
Journal of Engineering Research Journal of Engineering Research

Volume 7 Issue 3 Article 44

2023

Enhancing FastSLAM 2.0 performance using a DE Algorithm with Enhancing FastSLAM 2.0 performance using a DE Algorithm with

Multi-mutation Strategies Multi-mutation Strategies

Hadeer Adel Attia, Mohamed Arafa, Mohamed TALAAT FAHIM

Follow this and additional works at: https://digitalcommons.aaru.edu.jo/erjeng

Recommended Citation Recommended Citation
Adel Attia, Mohamed Arafa, Mohamed TALAAT FAHIM, Hadeer (2023) "Enhancing FastSLAM 2.0
performance using a DE Algorithm with Multi-mutation Strategies," Journal of Engineering Research: Vol.
7: Iss. 3, Article 44.
Available at: https://digitalcommons.aaru.edu.jo/erjeng/vol7/iss3/44

This Article is brought to you for free and open access by Arab Journals Platform. It has been accepted for
inclusion in Journal of Engineering Research by an authorized editor. The journal is hosted on Digital Commons, an
Elsevier platform. For more information, please contact rakan@aaru.edu.jo, marah@aaru.edu.jo,
u.murad@aaru.edu.jo.

https://digitalcommons.aaru.edu.jo/erjeng
https://digitalcommons.aaru.edu.jo/erjeng/vol7
https://digitalcommons.aaru.edu.jo/erjeng/vol7/iss3
https://digitalcommons.aaru.edu.jo/erjeng/vol7/iss3/44
https://digitalcommons.aaru.edu.jo/erjeng?utm_source=digitalcommons.aaru.edu.jo%2Ferjeng%2Fvol7%2Fiss3%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.aaru.edu.jo/erjeng/vol7/iss3/44?utm_source=digitalcommons.aaru.edu.jo%2Ferjeng%2Fvol7%2Fiss3%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.elsevier.com/solutions/digital-commons
mailto:rakan@aaru.edu.jo,%20marah@aaru.edu.jo,%20u.murad@aaru.edu.jo
mailto:rakan@aaru.edu.jo,%20marah@aaru.edu.jo,%20u.murad@aaru.edu.jo

Journal of Engineering Research (ERJ)
Vol. 7 – No. 3, 2023

©Tanta University, Faculty of Engineering
ISSN: 2356-9441 https://erjeng.journals.ekb.eg/ e ISSN: 2735-4873

Doi: 10.21608/ERJENG.2023.235646.1242
153

Enhancing FastSLAM 2.0 performance using
a DE Algorithm with Multi-mutation

Strategies
H. A. Attia, Mohamed Saidahmed, M. Arafa

Computers and Control Department, Tanta University, Faculty of Engineering, Tanta, Egypt
Email: Hadir_88122_pg@f-eng.tanta.edu.eg, mohamed_ahmed1@f-eng.tanta.edu.eg, m.Arafa@f-eng.tanta.edu.eg

Abstract- FastSLAM 2.0 is considered one of the popular

approaches that utilizes a Rao-Blackwellized particle filter for
solving simultaneous localization and mapping (SLAM)
problems. It is computationally efficient, robust and can be
used to handle large and complex environments. However, the
conventional FastSLAM 2.0 algorithm is known to degenerate
over time in terms of accuracy because of the particle depletion
problem that arises in the resampling phase. In this work, we
introduce an enhanced variant of the FastSLAM 2.0 algorithm
based on an enhanced differential evolution (DE) algorithm
with multi-mutation strategies to improve its performance and
reduce the effect of the particle depletion problem. The
Enhanced DE algorithm is used to optimize the particle weights
and conserve diversity among particles. A comparison has been
made with other two common algorithms to evaluate the
performance of the proposed algorithm in estimating the robot
and landmarks positions for a SLAM problem. Results are
accomplished in terms of accuracy represented by the
positioning errors of robot and landmark positions as well as
their root mean square errors. All results show that the
proposed algorithm achieves high accuracy than the other
compared algorithms in estimating the robot and landmark
positions for all the considered cases. It can reduce the effect of
the particle depletion problem and improve the performance of
the FastSLAM 2.0 algorithm in solving SLAM problem.

Keywords- FastSLAM 2.0, particle filter, Differential
Evolution, SLAM Problem.

I.INTRODUCTION

The challenge of a mobile robot navigating an unknown
environment is identified as the simultaneous localization
and mapping (SLAM) problem. In which, a robot moves
from an unknown position in an unknown environment,
determining location and building an environmental map at
the same time by state estimation and sensor observation [1].
Most robotic applications such as path planning and
autonomous manipulation heavily rely on SLAM algorithms.
For example, autonomous robots use FastSLAM algorithm
to create maps of their surroundings and navigate
autonomously through complex environments. There exists
also a feature of Google Maps called Google Street View. It
uses FastSLAM algorithm to build maps of streets and other
public spaces. The constructed maps provide 360-degree
panoramic views of any supported location. In addition,
most of the location-based services in smartphones mainly
rely on FastSLAM algorithm to build maps of indoor
environments.

In SLAM classical methods, Kalman filter (KF) and its
variants are used as the based methods. They have several

issues as follows. The required time to update the extended
Kalman filter (EKF) covariance matrices is quadratic in N,
where N refers to the number of landmarks. The quadratic
complexity of SLAM algorithms has long been recognized
as an essential obstacle for scaling them to maps with more
than a few hundred features. It also restricts the use of
SLAM algorithms to problems with vague landmarks,
resulting in a data association problem [2, 3]. In contrast,
FastSLAM has a parallelized structure that enables it to
achieve the needed performance for big map calculations in
real-time applications [4, 5].

There exist several variants of FastSLAM algorithm. The
most common ones are FastSLAM 1.0 [4], FastSLAM 2.0
[5], and Unscented FastSLAM (U-FastSLAM) [6]. The
FastSLAM 1.0 algorithm estimates the vehicle pose using
the generic particle filter (PF) [4], where each particle is
coupled with a set of independent extended Kalman filters
that are used to determine the position of each feature on the
map. In FastSLAM 2.0, some modifications have been made
for FastSLAM 1.0 in the selection of proposal distributions
and the computation of importance weights. The rest
sequence of the algorithm remains identical for both
FastSLAM 1.0 and 2.0, including the landmark updates, data
association, and resampling operations. FastSLAM 2.0 is
considered an enhanced variant of FastSLAM 1.0, as it
improves the proposal distribution accuracy, and it uses low-
dimensional EKFs in predicting the feature states [5].

In U-FastSLAM, the unscented Kalman filter is applied to
update the mean and covariance of the feature state and
avoid linearization errors and Jacobean computations in
feature estimations. The proposal distribution is determined
using the measurement updates of the unscented filter in the
particle filter's sampling step. U-FastSLAM can be more
accurate in noisy environments. However, unscented
Kalman filters are also more complex to implement than
regular Kalman filters [6].

FastSLAM algorithms can be applied with a high
performance to real-time applications in non-Gaussian
environments [4–6]. One of the most crucial advantages of
FastSLAM is its accurate estimation of the uncertainty as
well as the obtained information about the vehicle's whole
route history and its associated map. FastSLAM has an
advantage over any other algorithm in solving the SLAM
problem of multi-hypothesis data association, which is
carried out by using the advantage of the sampling

1

Adel Attia, Mohamed Arafa, Mohamed TALAAT FAHIM: Enhancing FastSLAM 2.0 performance using a DE Algorithm with Mult

Published by Arab Journals Platform, 2023

https://erjeng.journals.ekb.eg/
mailto:m.Arafa@f-eng.tanta.edu.eg

Journal of Engineering Research (ERJ)
Vol.7 – No. 3, 2023

©Tanta University, Faculty of Engineering
ISSN: 2356-9441 https://erjeng.journals.ekb.eg/ e ISSN: 2735-4873

Doi: 10.21608/ERJENG.2023.235646.1242
154

distribution of each particle [7]. Each particle can contain a
different number of feature (or landmark) observations.
However, it has sometimes been observed that the accuracy
of FastSLAM degrades over time [8]. This degradation
occurs when a set of particles, that is used to estimate the
robot's pose, loses the diversity among particles. There are
two basic reasons for losing particle diversity of FastSLAM
[8]. First, when there is a difference between the target
distribution and the proposed distribution, it creates
improbable particles that incorrectly determine the robot's
position. Second, FastSLAM removes improbable particles
during the resampling step, leaving only particles with high
weights. However, some of the removed particles may
contain correct information about the robot position
estimation and this information cannot be restored again.
This causes a problem known as particle depletion.

In this work, a new approach is proposed to enhance the
performance of the FastSLAM 2.0 algorithm and overcome
the particle depletion problem. The other sections of the
paper are organized as follows. The literature reviews of
improving the performance for the FastSLAM algorithm are
summarized in Section 2. Its basics are illustrated in Section
3. Then, Section 4 presents the performance enhancing of the
FastSLAM 2.0 algorithm using a differential evolution (DE)
algorithm with multi-mutation strategies. Section 5 provides
the comparisons and simulation results. Finally, Section 6
concludes the work and suggests a future work.

II.REVIEW OF EARLIER WORK

In the field of robotics, and particularly in mobile robot
system, SLAM is crucial. Several works have been made to
enhance the performance of SLAM algorithms. We will
review some of these works considering the FastSLAM
algorithm.

In [9], L. Heon-Cheol, P. Shin-Kyu, C. Jeong-Sik, and L.
Beom-Hee try to solve the degeneracy by particle
cooperation in FastSLAM through using the particle swarm
optimization (PSO) to update the robot position after the
resampling phase. The results demonstrated that its
performance minimized the root mean square error (RMSE)
in robot position and map features. In [10], Yi-min Xia and
Yi-min Yang used a genetic algorithm (GA) with FastSLAM
to solve the sample degradation problems. The improved
algorithm achieved higher estimation precision and lower
RMSEthan the basic FastSLAM algorithm. In [11], a square
root central difference Kalman filter-based FastSLAM
(SRCD-FastSLAM) is suggested and improved using a
differential evolution (DE) algorithm to handle the particle
depletion problem. The results of the study showed that DE-
SRCD-FastSLAM is better, in terms of accuracy and
robustness, than FastSLAM 2.0, U-FastSLAM, and SRCD-
FastSLAM. In [12], GA and PSO are used together to
improve the FastSLAM accuracy and overcome the particle
depletion problem in. The experiment results show that GA-
PSO-FastSLAM efficiently reduced the RMSE occurring
during the estimation of the robot and the landmark position.
The experiment results show that GA-PSO-FastSLAM

efficiently reduced the RMSE occurring during the
estimation of the robot and the landmark position. In [13], an
ant colony optimization-based resampling approach is
proposed to decrease the particle depletion problem. The
results show that the enhanced FastSLAM 2.0 based on ant
colony optimization can effectively decrease particle scarcity
and increase particle distribution. Compared to the previous
methods, this enhancement improves the accuracy of SLAM
as well as decreases the consumption time. In [14], a novel
framework called IFastSLAM is introduced to enhance the
performance of FastSLAM based on the PSO algorithm. The
authors also use a GA algorithm to increase the diversity of
particles in the resampling strategy. Moreover, they improve
the conventional PSO algorithm by combining it with the
principles of fractional differential and chaotic optimization.
The chaotic optimization avoids premature convergence
while the fractional differential accelerates algorithm
iteration. A global optimization target is proposed for the
improved PSO scheme. The experiment results show that the
global optimization accuracy is improved, and the robot and
landmark estimation errors are reduced. In [15], the robust
square-root cubature Kalman filter (RSRCKF) with partial
genetic resampling is suggested to improve the performance
of FastSLAM. RSRCKF is utilized in the proposed
technique to create the FastSLAM proposal distribution and
to estimate the environment landmarks. In this method, no
prior knowledge of noise statistics is required. Furthermore,
it employs a genetic operators-based technique to increase
particle diversity. The results indicate that the suggested
method gives better accuracy and robust estimation values
than the other methods, even with a smaller number of
particles and unknown beforehand. The authors in
[16] improve the accuracy of FastSLAM in positioning and
mapping for an application of a mine robot for fast rescue.
The lion swarm optimization approach is used to increase the
FastSLAM performance. It uses a division of labor between
different individuals to generate the optimized particle set
distribution. The particles are distributed in a high
probability area, and this helps in solving the particle weight
degradation problem. The authors indicate that the diversity
of particles is improved as individuals use different foraging
techniques in the lion swarm algorithm.

This paper imports evolution mechanisms into the
FastSLAM 2.0 algorithm, where an improved differential
evolution (DE) algorithm with multi-mutation strategies is
used to solve its depletion problem.

III.BASICS OF FASTSLAM 2.0

The SLAM problem is identified as the simultaneous
estimation of the vehicle's position and the creation of its
observable environment map. The map has 𝑁𝑁 features
(landmarks) represented by 𝛩𝛩 = (𝜃𝜃1,,𝜃𝜃2, … ,𝜃𝜃𝑁𝑁). The
vehicle's path is defined as 𝑥𝑥𝑡𝑡 = {𝑥𝑥1, … , 𝑥𝑥𝑡𝑡} where 𝑡𝑡 refers
to time index and 𝑥𝑥𝑡𝑡 represents the vehicle's pose at time 𝑡𝑡 .

The basic purpose of SLAM is to recover the best estimate
of the robot position 𝑥𝑥𝑡𝑡 over its path and the map
landmarks 𝛩𝛩, considering the given collection of noisy

2

Journal of Engineering Research, Vol. 7 [2023], Iss. 3, Art. 44

https://digitalcommons.aaru.edu.jo/erjeng/vol7/iss3/44

https://erjeng.journals.ekb.eg/

Journal of Engineering Research (ERJ)
Vol.7 – No. 3, 2023

©Tanta University, Faculty of Engineering
ISSN: 2356-9441 https://erjeng.journals.ekb.eg/ e ISSN: 2735-4873

Doi: 10.21608/ERJENG.2023.235646.1242
155

observations 𝑧𝑧𝑡𝑡 , controls 𝑢𝑢𝑡𝑡and set of data associations 𝑛𝑛𝑡𝑡.
This can be explained using the following probabilistic term,
which is often known as the SLAM posterior [5]:

 𝑝𝑝(𝑥𝑥𝑡𝑡 ,𝛩𝛩 𝘭𝘭 𝑧𝑧𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝑛𝑛𝑡𝑡) (1)

where 𝑛𝑛𝑡𝑡 = {𝑛𝑛1, … ,𝑛𝑛𝑡𝑡} is the data association between
features and measurement information, 𝑧𝑧𝑡𝑡 = {𝑧𝑧1, … , 𝑧𝑧𝑡𝑡} is
the observation sequence, and 𝑢𝑢𝑡𝑡 = {𝑢𝑢1, … , 𝑢𝑢𝑡𝑡} is the
control input.

To compute the posterior (1), the vehicle provides a
probabilistic motion model in the form of the conditional
probability distribution. This distribution explains the effects
of a control 𝑢𝑢𝑡𝑡 asserted in the time interval [𝑡𝑡 − 1; 𝑡𝑡] on the
resulting pose. The motion model is expressed as follows
[5]:

 𝑝𝑝(𝑥𝑥𝑡𝑡𝘭𝘭 𝑥𝑥𝑡𝑡−1,𝑢𝑢𝑡𝑡) (2)

where 𝑥𝑥𝑡𝑡 is the present position and 𝑥𝑥𝑡𝑡−1 is the vehicle’s
previous position. The vehicle is also given a probabilistic
measurement model that describes how measurements
evolve from state. The measurement model is expressed as
follows [5]:

 𝑝𝑝(𝑧𝑧𝑡𝑡𝘭𝘭 𝑥𝑥𝑡𝑡−1,𝛩𝛩, 𝑛𝑛𝑡𝑡) (3)

In the FastSLAM 2.0 model, the map features and the
vehicle's path can be estimated as if they were separated. A
Rao-Blackwellized particle filter is used to realize this
estimation [17]. Since the estimation of each landmark is
generally independent, FastSLAM 2.0 can be described by
the following product of two independent posterior
probabilities [5]:

𝑝𝑝(𝑥𝑥𝑡𝑡 ,𝛩𝛩𝛩𝛩 𝑧𝑧𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝑛𝑛𝑡𝑡) =

 𝑝𝑝(𝑥𝑥𝑡𝑡𝘭𝘭 𝑧𝑧𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝑛𝑛𝑡𝑡)∏ 𝑝𝑝(𝜃𝜃𝑛𝑛𝘭𝘭𝑥𝑥𝑡𝑡 , 𝑧𝑧𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝑛𝑛𝑡𝑡)𝑁𝑁
𝑛𝑛=1 (4)

where 𝜃𝜃𝑛𝑛 is the 𝑛𝑛-th feature at time 𝑡𝑡. A particle filter is
used by FastSLAM 2.0 to sample the vehicle's path. Each
particle has its own map, which consists of 𝑁𝑁 extended
Kalman filters. The 𝑖𝑖-th particle 𝑋𝑋𝑡𝑡𝑖𝑖 includes a
path 𝑥𝑥𝑡𝑡,𝑖𝑖 together with gaussian 𝑁𝑁 landmark estimations,
which can be defined by the mean 𝜇𝜇𝑁𝑁,𝑡𝑡

𝑖𝑖 and covariance 𝛴𝛴𝑁𝑁,𝑡𝑡
𝑖𝑖 .

Each particle can be written in the following form [5]:

 𝑋𝑋𝑡𝑡𝑖𝑖 = 𝑥𝑥𝑡𝑡,𝑖𝑖 ,𝜇𝜇1,𝑡𝑡
𝑖𝑖 ,𝛴𝛴1,𝑡𝑡

𝑖𝑖 , … ,𝜇𝜇𝑁𝑁,𝑡𝑡
𝑖𝑖 ,𝛴𝛴𝑁𝑁,𝑡𝑡

𝑖𝑖 (5)

where 𝜇𝜇1,𝑡𝑡
𝑖𝑖 and 𝛴𝛴1,𝑡𝑡

𝑖𝑖 are the mean and covariance of the
gaussian distribution, respectively, that characterize the
position of the Landmark 𝜃𝜃1. 𝜇𝜇𝑁𝑁,𝑡𝑡

𝑖𝑖 and 𝛴𝛴𝑁𝑁,𝑡𝑡
𝑖𝑖 are the mean and

covariance of the gaussian distribution, respectively, that
indicate the position of the Landmark 𝜃𝜃𝑁𝑁.

The sequence of operations for the FastSLAM 2.0
algorithm can be explained using the following steps:

1. Sampling new pose:
Poses are sampled with both motion control 𝑢𝑢𝑡𝑡 and

measurement 𝑧𝑧𝑡𝑡 . This is defined by the following sampling
distribution, which includes the measurement 𝑧𝑧𝑡𝑡 [5]:

 𝑋𝑋𝑡𝑡𝑖𝑖 ~ 𝑝𝑝(𝑥𝑥𝑡𝑡𝘭𝘭 𝑥𝑥𝑡𝑡−1,𝑖𝑖 ,𝑢𝑢𝑡𝑡 , 𝑧𝑧𝑡𝑡 ,𝑛𝑛𝑡𝑡) (6)

2. Updating the observation landmark:
The conditional landmark estimates 𝑝𝑝(𝜃𝜃𝑛𝑛𝘭𝘭 𝑥𝑥𝑡𝑡 ,𝑧𝑧𝑡𝑡 ,𝑢𝑢𝑡𝑡 ,𝑛𝑛𝑡𝑡)

are represented by applying low-dimensional EKFs. The
posterior probability of a landmark remains unchanged when
it is not observed, unlike when the estimate is updated.

3. Calculating importance weight:
Particles taken from the motion model do not match the

desired posterior. The importance sampling technique is
used to correct this difference. Each sample has a weight that
equals the ratio between the target distribution and the
proposal distribution. The weighted set of samples is used to
generate a new unweighted set of samples [5].

 𝑤𝑤𝑡𝑡𝑖𝑖 =
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =

𝘗𝘗 (𝑥𝑥𝑡𝑡,𝑖𝑖𝘭𝘭 𝑧𝑧𝑡𝑡,𝑢𝑢𝑡𝑡,𝑛𝑛𝑡𝑡)
𝘗𝘗 (𝑥𝑥𝑡𝑡−1𝘭𝘭 𝑧𝑧𝑡𝑡−1,𝑢𝑢𝑡𝑡−1,𝑛𝑛𝑡𝑡−1) 𝘗𝘗 (𝑥𝑥𝑡𝑡

𝑖𝑖𝘭𝘭𝑥𝑥𝑡𝑡−1,𝑖𝑖,𝑧𝑧𝑡𝑡,𝑢𝑢𝑡𝑡,𝑛𝑛𝑡𝑡)
 (7)

4. Resampling:
Resampling is the final step that selects particles from the

temporary particles set. In the resampling process, the
temporary particles with large importance weight remain and
achieve replication, whereas the particles with small
importance weight are rejected or deleted. As a result, all
details of the rejected particles, about the robot's path and
feature estimations, are lost [9].

IV.ENHANCING FASTSLAM USING A DIFFERENTIAL EVOLUTION
(DE) ALGORITHM

Recently, several optimization algorithms have been
utilized in particle filters to move particles from the low
likelihood region to the high likelihood region. In this paper,
an enhanced differential evolution (DE) algorithm is utilized
to enhance the performance of the FastSLAM 2.0 algorithm.
Multi-mutation strategies are tested during the evolution
process of the DE algorithm to accomplish a suitable balance
between the exploration and exploitation rates.

 The Basic DE Algorithm

DE is constructed up of four phases: initialization,
mutation, crossover, and selection [18-20].
1. Initialization

This phase involves randomly selecting a population of
𝑁𝑁𝑁𝑁 D-dimension real-valued vectors (𝑁𝑁𝑁𝑁 is the population
size and it represents the number of population members)
within the optimization problem's search space.
Let 𝑋𝑋𝑖𝑖,𝐺𝐺 represents the 𝑖𝑖th (𝑖𝑖 = 1,2, … ,𝑁𝑁𝑁𝑁) vector of the
population at the current generation 𝐺𝐺 (𝐺𝐺 = 0,1, … ,𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚),
and it can be written as [20]:

3

Adel Attia, Mohamed Arafa, Mohamed TALAAT FAHIM: Enhancing FastSLAM 2.0 performance using a DE Algorithm with Mult

Published by Arab Journals Platform, 2023

https://erjeng.journals.ekb.eg/

Journal of Engineering Research (ERJ)
Vol.7 – No. 3, 2023

©Tanta University, Faculty of Engineering
ISSN: 2356-9441 https://erjeng.journals.ekb.eg/ e ISSN: 2735-4873

Doi: 10.21608/ERJENG.2023.235646.1242
156

 𝑋𝑋𝑖𝑖,𝐺𝐺 = [𝑥𝑥1,𝑖𝑖,𝐺𝐺 , 𝑥𝑥2,𝑖𝑖,𝐺𝐺 , … ,𝑥𝑥𝐷𝐷,𝑖𝑖 ,𝐺𝐺] (8)

where 𝑥𝑥𝑗𝑗,𝑖𝑖,𝐺𝐺is the 𝑗𝑗th (𝑗𝑗 = 1,2, … ,𝐷𝐷) component of 𝑖𝑖th
population vector at the current generation 𝐺𝐺. At 𝐺𝐺 = 0, the
initial values of the population members are chosen
randomly as [20]:

 𝑥𝑥𝑗𝑗,𝑖𝑖,0 = 𝑥𝑥𝑗𝑗𝐿𝐿 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑗𝑗,𝑖𝑖 . (𝑥𝑥𝑗𝑗𝑈𝑈 − 𝑥𝑥𝑗𝑗𝐿𝐿) (9)

where 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑗𝑗,𝑖𝑖 is a random number that uniformly
distributed between [0, 1]. The upper and lower bounds for
each parameter are denoted by 𝑥𝑥𝑗𝑗𝑈𝑈 and 𝑥𝑥𝑗𝑗𝐿𝐿, respectively.
2. Mutation

In mutation, the mutant vector 𝑣𝑣𝑖𝑖,𝐺𝐺+1 is produced for each
target vector 𝑥𝑥𝑖𝑖,𝐺𝐺 . It can be produced by one of the common
mutation forms listed below [21, 22]:
The first form is characterized by the notation "DE/rand/1",

 𝑣𝑣𝑖𝑖,𝐺𝐺+1 = 𝑥𝑥𝑟𝑟1,𝐺𝐺 + 𝐹𝐹. (𝑥𝑥𝑟𝑟2,𝐺𝐺 − 𝑥𝑥𝑟𝑟3,𝐺𝐺) (10)

The second one is characterized by the notation "DE/best/1",

 𝑣𝑣𝑖𝑖,𝐺𝐺+1 = 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐺𝐺 + 𝐹𝐹. (𝑥𝑥𝑟𝑟1,𝐺𝐺 − 𝑥𝑥𝑟𝑟2,𝐺𝐺) (11)

The third one is characterized by the notation "DE/ rand /2",

𝑣𝑣𝑖𝑖,𝐺𝐺+1 = 𝑥𝑥1,𝐺𝐺 + 𝐹𝐹. � 𝑥𝑥𝑟𝑟2,𝐺𝐺 − 𝑥𝑥𝑟𝑟3,𝐺𝐺�

 +𝐹𝐹. (𝑥𝑥𝑟𝑟4,𝐺𝐺 − 𝑥𝑥𝑟𝑟5,𝐺𝐺) (12)

The fourth form is characterized by the notation "DE/best/2",

 𝑣𝑣𝐼𝐼,𝐺𝐺+1 = 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐺𝐺 + 𝐹𝐹. � 𝑥𝑥𝑟𝑟1,𝐺𝐺 − 𝑥𝑥𝑟𝑟2,𝐺𝐺�

 +𝐹𝐹. (𝑥𝑥𝑟𝑟3,𝐺𝐺 − 𝑥𝑥𝑟𝑟4,𝐺𝐺) (13)

The last form is characterized by the notation "DE/ current-
to-best /1",

 𝑣𝑣𝑖𝑖,𝐺𝐺+1 = 𝑥𝑥𝑖𝑖,𝐺𝐺 + 𝐹𝐹. �𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐺𝐺 – 𝑥𝑥𝑖𝑖,𝐺𝐺�
 +𝐹𝐹. (𝑥𝑥𝑟𝑟1,𝐺𝐺 − 𝑥𝑥𝑟𝑟2,𝐺𝐺) (14)
where F ∈ [0,2] is the mutant factor, which is determined

by the user, and 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐺𝐺 is the best individual of the
population in the present generation 𝐺𝐺 that has a minimal
objective function value.

The indexes i, r1, r2, r3, r4 and r5 are different integers ∈
{1, 2, . . . ,𝑁𝑁𝑁𝑁}, where i ≠ r1 ≠ r2 ≠ r3 ≠ r4 ≠ r5. They are
randomly generated once for each target vector.
3. Crossover

During this stage, the elements of the trail vector 𝑢𝑢𝑖𝑖,𝐺𝐺+1 is
formed by selecting some elements from the target
vector 𝑥𝑥𝑖𝑖,𝐺𝐺 and the remaining elements from the mutant
vector 𝑣𝑣𝑖𝑖,𝐺𝐺+1, according to the following equation [19-22]:

𝑢𝑢𝑗𝑗,𝑖𝑖,𝐺𝐺+1= �
 𝑣𝑣𝑗𝑗,𝑖𝑖,𝐺𝐺+1, 𝑖𝑖𝑖𝑖(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑗𝑗[0,1] ≤ 𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑗𝑗 = 𝑗𝑗𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
𝑥𝑥𝑗𝑗,𝑖𝑖,𝐺𝐺 , 𝑖𝑖𝑖𝑖(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑗𝑗[0,1] > 𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑗𝑗 ≠ 𝑗𝑗𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

(15)

where CR ∈ [0,1] is a control parameter called the
crossover rate, 𝑗𝑗𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is an integer random number ∈
 [1,2, … ,𝐷𝐷] , 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑁𝑁, 𝑗𝑗 = 1,2, … ,𝐷𝐷 and randj ∈
 [0,1] is the 𝑗𝑗th evaluation of a uniform random number.

To make sure that the resulted trial vector lies inside the
search domain, the following suggestion is used [23].

𝑢𝑢𝑗𝑗,𝑖𝑖,𝐺𝐺+1

=�
 xjU + randj,i . �xj,i,G − xjU �, if�uj,i,G+1 > xjU �
xjL + randj,i . �xj,i,G − xjL �, if�uj,i,G+1 < xjL �

 (16)

4. Selection
In this phase, the trial vector 𝑢𝑢𝑖𝑖,𝐺𝐺+1 and the target

vector 𝑥𝑥𝑖𝑖,𝐺𝐺 are compared, and the vector with the lowest
objective function value is selected for the next generation.
The selection equation is [20]:

𝑥𝑥𝑖𝑖,𝐺𝐺+1

 = � 𝑢𝑢𝑖𝑖,𝐺𝐺+1, 𝑖𝑖𝑖𝑖 �𝑓𝑓�𝑢𝑢𝑖𝑖,𝐺𝐺+1� ≤ 𝑓𝑓�𝑥𝑥𝑖𝑖,𝐺𝐺��
𝑥𝑥𝑖𝑖,𝐺𝐺 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (17)

where f is the objective function that is desired to be
optimized.

 DE Algorithm with Multi-mutation Strategies for SLAM
Problem

Several variants of the DE algorithm have been developed
with multi-mutation strategies to achieve a good balance
between exploration and exploitation rates. We made several
trials over the mutation strategies that are commonly used by
the different variants of the DE algorithm. We find that the
following three mutation strategies are well suited to be used
by the FastSLAM 2.0 algorithm for the SLAM Problem.

𝑣𝑣𝑖𝑖,𝐺𝐺+1

= �
𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐺𝐺 + 𝐹𝐹𝑖𝑖,1,𝐺𝐺. (𝑥𝑥𝑟𝑟1,𝐺𝐺 − 𝑥𝑥𝑟𝑟2,𝐺𝐺)
𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐺𝐺 + 𝐹𝐹𝑖𝑖,1,𝐺𝐺 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝐺𝐺

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑟𝑟1,𝐺𝐺, 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐺𝐺) + 𝐹𝐹𝑖𝑖,2,𝐺𝐺 × 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖,𝐺𝐺, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝐺𝐺)
(18)

The FastSLAM 2.0 algorithm uses these proposed
mutations with the DE algorithm to enhance its performance.
It tries to optimize particle weights to reduce particle
depletion and keep diversity among particles. We refer to the
enhanced algorithm as MDE- FastSLAM 2.0. Where 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐺𝐺
is the best individual in the population. 𝐹𝐹𝑖𝑖,1,𝐺𝐺 and 𝐹𝐹𝑖𝑖,2,𝐺𝐺
represent the mutant scaling factors for the suggested
mutation strategies. For each mutant vector, the scaling
factors are randomly chosen from a predefined range of
values. We use 𝐹𝐹𝑖𝑖 ,1,𝐺𝐺 ∈ 𝐹𝐹1 = [0.1 0.2 0.3 0.4 0.5] and 𝐹𝐹𝑖𝑖,2,𝐺𝐺 ∈
𝐹𝐹2 = [0.3 0.4 0.5 0.6 0.7], as recommended in [24].

These ranges suit the required search ability for the
proposed mutation strategies. 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝐺𝐺 and 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖,𝐺𝐺 represent
the two difference vectors with lower and higher objective
function values, respectively. These two difference vectors
are obtained as follows [24].

4

Journal of Engineering Research, Vol. 7 [2023], Iss. 3, Art. 44

https://digitalcommons.aaru.edu.jo/erjeng/vol7/iss3/44

https://erjeng.journals.ekb.eg/

Journal of Engineering Research (ERJ)
Vol.7 – No. 3, 2023

©Tanta University, Faculty of Engineering
ISSN: 2356-9441 https://erjeng.journals.ekb.eg/ e ISSN: 2735-4873

Doi: 10.21608/ERJENG.2023.235646.1242
157

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖,𝐺𝐺 =

�
𝑥𝑥𝑟𝑟2,𝐺𝐺 − 𝑥𝑥𝑟𝑟3,𝐺𝐺 , 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑥𝑥𝑟𝑟2,𝐺𝐺 − 𝑥𝑥𝑟𝑟3,𝐺𝐺) > 𝑓𝑓(𝑥𝑥𝑟𝑟4,𝐺𝐺 − 𝑥𝑥𝑟𝑟5,𝐺𝐺)
𝑥𝑥𝑟𝑟4,𝐺𝐺 − 𝑥𝑥𝑟𝑟5,𝐺𝐺 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(19)
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝐺𝐺 =

�
𝑥𝑥𝑟𝑟4,𝐺𝐺 − 𝑥𝑥𝑟𝑟5,𝐺𝐺 , if 𝑓𝑓(𝑥𝑥𝑟𝑟2,𝐺𝐺 − 𝑥𝑥𝑟𝑟3,𝐺𝐺) > 𝑓𝑓(𝑥𝑥𝑟𝑟4,𝐺𝐺 − 𝑥𝑥𝑟𝑟5,𝐺𝐺)
𝑥𝑥𝑟𝑟2,𝐺𝐺 − 𝑥𝑥𝑟𝑟3,𝐺𝐺 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(20)

where 𝑥𝑥𝑟𝑟1,𝐺𝐺, 𝑥𝑥𝑟𝑟2,𝐺𝐺, 𝑥𝑥𝑟𝑟3,𝐺𝐺, 𝑥𝑥𝑟𝑟4,𝐺𝐺 and 𝑥𝑥𝑟𝑟5,𝐺𝐺 represent five
individuals that are randomly chosen from the present
population.

The first mutation strategy is "DE/best/1". The other two
mutation strategies were selected from the proposed
mutations of the enhanced variant of the DE algorithm that is
developed in [24]. These three mutation strategies enhance
the search ability of the DE algorithm to suit the SLAM
Problem. It is self-evident that the search evolution of the
SLAM problem doesn't need for searching with a high
exploration rate. Therefore, this has been taken into
consideration for the three proposed mutations. The first and
second mutation strategies improve the ability of the
exploitation search. The third mutation strategy balances the
search abilities of exploration and exploitation.

The value of the crossover rate control parameter 𝐶𝐶𝐶𝐶 is
also affect the performance of the algorithm search ability .
It is randomly selected from a predefined range of values to
achieve the desired search ability. So, for the case of search
with high exploitation search, we use 𝐶𝐶𝐶𝐶 ∈ 𝐶𝐶𝑅𝑅1 = [0.8 0.85
0.9 0.95 1.0], as recommended in [24]. For the case of search
with a balanced search of exploration and exploitation, we
use 𝐶𝐶𝐶𝐶 ∈ 𝐶𝐶𝑅𝑅2 = [0.4 0.5 0.6 0.7 0.8], as recommended in
[24].

All the proposed mutation strategies are evaluated during
the first 50 iterations of the computational algorithm. After
that, the one that achieves the best results will be exclusively
used for the remaining number of iterations.

The fitness function that is used during the optimization
process of the enhanced MDE- FastSLAM 2.0 is the same as
in [11]:

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =
 𝑒𝑒𝑒𝑒𝑒𝑒{− 1

2𝑅𝑅𝑡𝑡
�𝑍𝑍𝑡𝑡,𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑧̂𝑧𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖 �2} (21)

Where 𝑅𝑅𝑡𝑡 is the observation noise covariance, and
𝑍𝑍𝑡𝑡,𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑧̂𝑧𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑖𝑖 is the variance between the actual and the
predicted observations, respectively. More information is
available at [5].

A pseudocode of the enhanced MDE- FastSLAM 2.0
algorithm is shown by Algorithm 1.

Algorithm 1. Pseudo-code of the proposed MDE-
FastSLAM 2.0 algorithm.

V.EXPERIMENTAL STUDY AND RESULTS

To show the performance of the enhanced MDE-
FastSLAM 2.0 algorithm, a comparison has been made with
other two algorithms that are commonly used to solve the
SLAM Problem. It is compared to the standard FastSLAM
2.0 algorithm [5] and the FastSLAM 2.0 algorithm that is
enhanced by a differential evolution algorithm (DE-
FastSLAM) [11].

This experiment is simulated using MATLAB R2018a
Runtime Environment. The FastSLAM 2.0 algorithm is
implemented using the MATLAB code developed by Bailey
[25].

Fig. 1 shows the tested environment map that is
considered a two-dimensional map with 35 landmarks and
17 robot waypoints [10, 11, 14, 16]. The blue trajectory
indicates real motion path of the robot, the red 'o' represents
the waypoint, the green '*' represents a real landmark, the red
'·' represents an estimated landmark, the green triangle
represents a real robot, and the red triangle represents an
estimated robot.

Start Algorithm
1) Sample new pose of robot for each particle Eq. (6)
2) Update the landmark of the observed features for

each particle
3) Compute the new weights of particles using Eq. (7)
4) Optimize the weight of particles using MDE
5) Generate the initial population 𝑃𝑃0 = [𝑥𝑥1,0, … , 𝑥𝑥𝑁𝑁𝑁𝑁,0]
6) Set the generation number G=0
7) Set the ranges of vectors 𝐹𝐹1 , 𝐹𝐹2 , C𝑅𝑅1 and 𝐶𝐶𝐶𝐶2
8) Select randomly the initial values of 𝐹𝐹𝑖𝑖,1,𝐺𝐺, 𝐹𝐹𝑖𝑖,2,𝐺𝐺,

and 𝐶𝐶𝐶𝐶
9) Evaluate fitness function of all population Eq. (21)
10) While G< 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 do
11) For all population do
12) Choose randomly five individuals 𝑥𝑥𝑟𝑟1,𝐺𝐺, 𝑥𝑥𝑟𝑟2,𝐺𝐺,

𝑥𝑥𝑟𝑟3,𝐺𝐺, 𝑥𝑥𝑟𝑟4,𝐺𝐺, and 𝑥𝑥𝑟𝑟5,𝐺𝐺
13) Calculate 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖,𝐺𝐺 and 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝐺𝐺 using Eqs. (19-20)
14) Calculate 𝑣𝑣𝑖𝑖,𝐺𝐺+1 using Eq. (18)
15) End for
16) Calculate 𝑈𝑈𝑖𝑖,𝐺𝐺+1using Eq. (15) for all population
17) Calculate 𝑋𝑋𝑖𝑖,𝐺𝐺+1using Eq. (17) for all population
18) Next generation (G=G+1)
19) End while
20) Update weight of particles based on optimizer
21) Resampling

End algorithm

5

Adel Attia, Mohamed Arafa, Mohamed TALAAT FAHIM: Enhancing FastSLAM 2.0 performance using a DE Algorithm with Mult

Published by Arab Journals Platform, 2023

https://erjeng.journals.ekb.eg/

Journal of Engineering Research (ERJ)
Vol.7 – No. 3, 2023

©Tanta University, Faculty of Engineering
ISSN: 2356-9441 https://erjeng.journals.ekb.eg/ e ISSN: 2735-4873

Doi: 10.21608/ERJENG.2023.235646.1242
158

Figure 1. The tested environment map.

The parameter settings during the simulation for the
FastSLAM 2.0 algorithm are used as in [10]. These settings
are given in Table 1.

Table 1. Parameter settings for FastSLAM 2.0 algorithm

Parameter Value Unit

The vehicle speed 1 m/s

The wheelbase 4 M

The control frequency 20 Hz

The maximum steering angle 30 ∗ pi/180 Rad

The maximum rate of change
in steer angle

20 ∗ pi/180 rad/s

The speed noise of a vehicle 0.1 m/s

The time interval between
observations

0.2 S

The distance of observation 30 M

The distance observation noise 0.1 M

The angle noise of observation 1.0 ∗ pi/180 Rad

Number of independent runs 30 Run

where 𝑚𝑚, 𝑠𝑠 and 𝑟𝑟𝑟𝑟𝑟𝑟 stand for meter, second and radian,
respectively.

The values of the control noise covariance 𝑄𝑄 and the
observation noise covariance 𝑅𝑅 are used as:

𝑄𝑄 = �
0.12 0

0 � 𝜋𝜋
180
�
2�, 𝑅𝑅 = �

0.12 0
0 � 𝜋𝜋

180
�
2�

The same fitness function represented by Eq. (21) is used
for the compared algorithms DE- FastSLAM and MDE-
FastSLAM 2.0 during the optimization process. Also, we use
the same population size (NP) = 10 and the same number of
iterations =1000 for these two algorithms. The settings of the
remaining parameters of the DE- FastSLAM algorithm are
used as in [11], where the mutant factor 𝐹𝐹 = 0.4, cross over
rate 𝐶𝐶𝐶𝐶 = 0.8 and the mutation form is "DE/rand/1".

VI.RESULT S

The results in terms of accuracy for the estimation process
of paths and landmarks are displayed in this section to
evaluate the performance for each one of the compared
algorithms.

Fig. 2 shows the estimated robot paths and landmark
positions when using 10 particles for the three compared
algorithms. The green trajectory indicates the actual path and
the blue one indicates the estimated path.

Considering the three compared algorithms, we can infer
from Fig. 2 that the estimated values by MDE-FastSLAM
2.0 algorithm for landmark positions and paths are mostly
consistent with the real values.

In addition to the previous comparison, we evaluate the
positioning error (PE) of the robot position for each
algorithm using 10 particles [26], as shown in Fig. 3. It
provides the absolute error between the actual position and
the corresponding average estimations of positions. The PE
can be determined using the following equation [14]:

(a) FastSLAM 2.0

(b) DE-FastSLAM

-100 -50 0 50 100

-80

-60

-40

-20

0

20

40

60

80

6

Journal of Engineering Research, Vol. 7 [2023], Iss. 3, Art. 44

https://digitalcommons.aaru.edu.jo/erjeng/vol7/iss3/44

https://erjeng.journals.ekb.eg/

Journal of Engineering Research (ERJ)
Vol.7 – No. 3, 2023

©Tanta University, Faculty of Engineering
ISSN: 2356-9441 https://erjeng.journals.ekb.eg/ e ISSN: 2735-4873

Doi: 10.21608/ERJENG.2023.235646.1242
159

(c) MDE-FastSLAM 2.0

Figure 2. Estimated and real representation for paths and landmarks.

𝑃𝑃𝑃𝑃𝑡𝑡 =

 ��∑ 𝑥𝑥𝑡𝑡𝑖𝑖𝑀𝑀
𝑖𝑖=1 𝑀𝑀⁄ − 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎�

𝑇𝑇�∑ 𝑥𝑥𝑡𝑡𝑖𝑖𝑀𝑀
𝑖𝑖=1 𝑀𝑀⁄ − 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎� (22)

where 𝑀𝑀 represents the number of particles, 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎 is the
actual robot pose, and 𝑥𝑥𝑡𝑡𝑖𝑖 is the predicted robot pose for the
𝑖𝑖th particle.

(a) Robot position error in X-axis

(b) Robot position error in Y-axis

Figure 3. The positioning error of robot poses.

As shown in Fig. 3, MDE-FastSLAM 2.0 algorithm
achieves the best estimation accuracy with robot positioning
error values less than 1.8 m in X-axis and less than 0.75 m in
Y-axis. While the positioning error values for the other
compared algorithms FastSLAM 2.0 and DE-FastSLAM are

less than 4.8 m and 2.2 m, in X-axis, and less than 2.9 m and
2.4 m, in Y-axis, respectively.

The root mean square error (RMSE) of the robot
positioning error values along the robot path for the
compared algorithms is calculated in Table 2, for 10, 30, and
50 particles. The proposed algorithm has the lowest RMSE
values of positioning error for all the considered cases of
different number of particles.

Table 2. RMSE of robot positioning error in meter

Algorithm
Number of Particles

10 30 50

FastSLAM 2.0 2.2751 2.1307 1.4711

DE-FastSLAM 1.4988 1.3432 1.1586

MDE-FastSLAM 2.0 0.8653 0.6902 0.6115

Similarly, the positioning error of landmark positions is
evaluated for each algorithm using 10 particles, as shown in
Fig. 4.

(a) landmark position error in X-axis

(b) landmark position error in Y-axis

Figure 4. The positioning error of landmark positions.

As shown in Fig. 4, MDE-FastSLAM 2.0 algorithm again
achieves the highest estimation accuracy with landmark
positioning error values less than 4.3 m in X-axis and less
than 3.3 m in Y-axis. While the positioning error values for
the other compared algorithms FastSLAM 2.0 and DE-
FastSLAM are less than 7 m and 5.2 m, in X-axis, and less
than 5.8 m and 4.4 m, in Y-axis, respectively.

The RMSE of the landmark positioning error values
achieved by the compared algorithms for the overall map for
is calculated in Table 3, for 10, 30, and 50 particles. The
proposed algorithm has the lowest RMSE values of
positioning error for all the considered cases of different
number of particles.

0 2000 4000 6000 8000 10000 12000 14000

Number of robot position

0

1

2

3

4

5

Er
ro

r o
f r

ob
ot

 p
os

iti
on

 (m
)

FastSLAM2.0

DE-FastSLAM

MDE-FastSLAM

0 2000 4000 6000 8000 10000 12000 14000

Number of robot position

0

0.5

1

1.5

2

2.5

3

Er
ro

r o
f r

ob
ot

 p
os

iti
on

 (m
)

FastSLAM2.0

DE-FastSLAM

MDE-FastSLAM

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of landmark

0

1

2

3

4

5

6

7

Er
ro

r o
f l

an
dm

ar
k

(m
)

FastSLAM2.0

DE-FastSLAM

MDE-FastSLAM

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of landmark

0

1

2

3

4

5

6

Er
ro

r o
f l

an
dm

ar
k

(m
)

FastSLAM2.0

DE-FastSLAM

MDE-FastSLAM

7

Adel Attia, Mohamed Arafa, Mohamed TALAAT FAHIM: Enhancing FastSLAM 2.0 performance using a DE Algorithm with Mult

Published by Arab Journals Platform, 2023

https://erjeng.journals.ekb.eg/

Journal of Engineering Research (ERJ)
Vol.7 – No. 3, 2023

©Tanta University, Faculty of Engineering
ISSN: 2356-9441 https://erjeng.journals.ekb.eg/ e ISSN: 2735-4873

Doi: 10.21608/ERJENG.2023.235646.1242
160

Table 3. RMSE of landmark positioning error in meter

Algorithm
Number of Particles

10 30 50

FastSLAM 2.0 1.4785 1.3914 1.2847

DE-FastSLAM 1.2757 1.2115 1.1512

MDE-FastSLAM 2.0 0.5717 0.5412 0.4950

The RMSE curves of the robot position for the compared
algorithms are shown in Fig. 5. The particle number changes
from 0 to 100. It indicates that the proposed algorithm has
achieved the minimum RMSE values compared to the other
two algorithms.

Figure 5. RMSE error of robot poses.

All the previous results demonstrate that the proposed
algorithm outperformed the other compared algorithms in
terms of accuracy of robot and landmark positions. It was
able to reduce the impact of the particle depletion problem
while maintaining diversity among particles.

VII.CONCLUSION AND FUTURE WORK

 In this work, we proposed an enhanced FastSLAM 2.0
algorithm, denoted by MDE-FastSLAM 2.0, based on an
enhanced differential evolution (DE) with multi-mutation
strategies to reduce the effect of the particle depletion
problem and enhance the performance of FastSLAM 2.0
algorithm in solving the SLAM problem. The enhanced
algorithm uses three proposed mutations with the DE
algorithm to enhance its performance. It tries to optimize
particle weights and keep diversity among particles.

During the optimization process, the proposed mutation
strategies are evaluated through the first 50 iterations of the
computational algorithm. After that, the one that achieves
the best results is used for the remaining iterations. To
evaluate the performance of the MDE-FastSLAM 2.0
algorithm, a comparison has been made with other two
common algorithms: the standard FastSLAM 2.0 algorithm
and the enhanced DE-FastSLAM algorithm. All the
compared algorithms are used to estimate the robot and
landmarks positions for a SLAM problem. According to the
obtained results, the enhanced algorithm outperformed the
compared algorithms as it could achieve high accuracy in
estimating the robot positions and landmarks through all the
considered cases.

For a future work, we can make a hybridization between
the enhanced differential evolution using the proposed
mutation strategies with a particle swarm optimization (PSO)

algorithm. The resulting algorithm can be used with the
FastSLAM 2.0 algorithm to further improve the estimation
accuracy and increase the particles diversity for SLAM
problem.

Funding: The authors should mention if this research has
received any type of funding.

Conflicts of Interest: The authors should explicitly declare
if there is a conflict of interest.

REFERENCES
[1] L. Wang, Z. Cai, "Progress of CML for Mobile Robots in Unknown

Environments", Robot, 2004, 26(4):380-384.
[2] Y. Bar-Shalom and T. E. Fortmann, "Tracking and Data Association",

Academic Press, 1988.
[3] J.D. Tard´os, J. Neira, P. Newman, and J. Leonard, "Robust mapping

and localization in indoor environments using sonar data", TR TM
2001-04, MIT, 2001.

[4] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, "FastSLAM: A
factored solution to the simultaneous localization and mapping
problem", In: Proceedings of the Eighteenth National Conference on
Arti_cial Intelligence; 2002; Menlo Park, CA, USA. Palo Alto, CA,
USA: AAAI.pp. 593-598.

[5] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, " FastSLAM 2.0:
An Improved Particle Filtering Algorithm for Simultaneous
Localization and Mapping that Provably Converges", In: Proceedings
of IJCAI 2003.

[6] C. Kim, R. Sakthivel, WK. Chung, "Unscented FastSLAM: A robust
algorithm for simultaneous localization and mapping problem", In:
Proceedings of the IEEE International Conference on Robotics &
Automation; 2007; Rome, Italy. New York, NY, USA: IEEE. pp.
2439-2445

[7] M. Montemerlo, S. Thrun, "Simultaneous localization and mapping
with unknown data association using FastSLAM", In: IEEE
International Conference on Robotics and Automation; 2003;
Piscataway, NJ, USA. New York, NY, USA: IEEE. pp. 1985–1991.

[8] T. Bailey, J. Nieto, and E. Nebot, "Consistency of the FastSLAM
algorithm", in Proc. IEEE Int. Conf. Robotics and Automation, 2006,
pp.424-429.

[9] L. Heon-Cheol, P. Shin-Kyu, C. Jeong-Sik, and L. Beom-Hee, "PSO-
FastSLAM: An improved FastSLAM framework using particle swarm
optimization", In IEEE International Conference on Systems, Man and
Cybernetics, pp. 2763-2768 (2009).

[10] Y.-m. Xia and Y.-m. Yang, "An Improved FastSLAM Algorithm
Based on Genetic Algorithms", In Information and Automation. vol.
86, L. Qi, Ed., ed: Springer Berlin Heidelberg, pp. 269-302 (2011).

[11] H. Ankişhan, F. Ari, E. Ö. Tartan, and A. G. Pakfiliz, "Square root
central difference-based fast SLAM approach improved by differential
evolution", Turkish J. Electr. Eng. Comput. Sci., vol. 24, no. 3, pp.
994–1013, 2016, doi: 10.3906/elk-1307-55.

[12] A. R. Khairuddin, M. S. Talib, H. Haron, and M. Y. C. Abdullah,
"GA-PSO-FASTSLAM: A hybrid optimization approach in improving
fastSLAM performance", Adv. Intell. Syst. Comput., vol. 557, pp. 57–
66, 2017, doi: 10.1007/978-3-319-53480-0_6.

[13] H. Peng, C. Ying, S. Tan, B. Hu, and Z. Sun, "An Improved Feature
Selection Algorithm Based on Ant Colony Optimization", IEEE
Access, vol. 6, pp. 69203–69209, 2018, doi:

[14] X. Lei, B. Feng, G. Wang, W. Liu, and Y. Yang, "A novel fastSLAM
framework based on 2D lidar for autonomous mobile robot",
Electron., vol. 9, no. 4, pp. 1–25, 2020, doi:
10.3390/electronics9040695.

[15] R. Havangi, "Robust Square-Root Cubature FastSLAM with Genetic
Operators", Robotica, vol. 39, no. 4, pp. 665–685, 2021, doi:
10.1017/S026357472000065X.

[16] D. Zhu, Y. Ma, M. Wang, J. Yang, Y. Yin, and S. Liu, "LSO‐
FastSLAM: A New Algorithm to Improve the Accuracy of
Localization and Mapping for Rescue Robots", Sensors, vol. 22, no. 3,
2022, doi: 10.3390/s22031297.

0 10 20 30 40 50 60 70 80 90 100

number of particles

1.5

2

2.5

3

3.5

4

R
M

S
er

ro
r o

f r
ob

ot
 p

os
es

FastSLAM

DE-FastSLAM

MDE-FastSLAM

8

Journal of Engineering Research, Vol. 7 [2023], Iss. 3, Art. 44

https://digitalcommons.aaru.edu.jo/erjeng/vol7/iss3/44

https://erjeng.journals.ekb.eg/

Journal of Engineering Research (ERJ)
Vol.7 – No. 3, 2023

©Tanta University, Faculty of Engineering
ISSN: 2356-9441 https://erjeng.journals.ekb.eg/ e ISSN: 2735-4873

Doi: 10.21608/ERJENG.2023.235646.1242
161

[17] A. Doucet, N. de Freitas, K. Murphy, and S. Russell, "Rao-
blackwellised particle filtering for dynamic bayesian networks", In
Proceedings of the Sixteenth Conference on Uncertainty in Artificial
Intelligence, pages 176–183, Stanford, 2000.

[18] K. V. Price, "An Introduction to Differential Evolution", New Ideas in
Optimization, McGraw-Hill, London, UK, pp. 79-108, 1999.

[19] M. Ramadas, A. Abraham, "Metaheuristics for Data Clustering and
Image Segmentation", Intelligent Systems Reference Library, springer,
Switzerland, ISBN: 9783030040963, Vol. 152, 2019.

[20] S. Das and P. N. Suganthan, "Differential Evolution: a Survey of The
State-of-the-art", IEEE Transactions on Evolutionary Computation,
Vol. 15, No. 1, pp. 4-31, 2011.

[21] K. Opara, J. Arabas, "Comparison of Mutation Strategies in
Differential Evolution – A probabilistic Perspective", Swarm and
Evolutionary Computation, Vol. 39, pp. 53-69, 2018.

[22] [G. Wu, X. Shen, H. Li, H. Chen, A. Lin, P. N. Suganthan, "Ensemble
of Differential Evolution Variants", Information Sciences, Vol. 423,
pp. 172–186, 2018.

[23] K. Price, R. Storn, and J. Lampinen, "Differential Evolution: A
Practical Approach to Global Optimization ", Berlin, Germany:
Springer, 2005.

[24] M. A. Attia, M. Arafa, E. A. Sallam, and M. M. Fahmy, "An
Enhanced Differential Evolution Algorithm with Multi-mutation
Strategies and Self-adapting Control Parameters", International
Journal of Intelligent Systems and Applications, vol. 11, no. 4. pp. 26–
38, 2019. doi: 10.5815/ijisa.2019.04.03.

[25] T. Bailey: SLAM Simulation Toolbox. https://www-
personal.acfr.usyd.edu.au/tbailey/software/slam_simulations.htm (Last
Accessed in 20 September 2023).

[26] X. Chen, H. Sun, and H. Zhang, "A new method of simultaneous
localization and mapping for mobile robots using acoustic landmarks",
Appl. Sci., vol. 9, no. 7, 2019, doi: 10.3390/app9071352

9

Adel Attia, Mohamed Arafa, Mohamed TALAAT FAHIM: Enhancing FastSLAM 2.0 performance using a DE Algorithm with Mult

Published by Arab Journals Platform, 2023

https://erjeng.journals.ekb.eg/

	Enhancing FastSLAM 2.0 performance using a DE Algorithm with Multi-mutation Strategies
	Recommended Citation

	H. A. Attia, Mohamed Saidahmed, M. Arafa
	1. Sampling new pose:
	2. Updating the observation landmark:
	3. Calculating importance weight:
	4. Resampling:
	A. The Basic DE Algorithm
	1. Initialization
	2. Mutation
	3. Crossover
	4. Selection

	B. DE Algorithm with Multi-mutation Strategies for SLAM Problem

