now we will investigate the accuracy of the approximation of ΛR1, and ΛR2 by computing the robust Wilks’ statistics ΛR1,
and ΛR2 for m = 3000 samples from the standard normal distribution and several values of the dimension p, the number of
groups k and the sample sizes ni, i = 1,2, . . . ,k. The distribution of these m statistics will be compared to the approximate
distribution of ΛR1, and ΛR2 by QQ-plots, some of them are shown in Figures (1), and (2). The usual cutoff values of a
test, 95%, 97.5%, and 99% are shown in these plots of vertical lines. One can see from these plots that the approximations
are accurate for lower and higher dimensions, large and small sample sizes, and for equal and unequal groups sizes.
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Fig. 1: QQ-plots for the proposed robust Wilks’ statistic based on RMCD estimator ΛR1 in the case of two groups and several dimension

values for p and n = ∑k
i=1 ni .
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Fig. 2: QQ-plots for the proposed robust Wilks’ statistic based on RMVE estimator ΛR2 in the case of two groups and several dimension

values for p and n = ∑k
i=1 ni .

.
5 Monte Carlo Simulation

Monte Carlo study is a good method to assess the statistical performance for the test statistics. The evaluation of the
performance of the test statistics includes two measures the type I error rate and the power of the test. In addition, we
will investigate the robust statistics behavior in the existence of outliers and compare the results with the classic Wilks’
statistic. To study the type I error rate and the power of test of the robust statistics, let us consider number of groups
k = 2,3, several dimension p = 2,4,6,8,10, and sample sizes ni, i = 1,2, . . . ,k. The selected sample sizes are shown in
Table (1).
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Table 1: Selected group sizes for the simulation study

Two groups Three groups

(n1,n2) (n1,n2,n3)

(10, 10) (10, 10, 10)

(20, 10) (20, 10, 10)

(20, 20) (20, 20, 20)

(30, 20) (30, 20, 10)

(30, 30) (30, 30, 10)

(50, 20) (50, 20, 10)

(50, 50) (50, 50, 20)

(100, 50) (100, 50, 30)

5.1 Significance level

To compare the type I error rates α̂ for the test statistics, we generate the observations from the multivariate normal
distribution yi j ∼ Np(000,III) under the null hypothesis H0 : µµµ1 = µµµ2 = . . . = µµµk = 0. The classical Wilks’ statistic Λ is

compared to the Bartlett’ χ2 approximation given in (7), the robust Wilks’ statistic ΛR is compared to the approximation
given in (8), and the proposed Wilks’ statistics ΛR1, and ΛR2 are compared to the approximate distribution given as
described in Section 4. This is repeated m = 3000 times and then calculate α̂ = L(T )/m (where L(T ) is the number of
times of rejected the test statistic when the hypothesis is true) for the test statistics above. The values α̂ are taken as an
estimate of the true significance level when the simulated critical values are above the true significance level. The true
significance level α̂ = 0.01, 0.05, and 0.10 with the number of times m = 3000, and from the standard error formula

of Salter and Fawcett (1989) [15] α ∓ 2
√

α(1−α)/m gives the standard deviation interval about the nominal level as
(0.089,0.111), (0.042,0.058), and (0.006,0.014) respectively. In Table (2) , the results of the type I error rates α̂ are
shown for two groups. It is clear that α̂ of the test statistics are very close to the nominal value α (true significance level).
We will use the P-value plots proposed by Davidson and McKinnon (1998) [16], which gives a more complete picture
of how the test statistics follow the approximate distribution under the null hypothesis in the simulated samples. Figures
(3) and (4) show P-value plots of test statistics in three groups k = 3 of the multivariate normal distribution, several
dimensions p and the sample size n = ∑k

i=1 ni. It is seen that the test statistics Λ , ΛR1, and ΛR2 are close to the 45◦ line,
and the robust Wilks’ statistic ΛR is considerably below the 45◦ line for small sample sizes.

5.2 Power of test

To compare the power of the test π̂ for the test statistics we will generate data samples yi j ∼ Np(µµµ i,III) under an alternative

hypothesis (H1 : µµµ i 6= µµµ j f or at least one i 6= j). Also, we will use the same cases of dimensions p, number of groups k, and
sample sizes ni, i = 1,2, . . . ,k but each sample has a different mean µµµ i = (µµµ i1,µµµ i2, . . . ,µµµ ip)

t . The means of dimensions
p = 2,4,6,8,10 for the groups i = 1,2,3 are selected as:

µµµ1 = (0,0, . . . ,0)t , µµµ2 = (0.5,0, . . . ,0)t , µµµ3 = (0,0.5, . . . ,0)t , . . . , µµµk = (0,0, . . . ,0.5,0)t .

The power of the test statistics were compared by the resulting size-power curves under alternative hypothesis, as proposed
by Davidson and MacKinnon (1998) [16]. The results for the three groups are shown in Figures (5) and (6). It is clearly
seen that the size-power curves for the classical statistic Λ , and the proposed statistics ΛR1, and ΛR2 are close while the
robust Wilks’ statistic ΛR by Todorov and Filzmoser is less.

5.3 Robustness comparisons

Now we will investigate the robustness for the proposed test statistic in the one-way MANOVA. Therefore, we will
generate data samples under the null and alternative, and we will contaminate them by adding outliers. The same cases of
dimensions p, number of groups k, and sample sizes i = 1,2, . . . ,k will be used.

5.3.1 Significance level

Under the hypothesis H0 : µµµ1 = µµµ2 = . . . = µµµk , the data will be generated from the following contamination model:

yi j ∼ (1− ε)Np(000,III)+ εNp(µµµ i,cIII), where ε = 0.1 , µ∗ = v
√

χ2
p,0.0011t

p , v = 5, and c = 0.0625.

c© 2022 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


552 A. A. Ameen, O. H. Abbas: On Compare Robust Wilks’ Statistics for the One-Way MANOVA

Table 2: Levels of significance of test statistics Λ , ΛR, ΛR1, and ΛR2 for two groups k = 2 of multivariate normal distribution, several

values of the dimension p and the sample size n = n1 +n2.

Dimension Sample Size Statistic
Significance Level

0.01 0.05 0.1

p = 2

10 10

Λ 0.009 0.046 0.090

ΛR 0.011 0.042 0.084

ΛR1 0.013 0.062 0.110

ΛR2 0.016 0.064 0.114

30 30

Λ 0.008 0.055 0.103

ΛR 0.008 0.044 0.103

ΛR1 0.013 0.066 0.118

ΛR2 0.011 0.067 0.121

p = 4

20 10

Λ 0.008 0.048 0.098

ΛR 0.013 0.050 0.085

ΛR1 0.009 0.053 0.105

ΛR2 0.010 0.054 0.106

30 20

Λ 0.009 0.045 0.106

ΛR 0.012 0.043 0.084

ΛR1 0.011 0.049 0.107

ΛR2 0.011 0.049 0.108

p = 6

20 20

Λ 0.014 0.050 0.099

ΛR 0.017 0.048 0.094

ΛR1 0.014 0.052 0.103

ΛR2 0.014 0.052 0.103

50 50

Λ 0.009 0.044 0.094

ΛR 0.012 0.053 0.100

ΛR 0.009 0.045 0.099

ΛR1 0.008 0.045 0.099

p = 8

20 20

Λ 0.008 0.052 0.106

ΛR 0.014 0.055 0.102

ΛR1 0.010 0.056 0.111

ΛR2 0.011 0.056 0.114

50 50

Λ 0.011 0.056 0.097

ΛR 0.013 0.045 0.093

ΛR1 0.011 0.056 0.100

ΛR2 0.011 0.055 0.101

p = 10

30 30

Λ 0.010 0.051 0.096

ΛR 0.013 0.043 0.086

ΛR1 0.010 0.050 0.097

ΛR2 0.010 0.049 0.097

100 50

Λ 0.009 0.053 0.104

ΛR 0.010 0.046 0.101

ΛR1 0.009 0.053 0.107

ΛR2 0.009 0.052 0.106

The P-value plots of the test statistics for three groups are shown in Figures (7) and (8). In these Figures, the P-value plots
(actual size) based on the test statistics ΛR1 and ΛR2 are so close to the 45◦ line compared to the same of the test statistic
ΛR, while the classical statistic Λ is very bad for all the different cases of dimension p and sample sizes.

5.3.2 Power of test

Under the alternative hypothesis H1 : µµµ i 6= µµµ j f or at least one i 6= j, the data samples will be generated from the following
contamination model: yi j ∼ (1− ε)Np(µµµ i,III) + εNp(µµµ

∗,cIII), where µµµ i are the same mean groups vectors as in Section
5.2, ε , µµµ∗, and c are take the same values as in Section 5.3.1. The Figures (9) and (10) show the size-power curves of
test statistics. It is clearly seen that the proposed robust Wilks’ statistics ΛR1 and ΛR2 are the best compared to the other
statistics for all investigated cases of dimension p and sample sizes.
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Fig. 3: P-value plots for test statistics Λ (red line), ΛR (black line), ΛR1 (blue line), and ΛR2 (dark red line) for three groups k = 3 of

multivariate normal distribution, several dimensions p and the sample size n = n1 +n2. The 45◦ line is given too.
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Fig. 4: P-value plots for test statistics Λ (red line), ΛR (black line), ΛR1 (blue line), and ΛR2 (dark red line) for three groups k = 3 of

multivariate normal distribution, several dimensions p and the sample size n = n1 +n2. The 45◦ line is given too.
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Fig. 5: Size-power curves for test statistics Λ (red line),ΛR (black line),ΛR1 (blue line) , and ΛR2 (dark red line) for three groups k = 3

of multivariate normal distribution, several dimensions p and the sample size n = ∑k
i=1 ni. The 45◦ line is given too.
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Fig. 6: Size-power curves for test statistics Λ (red line),ΛR (black line),ΛR1 (blue line) , and ΛR2 (dark red line) for three groups k = 3

of multivariate normal distribution, several dimensions p and the sample size n = ∑k
i=1 ni. The 45◦ line is given too.
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Fig. 7: P-value plots for test statistics Λ (red line), ΛR (black line), ΛR1 (blue line), and ΛR2 (dark red line) for three groups k = 3 of

multivariate contaminated distribution, several dimensions p and the sample size n = n1 +n2. The 45◦ line is given too.
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Fig. 8: P-value plots for test statistics Λ (red line), ΛR (black line), ΛR1 (blue line), and ΛR2 (dark red line) for three groups k = 3 of

multivariate contaminated distribution, several dimensions p and the sample size n = n1 +n2. The 45◦ line is given too.
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Fig. 9: Size-power curves for test statistics Λ (red line),ΛR (black line),ΛR1 (blue line) , and ΛR2 (dark red line) for three groups k = 3

of multivariate contaminated distribution, several dimensions p and the sample size n = ∑k
i=1 ni. The 45◦ line is given too.
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Fig. 10: Size-power curves for test statistics Λ (red line),ΛR (black line),ΛR1 (blue line) , and ΛR2 (dark red line) for three groups k = 3

of multivariate contaminated distribution, several dimensions p and the sample size n = ∑k
i=1 ni. The 45◦ line is given too.
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6 Real Data Example

We will illustrate the application of the proposed robust Wilks’ statistics using a real data set. The data set includes
water data taken from (The Department of Protection and Improvement the Environment in the Southern Region of Iraq)
represented by chemical concentrations in the waters of the Shatt Al-Arab River in Iraq over a the year period (2013)
in three different stations SH1 (Karmat Ali river / water project (25) million unified Basra), SH2 (Al-Sanker /Abu Al-
Khaseeb District), and SH3 (Al-Siba / near the Ceyhan water project). The number of analyzed water data in each station
are 18.
For our example, we will only consider four main compounds, namely, Dissolved Oxygen (DO), Nitrate (NO3), Calcium
(Ca), and Magnesium (Mg) aggregate the percentages of corresponding compounds. The first six observations of the raw
data are given in the following Table:

Station DO NO3 Ca Mg

SH1 0.026 0.043 0.533 0.398

SH1 0.046 0.101 0.620 0.233

SH2 0.015 0.036 0.569 0.380

SH2 0.025 0.054 0.700 0.221

SH3 0.032 0.034 0.512 0.422

SH3 0.029 0.037 0.561 0.398

So, our data matrix consists of n = 54 rows and p = 4 columns. However, we note that as each row sums up to 1 the
observations are compositions being part of the 3−dimensional simplex (1986) [17].
Most methods from multivariate statistics developed for real valued data are misleading or inapplicable for compositional
data. (2013) [18]. Hence, we use the isometric log-ratio (ilr) transformation which is an isometric linear mapping between
the p-dimensional simplex and Rp−1 to obtain a 2−dimensional data matrix for further analysis. The top panel of Figure
11 shows the scatter plot matrix of the ilr-transformed data together with histograms of each variable. The bottom panel
display grouped boxplots for the different factor combination groups.
We now perform a one way MANOVA using the ilr-transformed water data. The hypothesis was tested using the classical
Wilks’ test statistic Λ , the robust Wilks’ of Todorov ΛR and the proposed robust Wilks’ statistics ΛR1, and ΛR2. The P-
values of the corresponding statistical testing are given in the Table 3. For the tests based on the classical Wilks’ statistic
the hypothesis testing cannot be rejected at a significance level of α = 0.05, whereas for ΛR, ΛR1, and ΛR2 tests we can
reject the hypothesis true for one way MANOVA test.

Table 3: P-values for the classical Wilks’ statistic, the robust Wilks’ of Todorov and the proposed robust Wilks’ statistics.

Statistic Λ ΛR ΛR1 ΛR2

P-value 0.18923 0.00503 0.00014 0.00017

The results showed that the proposed methods are the best, as it came in accordance with the opinions of specialists
in this field, that the different stations have a high impact on the rates of chemical concentrations.

7 Conclusions

In this study, we presented a robust version of the Wilks’ statistic based on RMCD estimator ΛR1, and Wilks’ statistic
based on RMVE estimator ΛR2, and constructed their approximate distributions. The results show that the p-value plots
and size-power curves for the proposed robust statistics are close to the classical in case of normal distribution for the
data set, while in case of contaminated distribution the proposed robust statistics is the best. Also, the results show the
advantage of the proposed robust statistics over the robust Wilks’ statistic of Todorov, and Filzmoser especially with small
sample sizes.
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Fig. 11: Isometric log-ratio (ilr) transformed Water data: the top panel shows the scatter plot matrix of the ilr-transformed Water data

together with histograms of each variable, the bottom panel display grouped boxplots for the different factor combination groups.
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