
J. Stat. Appl. Pro. 11, No. 2, 641-655 (2022) 641

Journal of Statistics Applications & Probability
An International Journal

http://dx.doi.org/10.18576/jsap/110222

Burr Lindley Distribution: Properties, Estimation and

Applications

W. A. Hassanein∗ and S. M. Yehia

Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt

Received: 21 Nov. 2020, Revised: 21 Jan. 2021, Accepted: 9 Mar. 2021

Published online: 1 May 2022

Abstract: In this paper, Burr Lindley (BL) distribution is constructed as a composition structure between Lindley and Burr

distributions to induce a more flexible model for the hydrology data than its parents where it has decreasing and inverted bathtub

shapes for the hazard rate function. Several statistical and reliability properties of the BL distribution are obtained, such as the

behavior of its density and hazard rate functions, survival and residual life functions, Shannon entropy, limiting distributions and

characterization via right truncated moments. For parameter estimation, the maximum likelihood estimators as well as the Fisher

information matrix are investigated. Moreover, the simulation study is performed to examine the performance of the parameter

estimates in terms of bias and mean square error. A real data application in hydrology field is modeled to the BL distribution and

compared with other well-known distributions, to illustrate its performance. Based on goodness of fit tests, BL distribution has a

superior fitting performance to hydrology data than the compared distributions.

Keywords: Burr distribution; Lindley distribution, Characterization, Maximum Likelihood, Hydrology data.

1 Introduction

Modeling of lifetime data is essential in applied sciences including, biomedical science, engineering, finance and
insurance, amongst others. Several continuous distributions for modeling lifetime data has been introduced in statistical
literature including exponential, Lindley, Gamma and Weibull. Many methods have been developed to generate statistical
distributions in the literature. Some well-known methods for generating univariate continuous distributions including
methods based on differential equations and methods of translation were developed.

The interest in developing new methods for generating new or more flexible distributions continue to be active in
recent decades. [1] indicated that the majority of methods developed after the 1980s are the methods of ‘combination’
for the reason that these new methods are based on the idea of combining two existing distributions or by adding extra
parameters to an existing distribution to generate a new family of distributions. [2] introduced a new family called the
transformed transformer (T-X) family. The T-X family is explained in more detail manner in [3]. Later in the same year,
[4] introduced the extended T-X families of the first kind and second kind, such that the extended T-X (II) family is the
extension form of the T-X family.

The other well-known families are: Logistic-X Family (see [5]) and New Weibull-X Family (see [6]). [7] proposed a
new family of distributions, namely, a modified T-X family of distributions.

Lindley distribution was initially introduced by Lindley [8, 9] to analyze failure time data, especially in applications of
modeling stress-strength reliability. [10] showed that it is especially useful for modeling in mortality studies. It was used
in many fields including biology, engineering and medicine. Lindley distribution belongs to an exponential family and
its construction is mainly a mixture of exponential and Gamma distributions. The probability density function of Lindley
distribution with parameter m is:

flindely (x;m) =
m2

(m+ 1)
(1+ x)e−mx; x > 0,m > 0.
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Burr distribution (sometimes called the Burr Type XII distribution or Singh-Maddala distribution) is a unimodal
family of distributions with a wide variety of shapes. Burr distribution was first discussed by [11] as a two-parameter
family. An additional scale parameter was introduced by [12]. This distribution is used to model a wide variety of
phenomena including crop prices, household income, option market price distributions, risk (insurance) and travel time.
The probability density function for the Burr XII distribution with parameter c and k is:

fBurr (x;c,k) = ck
xc−1

(1+ xc)k+1
; x > 0, c,k > 0.

This paper introduces the Burr Lindley (BL) distribution, its probability density function, cumulative distribution
function and survival function in Section 2. The structural characteristics of BL distribution such as the behavior of the
probability density function, the hazard rate function, the entropy measures, the moments and the associated moments are
obtained in Section 3. Section 4 discussed the point estimation by the maximum likelihood and the method of moments
furthermore the interval estimation. Simulation schemes are obtained in Section 5. Characterization of the BL distribution
by Right Truncated Moments is discussed in Section 6. Finally, a real-life data application in hydrology is modeled to the
BL distribution and compared with other well-known distributions in Section 7.

2 Model Formulation

The BL distribution is defined by using the concept of composition of distribution which extended by [4] in T-X families
as:

G(x) =

∫ −(log1−F(x) )

0
l (t) dt,

where, F(x) is the cumulative distribution function of Burr distribution, and l (t) is the probability density function of
Lindley distribution.

The probability density function (PDF) of the BL distribution is defined by

g(x) =
x−1+α(1+ xα)−1−β θαβ θ 2 (1+β Log(1+ xα))

1+θ
, x > 0, α,β ,θ > 0. (1)

The corresponding reliability (survival) function of the BL distribution is given by

S (x)=
(1+ xα)−β θ (1+θ +β θLog(1+ xα))

1+θ
, x > 0, α,β ,θ > 0. (2)

Some of the possible shapes of density function in Equation (1) for the selected parameter values are illustrated in
Figure 1; the density function can take various forms depending on the parameter values.

3 Structural Characteristics

This section concerned with the structural characteristics of BL distribution. In particular, the functional behavior of the
density function, hazard function, reversed hazard function, residual life functions and others.

3.1 Behavior of the probability density function (PDF) of BL distribution

Theorem 1.The behavior of PDF of the BL distribution g(x) in Equation (1) is

a.Unimodal if α > 1, β , θ > 0.

b.Decreasing if 0 < α ≤ 1, β , θ > 0.

Proof.The first derivative of g(x) can be written as:

g
′
(x) =−x−2+α(1+ xα)−2−β θαβ θ 2 (1−α + xα (1+αβ (−1+θ ))+β (1−α + xα (1+αβ θ ))Log(1+ xα))

1+θ
.
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For α > 1, the PDF is unimodal as the function g
′
(x) changes its sign from positive to negative; as x increases when

θ ,β > 0. In other words, the behavior of g(x) is changed from increasing to decreasing. In addition, the critical point of

the PDF is approximately obtained by solving the equation g
′
(x) = 0 numerically at specific initial point of the parameter,

the solution is found approximately that, in case of α > 1 there is a one critical point at which g′ (x)> 0, then the PDF is
unimodal at this point. On the other hand, when 0 < α ≤ 1 at β ,θ > 0 , we have g′ (x) <0 which implies that g(x) is
monotonically decreasing for all x.

Fig. 1: PDF of the BL distribution

3.2 Hazard rate function

The hazard rate function (HRF) measures the tendency to fail or to die depending on the age reached and it thus plays
a key role in classifying lifetime distributions. Generally, hazard rates are monotonic (increasing or decreasing) or non-
monotonic (bathtub or inverted bathtub) functions (see [13]).

The hazard rate function of the BL distribution is given by:

h(x) =
x−1+ααβ θ 2(1+β Log(1+ xα))

(1+ xα)(1+θ +β θLog(1+ xα))
, x > 0, α,β ,θ > 0. (3)

The cumulative hazard function of the BL distribution is defined by:

H (x) = β θLog(1+ xα)+Log(1+θ )−Log(1+θ +β θLog(1+ xα)) , x > 0, α,β ,θ > 0.

Theorem 2.The behavior of the hazard rate function h(x) in Equation (3) can be summarized as follows:

a.h(x) is decreasing when {0 < α ≤ 1 at β ,θ> 0}.

b.h(x) is inverted bathtub (IBT) when {α > 1 at β ,θ > 0}.
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Proof.Since The first derivative of h(x) is obtained as:

h
′
(x)=

x−2+α αβθ 2
(

xα (−1+αβ −θ )+(−1+α)(1+θ )− (1+xα −α)β (1+2θ )Log (1+xα )− (1+xα −α)β 2θLog(1+xα )2
)

(1+xα )2(1+θ +βθLog(1+xα ))2
.

For α > 1, h(x) is inverted bathtub (IBT) also named by (IDHR Increasing-Decreasing Hazard Rate), where, h′ (x) changes
its sign from positive to negative; as x increases at α > 1 and θ ,β > 0. In other words, the behavior of h(x) is changed

from increasing to decreasing. On the other hand, when 0 < α ≤ 1 at β ,θ > 0, we have h
′
(x) < 0, ∀x, which implies

that h(x) is monotonically decreasing ∀x. The HRF of the BL distribution are displayed in Figure 2 for different values of
α,β and θ .

Fig. 2: HRF of the BL distribution

3.3 Reversed hazard rate function

The reversed hazard rate can be defined as the conditional random variable [t − X |X ≤ t] which denotes the time elapsed
from the failure of a component given that its life is less than or equal to t. This random variable is also called the inactivity
time or time since failure. In reliability, it is well known that the mean reversed residual life and ratio of two consecutive
moments of reversed residual life characterize the distribution uniquely; for more details see [14, 15].

Using Equations (1) and (2), the reversed hazard function of the BL distribution is defined as

r (x) =
−x−1+ααβ θ 2 (1+β Log(1+ xα))

(1+ xα)
((

1− (1+ xα)β θ
)
(1+θ )+β θLog(1+ xα)

) , x > 0, α,β ,θ > 0. (4)

3.4 Residual (reversed) life functions

Residual life and reversed residual life random variables are used extensively in risk analysis. Accordingly, we investigate
some related statistical functions, such as survival function mean and variance in connection with the BL distribution. The
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residual life is described by the conditional random variable R(t) = X − t|X > t, t ≥ 0, and defined as the period

from time t until the time of failure. Analogously, the reversed residual life can be defined as R(t) = t − X |X ≤ t, which
denotes the time elapsed from the failure of a component given that its life is less than or equal to t.

i.Mean residual life function
The mean residual life (MRL) function MRL = E(X − x|X > x) of the BL distribution is given by

MMMRRRLLL =
1

S(x)

∫ ∞

x
S(t)dt.

=

(
1

(1+xα )−βθ (1+θ +βθLog [1+ tα ])

)(
−

∞

∑
j=0

(
−βθ

j

)
×

(
−1+ jα(1+θ )+θ (−1+αβ (2+θ ))+βθ (−1+ jα +αβθ )

(
−L
(
−1,1,1+ j− 1

α +βθ
)
+Log(2)

)

(−1+ jα +αβθ )2

−
x1+α j

(
1+αj+θ +αjθ −αβθ +αβθ 2F

1

(
1,

1+α j
α ,

1+α+α j
α ,−xα

)
+(1+αj)βθLog(1+xα )

)

(1+αj)2

+
2+2αj+2θ +2αjθ −2αβθ +βθLog(4)+αjβθLog(4)− (1+αj)βθψ

(
1+α j

2α

)
+(1+αj)βθψ

(
1+α+α j

2α

)

2(1+αj)2






where ψ (z) =
Γ

′
(z)

Γ (z)
is the Digamma function, L(λ ,α,s) =

∞

∑
n=0

λ n

(n+α)s is the Hurwitz-Lerch function, and

2F1 (a,b;c;z) =
∞

∑
n=0

(a)n(b)n

(c)n

zn

n!
is the Hypergeometric function. The series which used to obtain the MRL function is

(
1+ xb

)−a

=





∞

∑
j=0

(
−a

j

)
x−b( j+a) ; |x|b > 1

∞

∑
j=0

(
−a

j

)
xb j ; |x|b < 1

where
(
−a

j

)
= (−1) j

(
a+ j−1

j

)
.

ii.Residual lifetime function
The survival function of the residual lifetime R(t), t ≥ 0, for the BL distribution is given by

SSSRRR(((ttt))) (xxx) =
S(x+ t)

S(t)
===

(1+(x+ t)α)
−β θ

(1+θ +β θLog
(
1+(x+ t)α

)
)

(1+ tα)−β θ (1+θ +β θLog(1+ tα))
, x > 0,

and its PDF is

fff RRR(((ttt))) (xxx) ===
(1+ tα)β θ (t + x)−1+α(1+(t + x)α)

−1−β θ
αβ θ 2(1+β Log

(
1+(t + x)α))

1+θ +β θLog(1+ tα)
.

Consequently, the hazard rate function of R(t) has the following form

hhhRRR(((ttt))) (xxx) =
(t + x)−1+ααβ θ 2(1+β Log

(
1+(t+ x)α))

(1+(t + x)α)(1+θ +β θLog
(
1+(t+ x)α))

.

iii.Reversed residual life function

The survival function of the reversed residual lifetime RRR(((ttt))) for the BL distribution is given by

SSSRRR(((ttt))) (xxx) =
F(t − x)

F(t)
=

(1+θ )− (1+(t− x)α)
−β θ

(1+θ +β θLog
(
1+(t− x)α))

(1+θ )− (1+ tα)−β θ (1+θ +β θLog(1+ tα))
, 0 ≤ x ≤ t,

hence the probability density function of RRR(((ttt))) takes the following form
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fff RRR(((ttt))) (xxx) ===
(1+ tα)β θ (1+(t − x)α)

−1−β θ
(t − x)−1+ααβ θ 2(1+β Log

(
1+(t − x)α))

(−1+(1+ tα)β θ )(1+θ )−β θLog(1+ tα)
.

Consequently, the hazard rate function of the reversed residual lifetime RRR(((ttt))) has the following form

hhhRRR(((ttt))) (xxx) =− (t − x)−1+ααβ θ 2
(
1+β Log

(
1+(t − x)α))

(
1+(t − x)α)(−

(
−1+

(
1+(t − x)α)β θ

)
(1+θ )+β θLog

(
1+(t − x)α)) .

3.5 Moments and the associated measures

The rth raw moments (about the origin) of the BL distribution by using S(x) is given by

µ
′
r =

∫ ∞

0

1

1+θ
rxr−1(1+ xα)−β θ (1+θ +β θLog(1+ xα))dx

=
r

1+θ

1

αΓ (β θ )
Γ
( r

α

)
Γ
(
− r

α
+β θ

)(
1+θ+β θ

(
ψ (β θ )−ψ

(
− r

α
+β θ

)))
.

The mean and variance of the BL distribution respectively, are as follows

µ=
1

1+θ

1

αΓ (β θ )
Γ

(
1

α

)
Γ

(
− 1

α
+β θ

)(
1+θ+β θ

(
ψ (β θ )−ψ

(
− 1

α
+β θ

)))
,

v(x)=
2

1+θ

1

αΓ (β θ )
Γ

(
2

α

)
Γ

(
− 2

α
+β θ

)(
1+θ+β θ

(
ψ (β θ )−ψ

(
− 2

α
+β θ

)))

−
(

1

1+θ

1

Γ (β θ )
Γ

(
1+

1

α

)
Γ

(
− 1

α
+β θ

)(
1+θ+β θ

(
ψ (β θ )−ψ

(
− 1

α
+β θ

))))2

.

The skewness and kurtosis can be obtained using the third and fourth moments about the mean

µ3=
3Γ
(

3
α

)
Γ
(
− 3

α +β θ
)(

1+θ +β θ
(
ψ (β θ )−ψ

(
− 3

α +β θ
)))

α(1+θ )Γ (β θ )

− 1

α2(1+θ )2Γ (β θ )2
6Γ

(
1

α

)
Γ

(
2

α

)
Γ

(
− 2

α
+β θ

)
Γ

(
− 1

α
+β θ

)
×

(
1+θ +β θ

(
ψ (β θ )−ψ

(
− 2

α
+β θ

)))(
1+θ +β θ

(
ψ (β θ )−ψ

(
− 1

α
+β θ

)))

+
2Γ
(

1
α

)3
Γ
(
− 1

α +β θ
)3(

1+θ +β θ
(
ψ (β θ )−ψ

(
− 1

α +β θ
)))3

α3(1+θ )3Γ (β θ )3
,

and

µ4=
4Γ
(

4
α

)
Γ
(
− 4

α +β θ
)(

1+θ+β θ
(
ψ (β θ )−ψ

(
− 4

α +β θ
)))

α(1+θ )Γ (β θ )

− 1

α2(1+θ )2Γ (β θ )2
12Γ

(
1

α

)
Γ

(
3

α

)
Γ

(
− 3

α
+β θ

)
Γ

(
− 1

α
+β θ

)(
1+θ+β θ

(
ψ (β θ )−ψ

(
− 3

α
+β θ

)))
×

(
1+θ+β θ

(
ψ (β θ )−ψ

(
− 1

α
+β θ

)))
+

1

α3(1+θ )3Γ (β θ )3
12Γ

(
1

α

)2

Γ

(
2

α

)
Γ

(
− 2

α
+β θ

)
Γ

(
− 1

α
+β θ

)2

×
(

1+θ+β θ

(
ψ (β θ )−ψ

(
− 2

α
+β θ

)))(
1+θ+β θ

(
ψ (β θ )−ψ

(
− 1

α
+β θ

)))2

−3Γ
(

1
α

)4
Γ
(
− 1

α +β θ
)4(

1+θ+β θ
(
ψ (β θ )−ψ

(
− 1

α +β θ
)))4

α4(1+θ )4Γ (β θ )4
,
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where ψ is the Digamma function.

3.6 Shannon entropy measure

The entropy is the measurement of that change or the loss of information. It is used to calculate the average amount of
information resulted from a random experiment. For a continuous random variable X with PDF f (x), the Shannon entropy
is defined by

SH =−
∫ ∞

0
f (x) log f (x)dx .

For the BL distribution Shannon’s entropy is defined by

SH =−αβ θ2

1+θ

∫ ∞

0
xα−1(1+ xα)−1−β θ (1+β Log(1+ xα))×
(

Log

(
αβ θ 2

1+θ

)
+(α − 1)Log(x)− (1+β θ )Log(1+ xα)+Log(1+β Log(1+ xα))

)
dx

=−Log

(
αβ θ 2

1+θ

)
+

(α − 1)

α

(
−(1+θ )(0.577216+ψ (β θ ))+β θψ

′
(β θ )

)

− αβ θ 2

1+θ

∫ ∞

0

(
xα−1(1+ xα)−1−β θ (1+β Log(1+ xα))

)
Log(1+β Log(1+ xα))dx.

Here SH can be interpreted as the average level of uncertainty (information) in the possible outcomes of a random
variable that follows BL distribution. Some numerical values of the Entropy for the BL distribution for several arbitrary
parameter values are given in Table 1.

The results for some numerical values for Shannon’s entropy seem to indicate that the entropy increases with
increasing á,β θ .

Table 1: Entropy for several arbitrary parameter values

Parameters β = 0.5,θ = 0.5 α = 0.5,β = 2 α = 0.3,θ = 1

α ↑ ↑ Entropy θ ↑ ↑ Entropy β ↑ ↑ Entropy

0.1 −84.460 0.1 −8.476 0.5 −10.430

0.5 −7.878 0.5 −1.135 1.5 0.285

1.5 4.055 1.5 2.091 2.5 3.297

2.0 5.397 3.0 6.918 4.0 5.619

4.0 7.147 4.0 10.490 5.0 6.629

6.0 7.556 5.5 16.270 6.5 7.765

9.0 7.694 7.0 22.450 8.0 8.634

3.7 Order statistics and limiting distributions

The distribution of extreme values plays an important role in statistical applications. In this section the probability and
cumulative function of order statistics are introduced and the limiting distribution of minimum and the maximum arising
from the BL distribution can then be derived.

i.Probability and cumulative function of order statistics
Suppose X1,X2, . . . ,Xn is a random sample from the BL distribution. Let X1:n,X2:n, . . . ,Xn:n denote the corresponding
order statistics. The probability density function and the cumulative distribution function of the kth order statistic of
the BL distribution say Y = Xk:n are given by
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fy (y) =
n!

(k− 1)!(n− k)!
Fk−1(y)(1−F (y))n−k

f (y)

=
n!

(k− 1)!(n− k)!

(
1− (1+ yα)−β θ (1+θ +β θLog(1+ yα))

1+θ

)k−1

×

(
(1+ yα)−β θ (1+θ +β θLog [1+ yα ])

1+θ

)n−k(
y−1+α(1+ yα)−1−β θ αβ θ 2(1+β Log[1+ yα ])

1+θ

)

Moreover,

Fy (y) =
n

∑
m=k

( n

m

)
Fm(y)(1−F (y))n−m

=
n

∑
m=k

( n

m

)(
1− (1+ yα)−β θ (1+θ +β θLog(1+ yα))

1+θ

)m(
(1+ yα)−β θ (1+θ +β θLog [1+ yα ])

1+θ

)n−m

ii.Limiting distributions of extreme values
Let mn = X1:n = min(X1,X2, . . . ,Xn) and Mn = Xn:n = max(X1,X2, . . . ,Xn) be arising from the BL distribution. The
limiting distributions of X1:n and Xn:n can be obtained by the following theorem.

Theorem 3.Let mn and Mn be the minimum and the maximum of a random sample from the BL distribution

respectively. Then

1.

lim
n→∞

p

(
mn − an

bn

≤x

)
= 1−exp(−xα) ;x> 0 ,

2.

lim
n→∞

p

(
Mn− cn

dn

≤x

)
=exp

(
−x−αβ θ

)
;x> 0 ,

where an = 0 = F−1(0), bn = F−1
(

1
n

)
, cn = 0, dn =

1

F−1(1− 1
n )

.

Proof. 1.Using L’Hospital rule, we have

lim
ε→0+

F(F−1 (0)+ εx)

F(F−1 (0)+ ε)
= lim

ε→0+

F(εx)

F(ε)
= lim

ε→0+

x f (εx)

f (ε)
= xα

.

Therefore, by Theorem (8.3.6) of [16], the minimal domain of attraction of the BL distribution is the Weibull
distribution, and thus (1) is proved.

2.Using L’Hospital rule, we have

lim
t→∞

1−F(tx)

1−F(t)
= lim

t→∞

x f (tx)

f (t)
= x−αβ θ

,

therefore, by Theorem (1.6.2) and Corollary (1.6.3) in [17], the maximal domain of attraction of the BL is the
Fréchet distribution.

4 Methods of Estimation

The methods of Maximum Likelihood and Moments are explained here in this section as possible methods for estimating

the unknown parameters of the BL distribution. Moreover, the asymptotic distribution of Θ̂ΘΘ = (α̂ , β̂ , θ̂ ) are found using
the elements of the inverse Fisher information matrix.
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4.1 Maximum likelihood estimation

Let x1,x2, . . . .,xn be a random sample of size n from the BL distribution with PDF given by Equation (1). The log-
likelihood function L (α,β ,θ ) of the BL distribution is given by,

L (α,β ,θ ) = nLog(α)+ nLog(β )+ 2nLog(θ )− nLog(1+θ )+
n

∑
i=1

Log(1+β Log(1+ xα
i ))

+ (−1+α)
n

∑
i=1

Log(xi)− (1+β θ )
n

∑
i=1

Log(1+ xα
i )

(5)

The maximum likelihood estimators (MLEs), say α̂ , β̂ and θ̂ , are the simultaneous solutions of the equations:

∂

∂α
L(α,β ,θ ) =

n

α
+

n

∑
i=1

Log(xi)− (1+β θ )
n

∑
i=1

Log(xi)xα
i

1+ xα
i

+
n

∑
i=1

β Log(xi)xα
i

(1+β Log[1+ xα
i ])(1+ xα

i )
= 0 (6)

∂

∂β
L(α,β ,θ ) =

n

β
−θ

n

∑
i=1

Log(1+ xα
i )+

n

∑
i=1

Log(1+ xα
i )

1+β Log(1+ xα
i )

= 0 (7)

∂

∂θ
L(α,β ,θ ) =

2n

θ
− n

1+θ
−β

n

∑
i=1

Log(1+ xα
i ) = 0 (8)

We used this method - among others - in order to estimate the parameters in Section 7 by solving Equations (6, 7, 8)
numerically since we were unable to find an explicit form of the solution.

4.2 Fisher information matrix

For interval estimation of the parameter vector ΘΘΘ=(α,β ,θ )T
for the BL distribution, the expected Fisher information

matrix is I = [Ii j] , i, j = 1,2,3 as follows:

I11 = E

(
−∂ 2ln f (x)

∂α2

)

=

{
−((1+ xα)2(1+β Log[1+ xα ])2 + xαα2Log[x]2(1+ xαβ 2 +β (−1+θ )+β (2+β(−1+2θ))×

Log(1+ xα)+β 2(1+β θ )Log(1+ xα)2))

}{
(1+ xα)2α2(1+β Log(1+ xα))2

}−1

I22 = E

(
−∂ 2ln f (x)

∂β 2

)
=− 1

β 2
− Log(1+ xα)2

(1+β Log(1+ xα))2

I33 = E

(
−∂ 2ln f (x)

∂θ 2

)
=−2+ 4θ +θ 2

θ 2(1+θ )2

I12 = E

(
−∂ 2ln f (x)

∂α∂β

)
=−xα Log(x) (−1+θ + 2β θLog(1+ xα)+β 2θLog(1+ xα)2)

(1+ xα)(1+β Log(1+ xα))2

I23 = E

(
−∂ 2ln f (x)

∂β ∂θ

)
=−Log(1+ xα)

I13 = E

(
−∂ 2ln f (x)

∂α∂θ

)
=−xα β Log(x)

1+ xα
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Under regularity conditions, see[18] showed that as n → ∞,
√

n(Θ̂ΘΘ −ΘΘΘ) is asymptotically normal 3-variate with
(vector) mean zero and covariance matrix I−1.

Asymptotic variances and covariance of the elements of θ̂ are obtained by:

var (α̂) =
I22I33 − I2

23

n∆
, var

(
β̂
)
=

I11I33 − I2
13

n∆
, var

(
θ̂
)
=

I11I22 − I2
12

n∆

cov
(

α̂, β̂
)
=

I13I23 − I12I33

n∆
, cov

(
α̂ , θ̂

)
=

I12I23 − I13I22

n∆
, cov

(
β̂ , θ̂

)
=

I13I12 − I11I23

n∆
,

where ∆ = det(I).

4.3 Method of moments

Consider the random sample of size n drawn from the BL distribution with PDF given by Equation (1); the raw moments
and MME equations are

µ
′
1 =

1

1+θ

(
Γ
(
1+ 1

α

)
Γ
(
− 1

α +β θ
)(

1+θ +β θ
(
ψ (β θ )−ψ

(
− 1

α +β θ
)))

Γ (β θ )

)
,

µ
′
2 =

2

1+θ

(
Γ
(

2
α

)
Γ
(
− 2

α +β θ
)(

1+θ +β θ
(
ψ (β θ )−ψ

(
− 2

α +β θ
)))

αΓ (β θ )

)
,

µ
′
3 =

3

1+θ

(
Γ
(

3
α

)
Γ
(
− 3

α +β θ
)(

1+θ +β θ
(
ψ (β θ )−ψ

(
− 3

α +β θ
)))

αΓ (β θ )

)
.

5 Simulation Studies

For generating data from a distribution with cumulative distribution function F(x), the equation F (x)− u = 0 is used,
where u is an observation from the uniform distribution on (0,1). The simulation experiment was repeated 1000 times each
with sample sizes; n = 30,50,70,90,100 and ( α , β , θ ) = (1,0.5,1),(0.5,0.7,0.5),(1,0.8,0.5). The following measures
are computed.

Average bias and the mean square error (MSE) of γ̂ of the parameter α , β , θ :

1

N

N

∑
i=1

(γ̂ − γ),
1

N

N

∑
i=1

(γ̂ − γ)2

Table 2 presents the average bias and the MSE of the estimates. The values of the bias and the MSEs decrease while
the sample size increases.

6 Characterization of BL Distribution by Right Truncated Moments

Characterization of the BL distribution using the relation between the right truncated moments and reversed failure rate
function is obtained as follows

Theorem 4.A random variable X, has the BL distribution with parameters α,β ,θ > 0 if and only if

E
(
(1+ xα)1+β θ | X ≤ x

)
= r (x) .

−xα(β − 1)+ (1+ xα)β Log(1+ xα)

αxα−1(1+ xα)−1−β θ (1+β Log(1+ xα))
, for x > 0,α,β ,θ > 0

where r(x) is the BL reversed hazard function.
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Table 2: Bias and MSE for the parameters ααα , βββ , θθθ of BL Distribution

ααα βββ θθθ n α̂αα β̂ββ θ̂θθ MSE ααα MSE βββ MSE θθθ Bias ααα Bias βββ Bias θθθ
1 0.5 1 30

50

70

90

100

1.11326

1.04815

1.02298

1.00897

1.00139

1.50686

1.20822

1.19017

1.11795

1.05610

2.29702

2.19220

2.01609

1.81763

1.77458

0.34026

0.09722

0.06142

0.04607

0.04193

5.93109

4.00385

3.41799

2.59672

2.59336

11.3877

11.2662

07.5323

07.0129

05.9473

0.11326

0.04815

0.02298

0.00897

0.00138

1.00686

0.70822

0.69017

0.61794

0.55610

1.29702

1.19220

1.01609

0.81763

0.77458

0.5 0.7 0.5 30

50

70

90

100

0.79044

0.60218

0.52395

0.51212

0.51132

1.92450

1.85390

1.66835

1.63587

1.55122

1.00417

0.92103

0.87280

0.70860

0.67385

1.98059

0.55879

0.03196

0.02991

0.02393

7.95570

6.17626

5.20743

4.18871

3.84555

04.2203

03.5082

02.6845

01.2892

00.7639

0.21933

0.10218

0.02395

0.01212

0.01132

1.30203

1.15390

0.96834

0.93586

0.85122

0.50417

0.42103

0.37280

0.20860

0.17385

1 0.8 0.5 30

50

70

90

100

1.38402

1.14576

1.05304

1.04094

1.01160

2.05993

2.01801

1.79985

1.71287

1.67523

0.94467

0.80524

0.76328

0.67853

0.62959

3.21868

2.43928

0.17349

0.09702

0.07133

7.09281

6.79011

6.04904

4.68233

4.18001

03.1536

01.7861

01.4330

00.9538

00.7214

0.38401

0.14575

0.05304

0.04093

0.01160

1.25993

1.21801

1.13735

0.99635

0.87746

0.44467

0.30524

0.26328

0.19187

0.12959

Proof.Suppose X has the BL distribution with parameter α,β ,θ > 0.

Then,

E ( f (x) |X ≤ x) =
1

G(x)

∫ x

0
f (y)g(y)dy,

where g(x) is the PDF and G(x) is the CDF for the BL distribution defined in Equation (1) and (2).

Let f (x) = (1+ xα)1+β θ
, and r(x) is the BL reversed hazard function, then

E

(
(1+ xα)1+β θ |X ≤ x

)
= r (x)

1

g(x)

∫ x

0
(1+ yα)1+β θ

g(y)dy,

∫ x

0
(1+ yα)1+β θ

g(y)dy =
−xα(−1+β )+ (1+ xα)β Log(1+ xα)

α

E
(
(1+ xα)1+β θ |X ≤ x

)
= r (x)

−xα(−1+β )+ (1+ xα)β Log(1+ xα)

αxα−1(1+ xα)−1−β θ(1+β Log(1+ xα))

Then,

w(x) =
−xα(−1+β )+ (1+ xα)β Log(1+ xα)

αxα−1(1+ xα)−1−β θ (1+β Log(1+ xα))

f (x)

w(x)
=

α(1+β Log(1+ xα))

x1−α(−xα(−1+β )+ (1+ xα)β Log(1+ xα))

logw(x) =log(−xα (−1+β )+ (1+ xα)β Log(1+ xα)) − logα

− (α − 1) logx − (−1−β θ )log(1+ xα) − log(1+β Log(1+ xα))

Now, ∀x > 0,

∫
ẃ(x)− f (x)

w(x)
dx = (1−α)Log(x)+ (1+β θ )Log(1+ xα)−Log[1+β Log(1+ xα)]

g(x) = Kexp

[
−
∫

ẃ(x)− f (x)

w(x)
dx

]
= K x−1+α(1+ xα)−1−β θ (1+β Log(1+ xα)])

where K > 0 is the normalizing constant, K = αβ θ 2

1+θ .
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7 Application

A 34 storm events were observed from a water shed. The data are given by [19] which describes the event runoff of the
hydrological characteristics of the study storms. The Bl distribution was fitted to these data and compared via goodness
of fit criteria among some well-known distributions which fitted to these data. The compared distributions are; Gumbel
distribution (G), Gamma Weibull distribution (GW), Modified Weibull distribution (MW), Beta Gamma distribution (BG),
Beta Exponentiated Weibull (BEW) distribution see [20].

The data are:
0.9, 0.6, 16.8, 59.3, 2.0, 78.2, 30.7, 146.8, 1.8, 3.4, 1.1, 0.8, 2.5, 6.1, 17.0, 5.1, 216.2, 8.1, 1.6, 2.0, 2.0, 0.8, 0.8, 2.9, 7.3,
13.3, 181.7, 20.5, 24.1, 33.5, 89.1, 7.2, 6.0, 75.9.

First, the model selection is carried out using the AIC (Akaike Information Criterion), the BIC (Bayesian Information
Criterion), the CAIC (Consistent Akaike Information Criteria) and the HQIC (Hannan Quinn Information Criterion).

AIC =−2L
(

Θ̂ΘΘ
)
+ 2q,

BIC =−2L

(
Θ̂ΘΘ
)
+ qlog(n) ,

HQIC =−2L
(

Θ̂ΘΘ
)
+ 2qlog(log(n) ) ,

CAIC =−2L
(

Θ̂ΘΘ
)
+

2qn

(n− q− 1)

(9)

where L

(
Θ̂ΘΘ
)

denotes the log-likelihood function evaluated at the maximum likelihood estimates, q is the number of

parameters, and n is the sample size. Here we let ΘΘΘ denotes the parameters, i.e., ΘΘΘ = (α, β , θ ).
The global maximum likelihood estimates of BL distribution were obtained as

Θ̂ΘΘ = (α̂ = 2.68276, β̂ = 0.288275, θ̂ = 0.912788), using the method of Simulated Annealing which is a probabilistic
method for approximating the global optimum of a given function which is in this case the Likelihood function. There
are similar methods such as Differential Evolution which we also used and got the same solution. We also used Newton’s
method to solve Equations (6), (7) and (8) numerically, and got the same estimated parameter values. It is known that
Newton’s method uses initial values to search for a local solution near them that is why we only used it as a confirmation
for the global solution obtained using Simulated Annealing method. These methods were applied using the
computational program “Mathematica 12” which allows choosing from several numerical methods to maximize an
objective function or to solve a nonlinear system of equations. The model with minimum AIC (or BIC, CAIC and HQIC)
value is chosen as the best model to fit the data. The results are summarized in Table 3.

From Table 3 , we conclude that the BL distribution is best fitted comparable with the mentioned distributions.
Secondly, for an ordered random sample X1,X2, . . . ,Xn from BL distribution (α, β , θ ) , the Kolmogorov–Smirnov

Dn, Cramérvon Mises W 2
n and Watson U2

n tests statistics are given as follows

Dn = max
i

(
i

n
−G

(
xi, α̂ , β̂ , θ̂

)
,G

(
xi, α̂, β̂ , θ̂

)
− i− 1

n

)

W 2
n =

1

12n
+

n

∑
i=1

(
G
(

xi, α̂ , β̂ , θ̂
)
− 2i− 1

2n

)2

U2
n =W 2

n −
n

∑
i=1

(
G(xi, α̂, β̂ , θ̂ )

n
− 1

2

)2

Comparison study using the goodness of fit criteria are shown in Table 4 where we use the Kolmogorov–Smirnov test
to test the null hypothesis that the data is drawn from the corresponding distribution.
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Table 3: MLEs and the measures AIC, BIC, HQIC and CAIC

Distribution Estimates -L AIC BIC AICC HQIC CAIC

BL (α̂ , β̂ , θ̂ ) 02.68276

0.288275

0.912787

137.323 280.450 285.224 281.445 282.207 281.445

G (µ̂ ,σ̂ ) 12.19425

25.18660

169.561 343.122 346.175 343.509 344.163 343.509

GW (ξ̂ , k̂, λ̂ ) 1.132274

0.238854

0.007631

138.472 282.944 287.523 283.744 284.506 283.744

MW (λ̂ , β̂ , k̂) 1.2(10−9)

0.173121

0.591503

140.339 286.678 291.257 287.478 288.240 287.478

BG (α̂ , β̂ , ρ̂ , λ̂ ) 1.314604

3.828817

0.145020

99.99009

141.560 291.120 297.225 292.499 293.202 292.499

BEW (α̂ , λ̂ , â, b̂, ĉ) 22.69658

0.099964

0.031300

0.094967

1.099605

137.777 285.554 293.186 287.697 288.157 287.697

Table 4: Goodness of fit tests

Distribution DDDnnn WWW 222
nnn UUU222

nnn p-value of K-S

BL (α̂, β̂ , θ̂ ) 0.103821 0.071774 0.066923 0.857089

G (µ̂ , σ̂ ) 0.279948 0.715943 0.598105 0.009695

GW (ξ̂ , k̂, λ̂ ) 0.110768 0.097688 0.088761 0.798360

MW (λ̂ , β̂ , k̂) 0.138887 0.135028 0.121132 0.528211

BG (α̂ , β̂ , ρ̂ , λ̂ ) 0.171925 0.214189 0.169892 0.267338

BEW (α̂ , λ̂ , â, b̂, ĉ) 0.106974 0.053821 0.052665 0.831350

Table 4 indicates that the test statistics Dn, W 2
n and U2

n have the smallest values for the data set under the BL distribution
model regarding the other models except Cramérvon Mises W 2

n and Watson U2
n for Beta exponentiated Weibull. The BL

distribution is fitted to data where Kolmogorov-Smirnov is 0.1038 with its p-value of K-S statistics is 0.857 so we accept
the null hypothesis. We conclude from Table 4 that the proposed model offers an alternative to the compared distributions.

The quantile-quantile or Q-Q plot is used to check the validity of the distributional assumption for the data.

Figure 3 shows that the data seems to follow the BL distribution reasonably well, except some points on extreme.

8 Conclusion

In this paper, a composition structure is performed to introduce the Burr Lindley (BL) distribution. The BL distribution
can exhibit a much more flexible model for lifetime data, presenting decreasing and inverted bathtub hazard rate function.
Most statistical and reliability properties are derived and studied.

Simulation schemes are formulated and provide less bias and mean square error as sample size increases for MLEs
of BL parameters. Point estimation via MME and MLE methods are done moreover, the Fisher information matrix for
interval estimation is studied.

A real data application in hydrology is modeled to the BL distribution and compared with other well-known
distributions, to illustrate its performance. Based on goodness of fit criteria, the BL distribution has a superior fitting
performance among the compared distributions.
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Fig. 3: The Q-Q plot for hydrological data
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