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Abstract: The concept of mean inactivity time plays an important role in reliability and life testing. In this investigation, based on the 
comparison of mean inactivity times of a certain function of two lifetime random variables, we introduce and study a new stochastic 
order. This new order lies between the reversed hazard rate and the mean inactivity time orders. Several characterizations and 
preservation properties of the new order under reliability operations of monotone transformation, mixture, and shock models are 
discussed. In addition, a new class of life distributions called strong increasing mean inactivity time is proposed, and some of its 
reliability properties are investigated. Finally, to illustrate the concepts, some applications in the context of reliability theory are included. 

Keywords: Discrete mean inactivity time order, discrete reversed hazard rate order, preservation, mixture, shock models, 
strong increasing mean inactivity time class.
 

1 Introduction and Motivation 

The mean inactivity time (MIT) function, also known as the mean past lifetime and the mean waiting time functions, is a 
well-known reliability measure which has applications in many disciplines such as reliability theory, survival analysis, and 
actuarial studies. Let be a lifetime random variable with distribution function	𝐹(𝑥). The MIT function of is defined by 

𝑚'(𝑡) =

⎩
⎨

⎧-
𝐹(𝑥)
𝐹(𝑡) 													𝑡 = 1,2, …

2

345 	
0,																𝑡 = 0,−1,−2,…

	

An interpretation of the MIT is as follows. Consider a situation in which we have realized a device already has failed at 
time,	t, say. The MIT is a useful measure to predict the actual time at which the failure of the device occurs. Apart from 
applications in reliability engineering, reliability concepts are also heavily used in biomedicine. In cases of diseases that 
can recur, efficiency of a treatment is determined by analyzing the remission period, i.e., disease free survival time. Often 
the true remission period is unknown due to an inability to continuously monitor patients because of the high cost and effort 
involved. In such circumstances, the true remission period can be estimated using an MIT function. Furthermore, in 
actuarial science, these concepts are used to calculate optimal premiums for life insurance policies. 
The MIT function was studied by Kayid and Ahmad [1], and Ahmad et al. [2] to establish several properties of stochastic 
comparisons based on the MIT function under the reliability operations of convolution and mixture. Badia and Berrade [3] 
gave an insight into properties of the MIT in mixtures of distributions. What is more important is the inclusion of some 
interesting characterizations based on the reliability properties of the MIT function. In Finkelstein [4], the MIT function has 
been used for describing different maintenance policies in reliability. Asadi [5] obtained the MIT of the components of a 
parallel system. Several properties of the MIT for discrete random variables are studied in Goliforushani and Asadi [6]. The 
MIT has also been applied to risk theory and econometrics (cf. Eeckhoudt and Gollier [7], Kijima and Ohnishi [8]). Kundu 
et al. [9] considered the MIT function for characterizations of quite a few distributions, and Kundu and Nanda [10] 
discussed its higher-order moments. Ortega [11] obtained some characterizations for comparison of lifetime random 
variables concerning the MIT function. Recently, Izadkhah and Kayid [12] used the harmonic mean average of the MIT 
function to propose a new stochastic order. It is thus seen that the results which discuss the behavior of the MIT function 
can be very useful. Therefore, it is not surprising that recently several researchers have devoted their efforts to obtain such 
results. 
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The comparison of the MIT functions of two lifetime random variables provides a stochastic order between those random 
variables which has been defined and studied in the literature. Let Y and X have distribution functions F and G 
respectively. The lifetime random variable X is said to be smaller than Y in the MIT order (denoted as X ≤:;<=> Y). 

 

∑ 𝐹(𝑢)2
B45

∑ 𝐺(𝑢)2
B45

		is	non − increasing	in	𝑡 ∈ ℝO. 
 
 

The reversed hazard rate (RHR) function of X is given by rR(t) = f(t)/F(t) where f is the density function of X which is 
closely related to the MIT function. The random variable X is said to be smaller than in the RHR order (denoted as 
X ≤VWV Y)	if 

𝐺(𝑡)
𝐹(𝑡) 	is	non − decreasing	in	𝑡 > 0. 

Applications, properties, and interpretations of the RHR order can be found in Shaked and Shanthikumar [13]. Recently, Li 
and Xu [14] proved that, for any strictly increasing, concave transformation with ϕ(0) 	= 	0,  

 
𝑋 ≤\;]^_ 𝑌Þ𝜙(𝑋) ≤\;b]cd 𝜙(𝑌) 

Because the inverse of a strictly increasing convex function is strictly increasing and concave, one can also develop that, if 
is strictly increasing and convex such that	ϕ(0) 	= 	0 then  

 
𝜙(𝑋) ≤\;b]cd 𝜙(𝑌)Þ	𝑋 ≤\;]^_ 𝑌 

One important choice for a strictly increasing convex function is ϕ(x) = xf,	which proposes a new stochastic order called 
strong mean inactivity time (SMIT) order. 

 
Definition 1:  
The lifetime random variable X is said to be smaller than Y in the SMIT order (denoted as	X ≤:;g<=> Y  ) if 

∑ 𝑥𝐹h(𝑥)i
342

𝐹h(𝑡)
≥
∑ 𝑥�̅�(𝑥)i
342

�̅�(𝑡)
, for	all	𝑡 ∈ ℝO. 

or equivalently, X ≤:;g<=> Y iff 
∑ 𝑥𝐹h(𝑥)i
342

∑ 𝑥�̅�(𝑥)i
342

is	non − increasing	in𝑡 ∈ ℝO. 
 

As demonstrated in Theorem 1 of Section 2 below, the SMIT order lies in the framework of the RHR and the MIT orders. 
As a result, the study of the SMIT order is meaningful because it throws an important light on the understanding of the 
properties of the MIT and the RHR orders, and of the relationships among these two orders and other related stochastic 
orders. Furthermore, the SMIT order enjoys several reliability properties which provide some applications in reliability and 
survival analysis. On the other hand, statisticians and reliability analysts have shown a growing interest in modeling 
survival data using classifications of life distributions by means of various stochastic orders. 
These categories are useful for modeling situations, maintenance, inventory theory, and biometry. Consider the situation 
wherein X denotes the risk that the direct insurer faces, and ϕ the corresponding reinsurance contract. One important 
reinsurance agreement is quota-share treaty defined as ϕ(x) = 	αX, for all α ∈ (0, 1). The stochastic comparison between 
the quata-share treaty and the risk in the MIT order is equivalent to say that	mR(t)/t is non-decreasing in t > 0. It is well-
known that	mR(t)/t is non-decreasing in t implies that	mR(t) is also non-decreasing int > 0. As a result, a new class of life 
distributionscalled strong increasing mean inactivity time (SIMIT) is proposed as follows. 

 

Definition 2:  
The lifetime random variable X is said to be in the SIMIT class if 

	𝑚'(𝑡)
𝑡 	is	non − decreasing	in	𝑡 > 0.	 

 

The purpose of this paper is to achieve two goals. The first goal is to provide some characterizations, preservation results, 
and applications for the SMIT order. The second goal is to study some reliability properties of the SIMIT class, and to 
provide some applications of it in the context of reliability. 

 

The paper is organized as follows. In Section 2, some characterizations and implications regarding the SMIT order are 
provided. Preservation properties under some reliability operations such as monotonic transformation and mixture are 
discussed in Section 3. In that section, we provide some examples to demonstrate the usefulness of the obtained results in 
recognizing the SMIT ordered random variables. In Section 4, some reliability properties of the SIMIT class including 
some characterization and preservation properties under Poisson shock models are discussed. To illustrate the concepts, 
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some applications in the context of reliability theory are included in Section 5. Finally, in Section 6, we give a brief 
conclusion, and some remarks of the current and future of this research. 
In the rest of the paper, we have two important assumptions. 

• The non-negative random variables X and Y will have F = 1 − F and G = 1 − G , respectively as their respective  
survival functions, and as their corresponding densities. 

• All integrals, expectations, and derivatives are implicitly assumed to exist wherever they are given. 
Proofs are given in the Appendix. 

2  Characterizations and Implications 
The objective of this section is to concentrate on the relations between SMIT order with other well-known stochastic 
orders. A characterization result based on the excess lifetime in a renewal process is also discussed. For an exhaustive 
monograph on the definitions and properties of stochastic orders, we refer to Müller and Stoyan [15], and Shaked and 
Shanthikumar [13]. For ease of reference, before stating our main results, we present some definitions and basic properties 
which will be used in the sequel. 

 

Definition 3:  
The lifetime random variable is said to be decreasing reversed hazard rate (DRHR) if 

𝑟'(𝑡)is	non − increasing	in	𝑡 > 0 
 

Definition 4:  
A non-negative function β(x, y) is said to be totally positive of order 2 (TP2) in (x, y) ∈ χ × γ, if 
 

v𝛽
(𝑥x, 𝑦x)							𝛽(𝑥x, 𝑦f)

𝛽(𝑥f, 𝑦x)							𝛽(𝑥f, 𝑦f)
v ≥ 0, 

 

For allxx ≤ xf ∈ χ, and yx ≤ yf ∈ γ, in which χ and γ are two real subsets of ℝ. 
For more details and properties about the totally positive functions, we refer to Karlin [16]. 
 

Definition 5:  
A probability vector α = (αx,… , αz) with α{ > 0 for i = 1,2, … , n is said to be smaller than another probability vector β =
(βx, … , βz) in the sense of discrete likelihood ratio order (denoted as α ≤:;:|V β) if 

𝛽}
𝛼}
≤
𝛽�
𝛼�
	𝑓𝑜𝑟	𝑎𝑙𝑙	1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛.																																																																																				(1) 

The next theorem shows that the SMIT order lies between RHR and MIT orders. 
 

Theorem 1:  
Let X and Y be two non-negative random variables. Then 

X ≤:;VWV Y ⇒ X ≤:;g<=> Y, and 
X ≤:;g<=> Y ⇒ X ≤:;<=> Y 

In the context of theorem 1 (i), the following counter example shows that X ≤:;g<=> Y does not imply	X ≤:;VWV Y. 
 
Counter example 1: Let X, and Y have distribution functions	F, and	G, respectively, which are given by 

𝐹(𝑥) = �
𝑥
2 ,				0 ≤ 𝑥 ≤ 2
1,													𝑥 > 2

 

and 

𝐺(𝑥) =

⎩
⎪
⎨

⎪
⎧𝑥

f

2 ,												0 ≤ 𝑥 ≤ 1

𝑥f + 2
6 ,				1 < 𝑥 ≤ 2

1,																						𝑥 > 2.

 

Direct calculations give 

∑ 𝑥!
"#$ 𝐺(𝑥)

∑ 𝑥!
"#$ 𝐹(𝑥)

=

⎩
⎪
⎨

⎪
⎧
3𝑡
4 ,																						0 ≤ 𝑡 ≤ 1
𝑡
4 +

1
𝑡 −

1
2𝑡% ,				1 < 𝑥 ≤ 2

6𝑡& − 9
6𝑡& − 8 .																						𝑡 > 2.
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Which is non-decreasing in	t, and hence, X ≤:;g<=> Y. In parallel, Nada et al. [17] showed in their counterexample 1 that 
X ≤:;VWV Y does not hold in this case. In general, the MIT order does not imply the SMIT order. However, the next 
theorem presents a sufficient condition under which X ≤:;<=> Y impliesX ≤:;g<=> Y. 
Theorem 2: 
 Let for all t ≥ 0 

∑ ∑ 𝐹(𝑢)3
B45

2
345

𝐹(𝑡) ≤
∑ ∑ 𝐺(𝑢)3

B45
2
345

𝐺(𝑡)  

Then X ≤:;<=> Y ⇒ X ≤:;g<=> Y. 
 
In many reliability problems, it is interesting to study X� = [X − Y|X > Y], the residual life of X with a random age. 

The residual life at a random time (RLRT) represents the actual working time of the standby unit if X is regarded 
as the total random life of a warm standby unit with its age. For more details about RLRT, see Stoyan [18]. Yue and Cao 
[19] gave some stochastic properties of X� , and applied them to queuing theory. Also, Li and Zuo [20], and Misra et al. 
[21] obtained some new stochastic orders and aging properties regarding X�.Recently, Cai and Zheng [22] studied the 
RLRT in the context of generalized aging classes. Suppose that X and Y are s-independent. Then, the distribution function 
of X� , for any x ≥ 0 is given by 

𝑃(𝑋� ≤ 𝑥) =
∑ [𝐹(𝑦 + 𝑥) − 𝐹(𝑦)]i
�45 𝑔(𝑦)

∑ 𝐺(𝑦)i
�45 𝐹(𝑦) 																																																								(2) 

 
Theorem 3: 
 X� ≤:;g<=> X For any Y thas is s-independent of X iff X� ≤:;g<=> X for all	t ≥ 0. 
 

Let {Xz, n = 1,2, … } be a sequence of mutually s-independent and identically distributed (i.i.d.) non-negative 
random variables with common distribution function	F. For	n ≥ 1, denote Sz = ∑ X{z

{4x  as the time of the n-Th arrival, with 
S5 = 0, let N(t) = Sup{n ∶ Sz ≤ t} represent the number of arrivals during the interval[0, t]. Then, N = {N(t), t ≥ 0} is a 
renewal process with underlying distribution F (see Ross [23]). Let γ(t) be the excess lifetime at time	t ≥ 0, that is, γ(t) =
S�(�)Ox − t. In this context, we denote the renewal function by M(t) = E[N(t)] which satisfies the well-known fundamental 
renewal equation  

𝑀(𝑡) = 𝐹(𝑡)-𝐹(𝑡 − 𝑦)𝑚(𝑦)
2

�45

, 𝑡 ≥ 0. 

According to Barlow and Proschan [24], it holds that, for all t ≥ 0 and	x ≥ 0. 

𝑃(𝛾(𝑡) ≤ 𝑥) = 𝐹(𝑡 + 𝑥) +-𝐹(𝑡 + 𝑥 − 𝑢)𝑚(𝑢) −𝑀(𝑡)
2

B45

.																														(3) 

In the literature, several results have been given to characterize the stochastic orders by the excess lifetime in a renewal 
process. For more details on definitions and properties, readers are referred to Barlow and Proschan [24]. Chen [25] 
investigated the relationship between the behavior of the renewal function M(t) = E(N(t)) and the aging property of the 
underlying distribution. Ahmad et al. [26] established some stochastic comparisons of the excess lifetime at different times 
of a renewal process when the inter-arrival times belong to a nonparametric aging class. Later, Belzunce et al. [27] 
established comparisons of expected failure times of an age (block) replacement policy to a renewal process with no 
planned replacements when the lifetime of the unit belongs to the new better than used in expectation class. Next, we will 
investigate the behavior of the excess lifetime of a renewal process with SMIT inter-arrivals. 

 
Theorem 4:  
 If X� ≤:;g<=> X for all	t = 0,1, …, then 

γ(t) ≤:;g<=> γ(0)    for all t = 0,1, … 

3 Preservation Properties  
In this section, we develop some preservation properties of the SMIT ordering under some reliability operations such as 
monotone transformation and mixture. Some examples for these results are mentioned that can be useful in recognizing 
situations when the random variables are SMIT ordered. The next result shows that the SMIT order is preserved under 
monotone concave transformation. 
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Theorem 5:  
Assume that ϕ	is strictly increasing, and concave ϕ(0) = 0. Then 
 

X ≤:;g<=> Y ⇒ ϕ(X) ≤:;g<=> ϕ(Y) 
 

In general, the SMIT order is not preserved under mixture. However, the following theorem shows that this order may be 
preserved under mixture, when appropriate assumptions are satisfied. 
Theorem 6:  
Let	X, Y, and Θ be random variables such that [X|Θ = θ] ≤:;g<=> [Y|Θ = θ¥] for all θ, and θ¥ in the support of Θ. Then 

𝑋 ≤\;¦]^_ 𝑌. 
Let 𝑋}, 𝑖 = 1, . . . , 𝑛 be a collection of 𝑠-independent random variables. Suppose that 𝐹} is the distribution function of 𝑋}.  
Let 𝛼 = (𝛼x,… , 𝛼¨), and 𝛽 = (𝛽x,… , 𝛽¨) be two probability vectors; and let 𝑋, and 𝑌 be two random variables having the 
respective distribution functions 𝐹, and 𝐺 defined by 

𝐹(𝑥) =-𝛼}𝐹}(𝑥)
¨

}4x

, 𝑎𝑛𝑑	𝐺(𝑥) =-𝛽}𝐹}(𝑥)
¨

}4x

.																																																							(4) 

The next result gives conditions under which 𝑋 and 𝑌 are comparable with respect to the SMIT order. 
 
Theorem 7:  
Let Xx,… , Xz be a collection of s-independent random variables with corresponding distribution functions Fx, … , Fz, such 
that: 

Xx ≤:;g<=> Xf ≤:;g<=> … ≤:;g<=> Xz, 
and let α = (αx,… , αz), and β = (βx, … , βz) be such that α ≤:;:|V β. Let	X, and Y have distribution functions	F, and G 
defined in (4). Then 	X ≤:;g<=> Y. 
To demonstrate the usefulness of theorem 7 in recognizing SMIT ordered random variables, we consider the following 
examples. 
 

Example 1: 
 

  Suppose that X{, i = 1,… . , n are s-independent exponential random variables with means⋋{, i = 1,… . , n. Let X 
and Y be α and β mixtures of	X{. An application of theorem 7 immediately yields X ≤:;g<=> Y for every two probability 
vector α and β such that α ≤:;:|V β provided that ⋋x≤ ⋯ ≤⋋z. 
 

Example 2: 
 Let	X⋋, and X denote the convolution of n exponential distributions with parameters ⋋x,… ,⋋z, and µx, … , µz, 
respectively. Without loss of generality, assume that ⋋x≤ ⋯ ≤⋋z, and µx ≤ ⋯ ≤ µz. For 0 ≤ q ≤ p ≤ 1 and p + q = 1, 
according to theorem 7, we have 

pX⋋ + qX ≤:;g<=> qX⋋ + pX, 
Whenever ⋋{≤ µ{ for	i = 1,2, … , n. 

4 The SIMIT Class of Life Distributions 
This section examines some properties and applications of the SIMIT class of life distributions. The next result provides a 
sufficient condition for a probability distribution to have the SIMIT property. 

 

Theorem 8:  
Let X be a lifetime random variable with the RHR function rR. If β(x) = xrR(x) is non-increasing in	x > 0.  
Then	X is D-SIMIT. 
 

To demonstrate the usefulness of theorem 8 in recognizing parametric D-SIMIT distributions, we consider the following 
examples. 
 

Example 3:  
let X be an exponential random variable with pdf f(x) =⋋ exp(− ⋋ x), for x > 0, and ⋋> 0. The D-RHR function of X is 
rR(x) =⋋ [exp(⋋ x) − 1];x. One can easily check that xrR(x) is non-increasing in	x, and hence, according to theorem 8, X 
is D-SIMIT. 
 
 



662                                                                                   K. Ashour et al.: Discrete Mean Inactivity … 

 

 
 
© 2022 NSP 
Natural Sciences Publishing Cor. 
 

Example 4:  
let X have a power distribution with distribution function	F(x) = (x b⁄ )², for 0 ≤ x ≤ b. The D-RHR function of X 

is rR(x) = a x⁄ , and xrR(x) = a is non-increasing in x. According to theorem 8, X is D-SIMIT. 
 

Example 5:  
Let X have a reciprocal Weibull distribution with distribution function F(x) = exp[−(1 αx⁄ )⋋], x > 0, and	σ,⋋>

0. The D-RHR function is rR(x) =⋋ σ;⋋x;(xO⋋), and xrR(x) =⋋ σ;⋋x;⋋ is non-increasing in x. Hence, X is D-SIMIT. 
 

The following theorem presents a characterization property of the D-SIMIT class. 
Theorem 9:  
A lifetime random variable X is D-SIMIT iff ZX ≤:;<=> X, for each random variable Z with Sµ = [0,1], which is s-
independent of X. 
 
Theorem 10: 
 Let ϕ be non-negative function on [0,∞), strictly increasing, log-convex, and differentiable. Then 
 

X	is	D − DRHR ⇒ ϕ(X)	is	D − SIMIT. 
 
Finally, we discuss a sufficient condition for the life distribution of a device subjected to shocks occurring randomly 
according to Poisson process to belong to the SIMIT class. Suppose that the system is assumed to have an ability to with 
stand a random number of these shocks, and it is commonly assumed that the number of shocks and the inter-arrival times 
of shocks are s-independent. Let N denote the number of shocks survived by the system, and let	X¼ denote the random inter-
arrival time between the (j-1) and j-th shocks. Then the lifetime of the system is given by (t) . Therefore, shock models are 
particular cases of random sums. In particular, if the inter-arrivals are assumed to be s-independent and exponentially 
distributed (with common parameter), then the distribution function of T can be written as 
 

𝐻(𝑡) = -
𝑒;⋋2(⋋ 𝑡)¿

𝑘!

i

¿45

𝑃¿.				𝑡 ≥ 0.																(5) 

Where  𝑃¿ = 𝑃[𝑁 ≤ 𝑘] for all 𝑘 ∈ ℕ(𝑃h5 = 1) (cf. Pellerey [28]). 
 

 

Definition 6:  
The discrete probability distribution PÆ is said to be discrete strong increasing in mean inactivity time (D-SIMIT) if 

-𝑃� 𝑘𝑃¿;x⁄
¿;x

�45

, 𝑖𝑠	𝑛𝑜𝑛 − 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔	𝑖𝑛	𝑘 ∈ ℕ. 

Theorem 11:  
If PÆ, k ∈ ℕ is D-SIMIT, then T with distribution function H as given in (5) is SIMIT 
 

5 Reliability Applications 
In this section, we discuss some relevant applications in reliability theory involving the SMIT order, and the SIMIT class of 
life distributions. Suppose that Xx, Xf, … , Xz are i.i.d. life time random variables from SIMIT class, and that Yx, Yf, … , Yz 
are also i.i.d. life time random variables from SIMIT class. Denote by 

Tx = max{Xx, Xf, … , Xz} 
and 

𝑇f = 𝑚𝑎𝑥{𝑌x, 𝑌f, … , 𝑌 } 
The lifetimes of the two associated parallel systems. In the following result, we show that if the life times of two parallel 
systems with i.i.d. components are SMIT ordered, then their components are also SMIT ordered. 

 

Theorem 12: 
 If 	Tx ≤:;g<=> Tf, then X{ ≤:;g<=> Y{, for all i = 1,2, … , n. 
 
Let Xx, Xf, … , Xz be a sequence of i.i.d. random variables, and let N be a positive integer-valued random variable, which is 
s-independent of theX{. Denote by 

X�:� = max{Xx, Xf, … , X�} 
the maximum extreme order statistic.  
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This random variable arises naturally in reliability theory as the lifetime of a parallel system with the random number of 
identical components with life times Xx, Xf, … , X� . In life testing, if a random censoring is adopted, then the completely 
observed data constitute a sample of random size N, say Xx, Xf, … , X�, where	N > 0 is a random variable of integer values. 
In actuarial science, the claims received by an insurer in a certain time interval should also be a sample of random size, and 
X�:�	denotes the largest claim amount of the period. Let X�Ë:�Ëdenote the maximum order statistic among 
Xx, Xf, …… , X�Ëwhere N{ is a positive integer-valued random variable which is s-independent from the sequence of 
Xx, Xf, … for each. Below we discuss the SMIT order between two such extreme order statistics. To state and prove 
Theorem 13, we need to recall the definition of the hazard rate (HR) order (Ahmad and Kayid [29], and Kayid et al. [30]). 
The random variable X is said to be smaller than Y in the hazard rate order (denoted as X ≤:;WV Y ) if  

 

𝐺(𝑥)
𝐹(𝑥)

≥
𝑔(𝑥)
𝑓(𝑥) for	all	𝑥 > 0 

 

Theorem 13:  
Let Nx ≤:;WV Nf, then X�Ì:�Ì ≤:;g<=> X�Í:�Í. 
 

Consider two devices with random life times Tx, and Tf subject to Poisson shocks occurring randomly with respect to 
random numbers Nx, and Nf, respectively. Denote PÆ

[{] = P(N{ ≤ k), for all	k ∈ ℕ, and for each i = 1,2. It is well-known 
that, if T{ has the distribution functionH{, then (cf. Pellerey [28]). 

𝐻}(𝑡) =-
𝑒;⋋2(⋋ 𝑡)¿

𝑘!

i

¿45

𝑃¿
[}].				𝑡 ≥ 0.																																											(6) 

The following result presents another application in reliability theory. 
 

∑ 𝑘𝑃¿;x
[f]�;x

¿4x

∑ 𝑘𝑃¿;x
[x]�;x

¿4x

, is	non − decreasing	in	𝑗 ∈ ℕ. 
 

Then 
𝑇x ≤\;¦]^_ 𝑇f 

 

In the next example, we discuss the reversed preservation property of the SIMIT class under the formation of the parallel 
systems. 
 

Example 6: 
Let Xx, Xf, …… , Xz be i.i.d. random lifetimes such that T = max{Xx, Xf, …… , Xz} belongs to the SIMIT class. 

Then, we have	aT ≤:;<=> T, for all	a ∈ (0,1]. This result means that, for all	a ∈ (0,1]. 
max{aXx, aXf, …… , aXz} ≤:;<=> max{Xx, Xf, …… , Xz}.							(7) 

 
In view of theorem 3.2 of Li and Xu [14], and from (7), we deduce that aX{ ≤:;g<=> X{, i = 1,2, …… , n for all	a ∈ (0,1]. 
That is X{, i = 1,2, …… , n is SIMIT. 
As an application of theorem 9 in accelerated life models, we consider the following example. 
 
Example 7: 

 Consider n units (not necessarily s-independent) with lifetimesT{, i = 1,2, …… , n. Suppose that the units are 
working in a common operating environment, which is represented by a random vector Θ = (Θx, Θf, … , Θz), s-independent 
of Tx, Tf, … , Tz, and has an effect on the units of the form 

𝑋} =
𝑇}
Θ}
, 𝑖 = 1,2, … , 𝑛.																																																																			(8) 

If Θ has support on (1,∞)z, then the components are working in a harsh environment; and, if they have support on(0,1)z, 
then the components are working in a gentler environment (see Ma [31]). In a harsh environment, let T¼ be SIMIT for 
some	j = 1,2, …… , n. Then, theorem 9 tells that, for each Z with support on [0,1], which is s-independent of T¼, we 
have	ZT¼ ≤:;<=> T¼. Thus, Z = 1 Θ¼⁄  implies that T¼ Θ¼⁄ ≤:;<=> T¼. With a similar discussion, in a gentler environment, if 
X¼ is SIMIT for some	j = 1,2, …… , n, then we conclude that T¼ ≤:;<=> X¼. 
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6 Conclusion 
Due to economic consequences and safety issues, it is necessary for the industry to perform systematic studies using 
reliability concepts. There exist plenty of scenarios where a statistical comparison of reliability measures is required in both 
reliability engineering and biomedical fields. In this paper, we have proposed a new stochastic order based on the MIT 
function called strong mean inactivity time (SMIT) order. The relationship of this new stochastic order with other well-
known stochastic orders such as the RHR and the MIT orders are discussed. It was shown that the SMIT order lies in the 
frame work of the RHR and the MIT orders, and hence it enjoys several reliability properties which provide several 
applications in reliability and survival analysis. We discussed several characterization and preservation properties of this 
new order under reliability operations of monotone transformation, mixture, and shock models. To enhance the study, we 
proposed a new class of life distributions called strong increasing mean inactivity time (SIMIT) class. Several reliability 
properties of the new class as well as a number of applications in the context of reliability and survival analysis are 
included. Our results provide new concepts and applications in reliability, statistics, and risk theory. Further properties and 
applications of the new stochastic order and the new proposed class can be considered in the future of this research. In 
particular, the following topics are interesting, and still remain as open problems. 

(i) Closure properties of the SMIT order and the SIMIT class under convolution, and coherent structures. 

(ii) Discrete version of the SMIT orders, and enhances the obtained results related to the D-SIMIT class 

(iii) Testing exponentially against the SIMIT class. 
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Appendix 
 

Proof of theorem 1: 
 (i) Note that 𝑋 ≤cÑc 𝑌 implies 𝐹(𝑥) 𝐺(𝑥)⁄  is non-increasing in	𝑥, or equivalently 

Ò
𝐹(𝑥)
𝐹(𝑡) −

𝐺(𝑥)
𝐺(𝑡)Ó ≥ 0, 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑥 ≤ 𝑡 

This simply gives  

-𝑥Ò
𝐹(𝑥)
𝐹(𝑡) −

𝐺(𝑥)
𝐺(𝑡)Ó

2

345

≥ 0, 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑡 > 0 

Which means	𝑋 ≤\;¦]^_ 𝑌. 
(ii) Suppose that	𝑋, and 𝑌 have the MIT functions 𝑚', and 𝑚�, respectively. Note that for all 𝑡 ≥ 0 we get 

𝑚'(𝑡) −𝑚�(𝑡) = -Ò
𝐹(𝑥)
𝐹(𝑡) −

𝐺(𝑥)
𝐺(𝑡)Ó

2

345

𝑑𝑥 

																														=-
1
𝑥 𝑑 Ô-Õ

𝑢𝐹(𝑢)
𝐹(𝑡) −

𝑢𝐺(𝑢)
𝐺(𝑡) Ö 𝑑𝑢

3

345

×
2

345

 

																														=-ℎ(𝑥)𝑑𝑊2(𝑥)
i

345

. 

Where	ℎ(𝑥) = 1 𝑥⁄ , is a non-negative non-increasing function, 𝑑𝑊2(𝑥) = 𝑤2(𝑥)𝑑𝑥, and 

𝑤2(𝑥) = Ò
𝑥𝐹(𝑥)
𝐹(𝑡) −

𝑥𝐺(𝑥)
𝐺(𝑡) Ó 𝐼

[𝑥 ≤ 𝑡], 

Where 𝐼[𝑥 ≤ 𝑡] stands for the indicator function of the set[𝑥 ≤ 𝑡]. For all	𝑠 > 𝑡 > 0, we have 
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-𝑑𝑊2(𝑥)
Ü

345

=-Ò
𝑥𝐹(𝑥)
𝐹(𝑡) −

𝑥𝐺(𝑥)
𝐺(𝑡) Ó

2

345

𝑑𝑥 ≥ 0. 

Note also that 𝑋 ≤\;¦]^_ 𝑌 implies that, for all	𝑡 ≥ 0, 
∑ 𝑥𝐹(𝑥)𝑑𝑥2
345

∑ 𝑥𝐺(𝑥)𝑑𝑥2
345

≥
𝐹(𝑡)
𝐺(𝑡).																																																																																																					(9) 

In addition, from (1) it holds that, for all 𝑡 ≥ 𝑠 > 0, 
∑ 𝑥𝐹(𝑥)𝑑𝑥Ü
345

∑ 𝑥𝐺(𝑥)𝑑𝑥Ü
345

≥
∑ 𝑥𝐹(𝑥)𝑑𝑥2
345

∑ 𝑥𝐺(𝑥)𝑑𝑥2
345

.																																																																																					(10) 

Combining (9) and (10), one gets, for all	𝑡 ≥ 𝑠 > 0, 
∑ 𝑥𝐹(𝑥)𝑑𝑥Ü
345

∑ 𝑥𝐺(𝑥)𝑑𝑥Ü
345

≥
𝐹(𝑡)
𝐺(𝑡), 

Which provides that, for all	𝑡 ≥ 𝑠 > 0, 

-𝑑𝑊2(𝑥)
Ü

345

=-Ò
𝑥𝐹(𝑥)
𝐹(𝑡) −

𝑥𝐺(𝑥)
𝐺(𝑡) Ó

Ü

345

𝑑𝑥 ≥ 0. 

Therefore, 𝑋 ≤\;¦]^_ 𝑌 implies that∑ 𝑑𝑊2(𝑥)Ü
345 ≥ 0, for all	𝑠, 𝑡 ≥ 0. Finally, appealing to Lema 7.1(b) of Barlow and 

Proschan [24], it is concluded that ∑ ℎ(𝑥)𝑑𝑊2(𝑥)i
345 ≥ 0, for all	𝑡 > 0, and hence the proof is completed. 

 
Proof of theorem 2:  
we can write, for all	𝑡 > 0, 
∑ 𝑥𝐹(𝑥)2
345

𝐹(𝑡) =
∑ ∑ 𝐹(𝑥)3

B45
2
345

𝐹(𝑡)  

																							=
∑ ∑ 𝐹(𝑥)2

34B
2
B45

𝐹(𝑡)  

																							= 𝑡𝑚'(𝑡)
∑ ∑ 𝐹(𝑥)B

345
2
B45

𝐹(𝑡)  

Similarly, 
∑ 𝑥𝐺(𝑥)2
345

𝐺(𝑡) = 𝑡𝑚�(𝑡)
∑ ∑ 𝐺(𝑥)B

345
2
B45

𝐺(𝑡)  

Therefore, using the assumptions, for all 𝑡 > 0, 
∑ 𝑥𝐹(𝑥)2
345 𝑑𝑥

𝐹(𝑡) =
∑ 𝑥𝐺(𝑥)2
345

𝐺(𝑡)  

																													= 𝑡[𝑚'(𝑡) − 𝑚�(𝑡)] +
∑ ∑ 𝐺(𝑢)3

B45
3
345

𝐺(𝑡)  

																														−
∑ ∑ 𝐹(𝑢)3

B45
2
345

𝐹(𝑡) ≥ 𝑡[𝑚'(𝑡) − 𝑚�(𝑡)] ≥ 0, 

This completes the proof. 
 
Proof of theorem 3: 
 First, Let 𝑋2 ≤\;¦]^_ 𝑋 for all	𝑡 ≥ 0. It follows that, for all	𝑠 > 0, 

-𝑥[𝐹(𝑡 + 𝑥) − 𝐹(𝑡)]
Ü

345

≥
[𝐹(𝑡 + 𝑠) − 𝐹(𝑡)]

𝐹(𝑠) -𝑥𝐹(𝑥)
Ü

345

𝑑𝑥.																																																									(11) 

Now, we have 
∑ ∑ 𝑥[𝐹(𝑡 + 𝑥) − 𝐹(𝑡)]Ü

345 𝑔(𝑡)i
245

∑ [𝐹(𝑡 + 𝑠) − 𝐹(𝑡)]𝑔(𝑡)i
245

 

≥
∑ Þ[𝐹(𝑡 + 𝑠) − 𝐹(𝑡)]𝐹(𝑠) ∑ 𝑥𝐹(𝑥)i

345 ß 𝑔(𝑡)i
245

∑ [𝐹(𝑡 + 𝑠) − 𝐹(𝑡)]𝑔(𝑡)i
245

=
∑ 𝑥𝐹(𝑥)Ü
345 𝑑𝑥

𝐹(𝑠) , 𝑓𝑜𝑟	𝑎𝑛𝑦	𝑠 > 0. 

In view of (2), this gives𝑋� ≤\;¦]^_ 𝑋. On the other hand, suppose that 𝑋� ≤\;¦]^_ 𝑋 holds for any non-negative random 
variable	𝑌. Then 𝑋2 ≤\;¦]^_ 𝑋, for all 𝑡 ≥ 0 follows by taking 𝑌 as a degenerate variable. 
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Proof of theorem 4:  
First note that for any 𝑡 ≥ 0 and	𝑠 > 0, based upon (2), (3), (11) we have 

-𝑥𝑃(𝛾(𝑡) ≤ 𝑥)
Ü

345

=-[𝑥𝐹(𝑡 + 𝑥) − 𝑥𝐹(𝑡)]
Ü

345

 

+--[𝑥𝐹(𝑡 − 𝑢 + 𝑥) − 𝑥𝐹(𝑡 − 𝑢)]
Ü

345

2

B45

𝑚(𝑢) 

≥-𝑥[𝐹(𝑡 + 𝑥) − 𝐹(𝑡)]
Ü

345

𝑑𝑥 

+-Ô
𝐹(𝑡 − 𝑢 + 𝑠) − 𝐹(𝑡 − 𝑢)

𝐹(𝑠) -𝑥𝐹(𝑥)
Ü

345

×
2

B45

𝑚(𝑢) 

=-𝑥[𝐹(𝑡 + 𝑥) − 𝐹(𝑡)]
Ü

345

 

+
∑ 𝑥𝐹(𝑥)Ü
345

𝐹(𝑠)
[𝑃(𝛾(𝑡) ≤ 𝑠) − 𝐹(𝑡 + 𝑠) + 𝐹(𝑡)] 

≥
∑ 𝑥𝐹(𝑥)Ü
345

𝐹(𝑠)
[𝐹(𝑡 + 𝑠) − 𝐹(𝑡)] 

+
∑ 𝑥𝐹(𝑥)Ü
345

𝐹(𝑠)
[𝑃(𝛾(𝑡) ≤ 𝑠) − 𝐹(𝑡 + 𝑠) + 𝐹(𝑡)] =

∑ 𝑥𝐹(𝑥)Ü
345

𝐹(𝑠) 𝑃(𝛾(𝑡) ≤ 𝑠). 

Hence, it holds that, for all 𝑡 ≥ 0 and	𝑠 > 0, 
∑ 𝑥𝑃(𝛾(𝑡) ≤ 𝑥)Ü
345

𝑃(𝛾(𝑡) ≤ 𝑠) ≥
∑ 𝑥𝐹(𝑥)Ü
345

𝐹(𝑠) , 

That is, 𝛾(𝑡) ≤\;¦]^_ 𝛾(0) for all	𝑡 ≥ 0. 
 
Proof of theorem 5:  
Without loss of generality, assume that 𝜙 is differentiable, and denote its first derivative by	𝜙. 𝑋 ≤\;¦]^_ 𝑌implies that, 
for all	𝑡 > 0, 

- Ò
𝑥𝐹(𝑥)

𝐹à𝜙;x(𝑡)á
−

𝑥𝐺(𝑥)
𝐺à𝜙;x(𝑡)á

Ó
âãÌ(2)

345

≥ 0. 

On the other hand, 𝜙(𝑋) ≤\;¦]^_ 𝜙(𝑌) iff, for all	𝑡 ≥ 0, 
∑ 𝑥𝑃(𝜙(𝑋) ≤ 𝑥)2
345

𝑃(𝜙(𝑋) ≤ 𝑡) ≥
∑ 𝑥𝑃(𝜙(𝑌) ≤ 𝑥)2
345

𝑃(𝜙(𝑌) ≤ 𝑡) , 

Which is equivalent to, for all 𝑡 ≥ 0, 

- 𝑣(𝑥) Ò
𝑥𝐹(𝑥)

𝐹à𝜙;x(𝑡)á
−

𝑥𝐺(𝑥)
𝐺à𝜙;x(𝑡)á

Ó
âãÌ(2)

345

≥ 0, 

Where	𝑣(𝑥) = 𝜙 (𝑥) 𝑥⁄ . Its well-known that, if 𝜙 is non-negative and concave with	𝜙(0) = 0, then 𝜙 (𝑥) 𝑥⁄  is non-
increasing. Thus, due to the assumption, 𝑣(𝑥) is the product of two non-negative non-increasing functions, and hence 𝑣(𝑥) 
is non-increasing. Finally, Lemma 7.1(b) of Barlow and Proschan [24] can be used to conclude the proof. 
 
Proof of theorem 6: 
 Select 𝜃 and 𝜃¥in the support of	Θ. Let 𝐹(. |𝜃), 𝐺(. |𝜃), 𝐹(. |𝜃¥), 𝑎𝑛𝑑	𝐺(. |𝜃¥) be the distribution functions of (𝑋|Θ =
𝜃), (𝑌|Θ = 𝜃), (𝑋|Θ = 𝜃¥), 𝑎𝑛𝑑	(𝑌|Θ = 𝜃¥), respectively. The proof is similar to that of theorem 1.B.8 in Shaked and 
Shanthikumar [13]. It is sufficient to show that, for each	𝑎 ∈ (0,1), and for all 𝑡 > 0, we have 
𝑎∑ 𝑢𝐹(𝑢|𝜃) + (1 − 𝛼)∑ 𝑢𝐹(𝑢|𝜃¥)2

B45
2
B45

𝑎𝐹(𝑡|𝜃) + (1 − 𝛼)𝐹(𝑡|𝜃¥)  

≥
𝑎∑ 𝑢𝐺(𝑢|𝜃) + (1 − 𝛼)∑ 𝑢𝐺(𝑢|𝜃¥)2

B45
2
B45

𝑎𝐺(𝑡|𝜃) + (1 − 𝛼)𝐺(𝑡|𝜃¥)  

This is an inequality of the form 
𝑎 + 𝑏
𝑐 + 𝑑 ≥

𝑤 + 𝑥
𝑦 + 𝑧  
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Where all eight variables are non-negative, and by the assumptions of the theorem they satisfy 
𝑎
𝑐 ≥

𝑤
𝑦 ,
𝑎
𝑐 ≥

𝑥
𝑧 ,
𝑏
𝑑 ≥

𝑤
𝑦 , 𝑎𝑛𝑑	

𝑏
𝑑 ≥

𝑥
𝑧.	 

It is easy to verify that the latter four inequalities imply the former one, completing the proof of the theorem. 
 
Proof of theorem 7: 
 Because of (1), we need to establish that, for all 0 < 𝑥 < 𝑦, 
∑ (𝑥 − 𝑢)i
B45 ∑ 𝛽}𝐹}(𝑥 − 𝑢)¨

}4x
∑ (𝑥 − 𝑢)i
B45 ∑ 𝛼}𝐹}(𝑥 − 𝑢)¨

}4x
≤
∑ (𝑦 − 𝑣)i
è45 ∑ 𝛽}𝐹}(𝑦 − 𝑣)¨

}4x
∑ (𝑦 − 𝑣)i
è45 ∑ 𝛼}𝐹}(𝑦 − 𝑣)¨

}4x
																																																																										(12) 

After simple calculations, (12) can be written in the form 

--�𝛽�𝛼} -(𝑥 − 𝑢)𝐹�(𝑥 − 𝑢)
i

B45

¨

�4x

¨

}4x
}é�	

×-(𝑦 − 𝑣)𝐹}(𝑦 − 𝑣)
i

B45

 

≤--�𝛽�𝛼}-(𝑦 − 𝑢)𝐹�(𝑦 − 𝑢)
i

B45

¨

�4x

¨

}4x
}é�	

×-(𝑥 − 𝑣)𝐹}(𝑥 − 𝑣)
i

B45

 

--�𝛽�𝛼} -(𝑥 − 𝑢)𝐹�(𝑥 − 𝑢)
i

B45

¨

�4x

¨

}4x
}ê�	

×-(𝑦 − 𝑣)𝐹}(𝑦 − 𝑣)
i

B45

 

+𝛽}𝛼} -(𝑥 − 𝑢)𝐹}(𝑥 − 𝑢)
i

B45

×-(𝑦 − 𝑣)𝐹�(𝑦 − 𝑣)
i

B45

 

≤--�𝛽�𝛼}-(𝑦 − 𝑣)𝐹�(𝑦 − 𝑣)
i

B45

¨

�4x

¨

}4x
}ê�	

×-(𝑥 − 𝑢)𝐹}(𝑥 − 𝑢)
i

B45

 

+𝛽}𝛼} -(𝑦 − 𝑣)𝐹}(𝑦 − 𝑣)
i

B45

×-(𝑥 − 𝑢)𝐹�(𝑥 − 𝑢)
i

B45

 

Now, for each fixed pair (𝑖, 𝑗) with	𝑖 < 𝑗, we have 

�𝛽�𝛼} -(𝑦 − 𝑣)𝐹�(𝑦 − 𝑣)
i

B45

×-(𝑥 − 𝑢)𝐹}(𝑥 − 𝑢)
i

B45

 

+𝛽}𝛼} -(𝑦 − 𝑣)𝐹}(𝑦 − 𝑣)
i

B45

×-(𝑥 − 𝑢)𝐹�(𝑥 − 𝑢)
i

B45

 

−𝛽�𝛼} -(𝑥 − 𝑢)𝐹�(𝑥 − 𝑢)
i

B45

×-(𝑦 − 𝑣)𝐹}(𝑦 − 𝑣)
i

B45

 

+𝛽}𝛼} -(𝑥 − 𝑢)𝐹}(𝑥 − 𝑢)
i

B45

×-(𝑦 − 𝑣)𝐹�(𝑦 − 𝑣)
i

B45

 

= à𝛽�𝛼} − 𝛽}𝛼}á-(𝑦 − 𝑣)𝐹�(𝑦 − 𝑣)
i

B45

×-(𝑥 − 𝑢)𝐹}(𝑥 − 𝑢)
i

B45

 

−-(𝑥 − 𝑢)𝐹�(𝑥 − 𝑢)
i

B45

×-(𝑦 − 𝑣)𝐹}(𝑦 − 𝑣)
i

B45

 

Which is non-negative because both terms are non-negative by the assumptions. This completes the proof. 
 
Proof of theorem 8:  
It suffices to verify that ∑ 𝐹(𝑥) 𝑑𝑥 𝑡𝐹(𝑡)⁄2

345  is non-decreasing in	𝑡 > 0. Note that 

𝐹(𝑡) =
1
𝑡-à𝐹(𝑥) + 𝑥𝑓(𝑥)á

2

345

𝑑𝑥; 𝑡 > 0. 

Define now 
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𝐾(𝑖, 𝑡) = -𝜙(𝑖, 𝑥)𝜓(𝑥, 𝑡)𝑑𝑥,
i

B45

𝑖 = 1,2, 

Where	𝜓(𝑥, 𝑡) = 𝐼[𝑥 ≤ 𝑡], and 

𝜙(𝑖, 𝑥) = î
𝑥𝑓(𝑥) + 𝐹(𝑥),								𝑖𝑓	𝑖 = 1
𝐹(𝑥),																								𝑖𝑓	𝑖 = 2, 

Due to the assumption, 𝜙(𝑖, 𝑥) is TP2 in(𝑖, 𝑥), for 𝑖 = 1,2, and	𝑥 > 0. Also, it is easy to observe that 𝜓(𝑥, 𝑡) is TP2 in(𝑥, 𝑡), 
for 𝑥 > 0, and 𝑡 > 0. From the general composition theorem of Karlin [16] it is deduced that 𝐾(𝑖, 𝑡) is TP2 in(𝑖, 𝑡), for 𝑖 =
1,2,and 𝑡 > 0; and thus the proof is completed. 
 
Proof of theorem 9:  
To prove the “if” part, note that 𝑚ï'(𝑡) = 𝑧𝑚'(𝑡 𝑧⁄ ), for each	𝑧 ∈ (0,1], and any	𝑡 > 0. Then, put	𝑍 = 𝑧, 
implying	𝑍𝑋 ≤\;]^_ 𝑋, for all	𝑧 ∈ (0,1], which means 𝑋 is SIMIT. For the “only if” part, assume that 𝑍 has distribution 
function	𝐺. from the assumption, and the well-known Fubini’s theorem, for all 𝑥 > 0, it follows that 

𝑚ñ'(𝑥) =
∑ 𝑃(𝑍𝑋 ≤ 𝑢)3
B45

𝑃(𝑍𝑋 ≤ 𝑢)  

																=
∑ ∑ 𝐹 ò𝑢𝑧ó

x
ï45

3
B45 𝑔(𝑧)𝑑𝑢

∑ 𝐹 ò𝑥𝑧ó
x
ï45 𝑔(𝑧)

 

																=
∑ ∑ 𝐹 ò𝑢𝑧ó

3
B45

x
ï45 𝑔(𝑧)

∑ 𝐹 ò𝑥𝑧ó
x
ï45 𝑔(𝑧)

 

																=
∑ 𝑧𝑚'
x
ï45 ò𝑥𝑧ó𝐹 ò

𝑥
𝑧ó𝑔(𝑧)

∑ 𝐹 ò𝑥𝑧ó
x
ï45 𝑔(𝑧)

 

																≥
∑ 𝑚'
x
ï45 (𝑥)𝐹 ò𝑥𝑧ó𝑔(𝑧)

∑ 𝐹 ò𝑥𝑧ó
x
ï45 𝑔(𝑧)

= 𝑚'(𝑥) 

That is 𝑍𝑋 ≤\;]^_ 𝑋. 
 
Proof of theorem 10: 
 It suffices to prove that 
∑ 𝐹à𝜙;x(𝑦)á2
�45

𝑡𝐹à𝜙;x(𝑦)á
=
∑ 𝜙¥(𝑦)𝐹(𝑦)âãÌ2
�45

𝑡𝐹à𝜙;x(𝑡)á
 

																																	=
∑ 𝜙¥(𝑦)𝐹(𝑦)3
�45

𝜙(𝑥)𝐹(𝑥) , 𝑥 = 𝜙¥(𝑡) ≥ 0 

is non-decreasing in 𝑡 > 0. We know that 

𝜙(𝑥)𝐹(𝑥) = -[𝜙¥(𝑦)𝐹(𝑦) + 𝜙(𝑦)𝐹(𝑦)]
3

�45

𝑑𝑦. 

Define 

𝐾(𝑖, 𝑥) = -𝜑(𝑖, 𝑦)𝜓(𝑦, 𝑥)
i

�45

𝑑𝑦,																																																																																					(13) 

for𝑖 = 1,2, and 𝑥 > 0, where 

𝜑(𝑖, 𝑦) = î
𝜙¥(𝑦)𝐹(𝑦) + 𝜙(𝑦)𝐹(𝑦),								𝑖𝑓	𝑖 = 1
𝜙¥(𝑦)𝐹(𝑦),																															𝑖𝑓	𝑖 = 2, 

and	𝜓(𝑦, 𝑥) = 𝐼[𝑦 ≤ 𝑥]. Easily, 𝜓(𝑦, 𝑥) is TP2 in(𝑦, 𝑥).By assumption, 𝑓 𝐹⁄  and 𝜙 𝜙¥⁄  are non-increasing and non-
negative. Hence 𝜑(𝑖, 𝑦) is TP2 in(𝑖, 𝑦). On applying the general composition theorem of Karlin [16] to the identity given in 
(13), 𝐾(𝑖, 𝑡) is TP2 in (𝑖, 𝑡) ∈ {1,2} × (0,∞). This completes the proof. 
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Proof of theorem 11:  
It is enough to show that ∑ 𝐻(𝑥)𝑑𝑥 𝑡𝐻(𝑡)⁄2

345  is non-decreasing in	𝑡. To this end, first we get, for all	𝑡 > 0, that 

-𝐻(𝑥)
2

345

=--
𝑒;⋋3(⋋ 𝑥)�

𝑗!

i

�45

2

345

𝑃� 

																		= -𝑃�-
𝑒;⋋3(⋋ 𝑥)�

𝑗!

2

345

i

�45

 

																		= -
𝑃�
⋋ õ1 −-

𝑒;⋋2(⋋ 𝑡)¿

𝑘!

�

¿45

ö
i

�45

 

																		=
1
⋋- -

𝑒;⋋2(⋋ 𝑥)¿

𝑘!

i

¿4�Ox

i

�45

𝑃� 

																		=
1
⋋--

𝑒;⋋2(⋋ 𝑥)¿

𝑘!

¿;x

�45

i

¿4x

𝑃� 

																		=
1
⋋-𝑒;⋋2

(⋋ 𝑡)¿

𝑘! -𝑃�

¿;x

�45

i

¿4x

 

Note then that 

𝑡𝐻(𝑡) =
1
⋋-𝑒;⋋2

(⋋ 𝑡)¿

𝑘!

i

¿4x

𝑘𝑃¿;x, 

For each positive integer 𝑘. Hence, 𝑇 is SIMIT if 
∑ ÷ã⋋ø(⋋ø)

ù

ù!
∑ úû
ùãÌ
ûüý

þ
ùüÌ

∑ ÷ã⋋ø(⋋ø)
ù

ù!
þ
ùüÌ ¿úùãÌ

is non-decreasing in 𝑡, or equivalently if 

Ψ(𝑖, 𝑡) = -Φ(𝑖, 𝑘)
(⋋ 𝑡)¿

𝑘!

i

¿4x

𝑒;⋋2	𝑖𝑠	𝑇𝑃f	𝑖𝑛	(𝑖, 𝑡), 

for	𝑖 ∈ {1,2}, and 𝑡 ∈ (0,∞), where 

Φ(𝑖, 𝑘) = "

𝑘𝑃¿;x,																																	𝑖𝑓	𝑖 = 1

-𝑃�

¿;x

�45

,																															𝑖𝑓	𝑖 = 2,  

By the assumption, Φ(𝑖, 𝑘) is TP2 in(𝑖, 𝑘), for	𝑖 ∈ {1,2}, and	𝑘 ∈ ℕ. It is also evident that 𝑒;⋋2(⋋ 𝑡)¿ 𝑘!⁄  is TP2 in(𝑘, 𝑡), 
for	𝑘 ∈ ℕ, and	𝑡 ∈ (0,∞). The result now follows from general composition theorem of Karlin [16]. 
 
Proof of theorem 12:  
Let 𝑇x ≤\;]^_ 𝑇f hold. Then, we have 

-𝑥{𝐹¨(𝑥)𝐺¨(𝑡) − 𝐹¨(𝑡)𝐺¨(𝑥)}
2

345

≥ 0, 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑡 > 0. 

Due to fact that 
𝐹(𝑥)𝐺(𝑡) − 𝐹(𝑡)𝐺(𝑥) = [𝐹¨(𝑥)𝐺¨(𝑡) − 𝐹¨(𝑡)𝐺¨(𝑥)]ℎ(𝑥). 

where	ℎ(𝑥) = #∑ à𝐹(𝑥)𝐺(𝑡)á¨;}à𝐹(𝑡)𝐺(𝑥)á};x¨
}4x $

;x
, and applying Lema 7.1(b) of Barlow and Proschan [24], it obtains 

that, for all 𝑡 > 0, 

-𝑥{𝐹(𝑥)𝐺(𝑡) − 𝐹(𝑡)𝐺(𝑥)}
2

345

≥ 0, 

which means that 𝑋} ≤\;¦]^_ 𝑌}, 𝑖 = 1,2, … , 𝑛. 
 
Proof of theorem 13:  
First, notice that 𝑁x ≤\;Ñc 𝑁f indicates the hazard rate order between 𝑁x and 𝑁f. Denote by 𝐻%&:%& the distribution 
function of𝑋%&:%&. 
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𝐻%&:%&(𝑥) =-𝐹¿
i

¿4x

(𝑥)𝑝¿
[}], 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑥 > 0, 

where	𝐹 is the common distribution of the 𝑋} and 𝑝¿
[}] = 𝑃(𝑁} = 𝑘), for each 𝑘 ∈ ℕ, is the pmf of 𝑁}, 𝑖 = 1,2, that 

𝜓(𝑡, 𝑖) = -𝑥𝐻%&:%&(𝑥)𝑑𝑥
2

345

 

															= -𝜙(𝑡, 𝑘)𝜏(𝑘, 𝑖)
i

¿4x

, 

where	𝜙(𝑡, 𝑘) = ∑ 𝑥𝐹¿(𝑥)𝑑𝑥i
¿4x , and 𝜏(𝑘, 𝑖) = 𝑝¿

[}]. Denote	𝑔(𝑘, 𝑖) = ∑ 𝑝¿
[}]i

�4¿ , for each 𝑘 ∈ ℕ and	𝑖 = 1,2. It can easily 
be checked that (cf. Shaked and Shanthikumar [13]) if 𝑁x ≤\;Ñc 𝑁f then 𝑔(𝑘, 𝑖) is TP2 in(𝑘, 𝑖) ∈ ℕ × {1,2}. On the other 
hand, 𝜙(𝑡, 𝑘) is TP2 in(𝑡, 𝑘) ∈ ℝOℕ. Appealing to Lemma 2.1 in Ortega [11] gives 𝜓(𝑡, 𝑖) is TP2 in(𝑡, 𝑖) ∈ ℝO × {1,2}, 
which is equivalent to 𝐻%Ì:%Ì ≤\;¦]^_ 𝐻%Í:%Í. 
Proof of theorem 14: 
 In view of (5) and the proof of theorem 11, we have for all 𝑡 > 0 

-𝑥𝐻}(𝑥)𝑑𝑥
2

345

=⋋;x -
𝑒;⋋2(⋋ 𝑡)�

𝑗! )-𝑘𝑃¿;x
[}]

�;x

¿4x

*
i

�4f

 

 
Because 𝑒;⋋2(⋋ 𝑡)� 𝑗!⁄  is TP2 in(𝑡, 𝑗), and by assuming 

∑ ¿úùãÌ
[Í]ûãÌ

ùüÌ
∑ ¿úùãÌ

[Ì]ûãÌ
ùüÌ

, is non-decreasing in	𝑗 ∈ 𝑁, 

the general composition theorem of Karlin [16] provides that ∑ 𝑥𝐻}(𝑥)𝑑𝑥2
345  is TP2 in (𝑖, 𝑡) ∈ {1,2} × 𝑅O, which implies 

that 𝑇x ≤\;¦]^_ 𝑇f. which helped to improve the paper. 
 
 
 
 
 
 
 
 
 
 
 
 


