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Abstract: The purpose of this paper is to introduce study and analyze a new stochastic order that lies in the framework of 
the discrete mean residual life and the convexity orders. Several preservation properties of the new order under reliability 
operations of monotone transformation, mixture, weighted distributions and shock models are discussed. In addition, two 
characterization properties of the new order based on the concept of discrete residual life at random time and the concept of 
excess lifetime in discrete renewal processes are given. Finally, we introduce some new applications of this order in the 
context of reliability theory. 
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1 Preliminaries 
 
 
 
 
 
 
 

In this section we introduce the topic considered in this paper, motivations, definitions and relevant facts. 
Stochastic ordering is a fundamental guide for decision making under uncertainty. Two well-known stochastic orders that 
have been introduced and studied in reliability theory are the discrete hazard rate (D-HR) order and the discrete mean 
residual life (D-MRL) order, whose definitions are recalled here. 

Let X and Y be two random variables having distribution functions 𝐹 and	𝐺, respectively, and denote by 𝐹	(𝑓) and 
𝐺	(𝑔) their respective survival (density) functions.  

The lifetime random variable 𝑋 is said to be smaller than Y 
a) in the d-HR order (denoted as X ≤,-./ 	Y ) if G(k)/F(K) is non-decreasing in 𝑘 ∈ {1, 2,3, . . }. 

b) in d-MRL order (denoted as X ≤,->/?	@ Y ) if 

∑ B(C)D
EFG

∑ H(C)D
EFG

	   is non-decreasing in 𝑘 ∈ {1, 2,3, … }. 

Recently, another stochastic ordering has evolved in reliability and life testing problems [1]. To the best of our 
knowledge this article introduces a discrete analog to this interesting concept. We begin with some terminology. 

The lifetime random variable X is said to be smaller than Y in the discrete combination convexity order (denoted 
as	X ≤,-JJK Y ) if 

∑ 𝑢𝐺(𝑢)M
CNO

∑ 𝑢𝐹(𝑢)M
CNO

								is			non − decreasing	in	k	for	all	k = 0,1,2, …	

 
For the non-negative random variable X with	𝜇	 = 	𝐸(𝑋) < ∞, the random variable 𝑋	c is called the equilibrium version 
associated with X with survival function (cf. [2],[3] and [4]). A discrete analog is defined by 

𝐹def(𝑡) =
1
𝜇h𝐹d(𝑢)

M

CNO

		for	all	k = 0,1,2, …	

It is not hard to prove that the MRL order can be characterized in terms of the D-HR order as given below 
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																																																		𝑋 ≤i-jkl Y	Û	𝑋f ≤i-mk 𝑌f		,																																											(1.1) 
By mimicking the result in [5]. 
Let X have the density function 𝑓 and let 𝑤	be a non-negative function such that  
                      

𝐸(𝑤(𝑋)) 	< ∞.	

Then, in accordance with [6], define a random variable 𝑋p	with density 
 

𝑓p(𝑥) =
𝑤(𝑥)𝑓(𝑥)
𝐸r𝑤(𝑋)s

, for	all	𝑥 ∈ ℝu. 

The random variable 𝑋p	is the weighted version of X with weight function	𝑤. A special case of interest arises when 
the weight function is of the form	𝑤(𝑥) 	= 	𝑥v, for some	𝛼 > 0. Such distributions are known as size-biased distributions 
of order	𝛼. The most common cases of size-biased distributions occur when	𝛼 = 1or	2. These special cases are termed as 
length and area-biased, respectively. Suppose that (𝑋f)p	be the weighted versions of	𝑋c , with weight function w, Then, the 
density functions of (𝑋f)p	is given by ([7],[8],[9],[10]). 

 

𝑓(ef)y(𝑡) =
𝑤(𝑡)𝐹d(𝑡)

∑ 𝑤(𝑢)𝐹d(𝑢)M
CNz

 

Similarly define (𝑌f)p and	𝑔({f)y(𝑡). To compare 𝑋fp and 𝑌fp with respect to the D-HR order, we have rXcs
p
≤,-./ rYcsp if, 

and only if 

		
∑ 𝑤(𝑥)𝐹d(𝑥)M
|NO

𝐹d(𝑘)
≤
∑ 𝑤(𝑥)𝐺̅(𝑥)M
|NO

𝐺̅(𝑘)
	 , for	all	k		0,1,2, …																																																					(1.2) 

For weighted random variables 𝑋p	and 𝑌p	associated with X and Y, with an increasing weight function w, an 
analogous result to Theorem 9(a) in [11]  states that X ≤,-./ Y implies Xp ≤,-./ Yp. Here, if we assume that 𝑤 is an 
increasing weight function, then 

 
																																		𝑋f ≤i-mk 𝑌f	Þ	r𝑋fs

p
≤i-mk r𝑌fsp																																																																													(1.3) 

 
In order to compare two lifetime variables based on the D-HR of the length-biased versions of their equilibrium 

distributions we consider the increasing weight function	𝑤(𝑥) 	= 	𝑥. In view of (1.1) and (1.3) if 	𝑋 ≤i-jkl Y	 then 
r𝑋fs

p
≤i-mk r𝑌fsp when w(x) = x. So, the D-HR order of length-biased versions of 𝑋fand 𝑌f  is a weaker order than the 

original D-MRL order. Motivated by this, we propose the following stochastic order. 
 

Definition 1.1 
The lifetime random variable X is said to be smaller than the lifetime variable Y in the combination discrete mean residual 
life order (denoted by	𝑋	 ≤i-~jkl 	𝑌 ) if. 
 

∑ 𝑥𝐹d(𝑥)M
|NO

𝐹d(𝑘)
≤
∑ 𝑥𝐺̅(𝑥)M
|NO

𝐺̅(𝑘)
	 , for	all	k = 0,1,2, …																			 

 
As demonstrated in Theorem 2.1. (iii) of Section 2 below, the combination discrete mean residual life (D-CMRL) order lies 
in the framework of the D-MRL and the combination discrete convexity (D-CCX) orders. As a result, the study of the D-
CMRL order is meaningful because it throws an important light on the understanding of the properties of the D-MRL and 
the D-CCX orders, and of the relationships among these two orders and other related stochastic orders. Furthermore, the D-
CMRL order enjoys several reliability properties which provide some applications in reliability and survival analysis. 

 
Definition 1.2 
A non-negative function β(x, y)	is said to be totally positive of order 2 (TP�) in (x, y) ∈ c	´	g if  
 

�
β(x�, y�) β(x�, y�)
β(x�, y�) β(x�, y�)

� ≥ 0 
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for all x� ≤ 	 x� ∈ c and y� ≤ y� ∈ g in which c	and	g	 are two real subsets of ℝ. 
Definition 1.3 
Probability vector α = (α�, α�, … , α�)	with α� > 0 for i	 = 	1, 2, … , n is said to be smaller than another probability vector 
β = (β�, β�, … , β�) in the sense of discrete likelihood ratio order (denoted as α ≤,?/ β) if 

β�
α�
≤
β�
α�
	 , for	all	1 ≤ i ≤ j ≤ n 

 
The remainder of this paper is organized as follows. In Section 2, some characterizations and implications 

regarding the D-CMRL order are provided. Preservation properties under some reliability operations such as monotonic 
transformation and mixture are discussed in Section 3. In that section, we discuss preservation of the D-CMRL order under 
general weighted distributions. In Section 4, to illustrate the concepts, some applications in the context of reliability theory 
are included. Finally, in Section 5, we give a brief conclusion, and some remarks of the current and future of this research. 

2 Characterizations and Implications 
The objective of this section is to build relations between the D-CMRL order with other well-known stochastic orders. 

Some relevant characterization results are also discussed.  
In the following theorem, some equivalent conditions to the D-CMRL order are given. 
 

Theorem 2.1  
Let X and Y be two lifetime random variables. The following assertions are equivalent: 

i) 𝑋 ≤i-~jkl 𝑌.  
ii) 

∑ |B(|)D
�F�

∑ |H(|)D
�F�

		is	non − decreasing	in	𝑡 ∈ ℝu.		 

iii) 𝐸r(𝑋�|𝑋 > 𝑡)s ≤ 𝐸r(𝑌�|𝑌 > 𝑡)s, for	all	𝑡 ∈ ℝu. 

 

Proof 
We first prove that (i) and (ii) are equivalent. We have 
  

∑ 𝑥𝐺̅(𝑥)M
|N�

∑ 𝑥𝐹d(𝑥)M
|N�

=
𝑡𝐺(𝑡) + ∑ 𝑥𝐺̅(𝑥)M

|N�u�

𝑡𝐹(𝑡) + ∑ 𝑥𝐹d(𝑥)M
|N�u�

	. 

The	above		Equation	can	be	rewritten	as	 
 

h𝑥𝐺̅(𝑥)
M

|N�

h 𝑥𝐹d(𝑥)
M

|N�u�

+ 𝑡𝐹(𝑡)h𝑥𝐺̅(𝑥)
M

|N�

−h𝑥𝐹d(𝑥)
M

|N�

h 𝑥𝐺̅(𝑥)
M

|N�u�

− 𝑡𝐺(𝑡)h𝑥𝐹d(𝑥)
M

|N�

= 0. 

 
Then		

h𝑥𝐺̅(𝑥)
M

|N�

h 𝑥𝐹d(𝑥)
M

|N�u�

−h𝑥𝐹d(𝑥)
M

|N�

h 𝑥𝐺̅(𝑥) +
M

|N�u�

�𝑡𝐹(𝑡)h𝑥𝐺̅(𝑥)
M

|N�

− 𝑡𝐺(𝑡)h𝑥𝐹d(𝑥)
M

|N�

� = 0 

 
By definition, the last term is nonnegative if and only if	X ≤,-J>/? 	Y where  
 

∑ 𝑥𝐹d(𝑥)M
|N�

𝐹d(𝑡)
≤
∑ 𝑥𝐺̅(𝑥)M
|N�

𝐺̅(𝑡)
	. 

Or equivalently 
                                        𝑡𝐹d(𝑡)∑ 𝑥𝐺̅(𝑥)M

|N� ≥ 𝑡𝐺̅(𝑡) ∑ 𝑥𝐹d(𝑥)M
|N� . 

Then 
 

∑ 𝑥𝐺̅(𝑥)M
|N�

∑ 𝑥𝐹d(𝑥)M
|N�

	is	non − decreasing	in	𝑡 ∈ {1,2,3, … }. 

Next we prove that (i) and (iii) are equivalent. Note that 
𝑚e(𝑡) = 𝑡𝐸(𝑋�) +

�
�
𝐸(𝑋�)� =

�
�
𝐸[𝑋� − 𝑡�|𝑋 > 𝑡], for	all	t = 0,1,2, … 
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Similarly, 
𝑚{(𝑡) =

�
�
𝐸[𝑌� − 𝑡�|𝑌 > 𝑡] 

Hence we have  
𝑋 ≤i-~jkl 𝑌		Û	𝑚e(𝑡) ≤ 𝑚{(𝑡)												for	all	t = 0,1,2, … 

Û	�
�
𝐸[𝑌� − 𝑡�|𝑌 > 𝑡] ≤ �

�
𝐸[𝑋� − 𝑡�|𝑋 > 𝑡], for	all	t = 0,1,2, … 

Û𝐸[𝑌�|𝑌 > 𝑡] ≤ 𝐸[𝑋�|𝑋 > 𝑡]	,																							for	all	t = 0,1,2, …, 
This completes the proof. 
 
In general, the CMRL order does not imply the MRL order. However, the next theorem provides a sufficient condition 
under which 

X ≤,-J>/? Y	implies	X ≤,->/? Y 
 

Theorem 2.2 
∑ ∑ 𝑢𝐺̅(𝑢)M

CN|
M
|N�

𝐺̅(𝑡)
≤
∑ ∑ 𝑢𝐹d(𝑢)M

CN|
M
|N�

𝐹d(𝑡)
	 , for	all	t = 0,1,2, …							 

Then, 	X ≤,-J>/? Y	implies	X ≤,->/? Y. 
 
Proof 
First, let     µK(t) =

∑ ¢£¤(¢)D
¥F¦
£¤(§)

,				for	all	t = 0,1,2, …, which is the MRL of the discrete random variable X. We can write, 
for	all	t = 0,1,2, … 
 

∑ ∑ 𝐹d(𝑢)M
CN|

M
|N�

𝐹d(𝑡)
=
∑ (𝑢 − 𝑡)𝐹d(𝑢)M
CN|

𝐹d(𝑡)
			= 𝑚e(𝑡) − 𝑡𝜇e(𝑡). 

Similarly, we can get 
∑ ∑ 𝐺̅(𝑢)M

CN|
M
|N�

𝐺̅(𝑡)
= 𝑚{(𝑡) − 𝑡𝜇{(𝑡). 

Therefore, by assumptions, for	all	t = 0,1,2, …	,		m@(t) − mK(t) 	+ ¨
∑ ∑ £¤(©)D

ªF¥
D
¥F¦

£¤(§)
− ∑ ∑ «¤(©)D

ªF¥
D
¥F¦

«¤(§)
¬  ≥ 0,	 which completes 

the proof. 
 
The following definition is needed to define a family of stochastic orders arising from HR comparison with size-biased 
equilibrium distributions. 
 
Definition 2.1 
For each fixed	α ∈ [0,∞), the lifetime random variable X is said to be smaller than Y in the  discrete combination mean 
residual life order of order α , denoted by 

𝑋 ≤i-~jkl
(v) 𝑌, if 

 
∑ 𝑥v𝐹d(𝑥)M
|N�

𝐹d(𝑡)
≤
∑ 𝑥v𝐺̅(𝑥)M
|N�

𝐺̅(𝑡)
	 , for	all	t = 0,1,2, …,																																											(2.1) 

or equivalently if 
∑ 𝑥v𝐹d(𝑥)M
|N�

∑ 𝑥v𝐺̅(𝑥)M
|N�

	is	non − decreasing	in	t	 ∈ 	ℝu.																																																				(2.2) 

 
It is observed that when α = 0	and	α = 1,	the		X ≤,-J>/?

(­) Y		correspond to X ≤,->/? Y and X ≤,-J>/? Y, respectively. 
Below we give some useful implications. 
 

Theorem 2.3 
Let α ≤ β ∈ [0,∞)	be	fixed. Then 

i) 𝑋 ≤i-~jkl
(v) 𝑌	implies 𝑋 ≤i-~jkl

(®) 𝑌. 
 

ii) 𝑋 ≤i-~jkl
(v) 𝑌	implies ∑ 𝑥v[𝐺̅(𝑥) − 𝐹d(𝑥)] ≥ 0	, for	all	t = 0,1,2, …,									M

|N�   
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Proof 
For each fixed  α ≤ β ∈ [0,∞) and for	all	t = 0,1,2, …, one has 
 

h𝑥v ¯
𝐺̅(𝑥)
𝐺̅(𝑡)

−
𝐹d(𝑥)
𝐹d(𝑡)°

M

|N�

=h𝑥®-v		∆ �h¯
𝑢v𝐺̅(𝑢)
𝐺̅(𝑡)

−
𝑢v𝐹d(𝑢)
𝐹d(𝑡) °

|

CNz

�
M

|N�

=h ℎ(𝑥)𝑤�(𝑥).
M

|Nz
 

Where h(x) 	= x³-­ which is nonnegative and increasing in	x	 > 	0, and ∆W§(x) 	= 	w§(x),W§(x) = ∑ ¨©
µ«¤(©)
«¤(§)

−¢
©Nz

©µ£¤(©)
£¤(§)

¬ with 
 

𝑤�(𝑥) = ¯
𝑥v𝐺̅(𝑥)
𝐺̅(𝑡)

−
𝑥v𝐹d𝑥
𝐹d(𝑡) °

		∀	𝑥 > 𝑡, and	0	otherwise. 

Because of (2.1), for all 0 ≤ s ≤ t, we have 

𝑊(𝑥) = 𝑊�(𝑥) =h¯
𝑥v𝐺̅(𝑥)
𝐺̅(𝑡)

−
𝑥v𝐹d(𝑥)
𝐹d(𝑡) °

M

|N�

 

In addition, because of (2.2), for all 0 ≤ t ≤ s, it stands that 
 

∑ 𝑥v𝐺̅(𝑥)M
|N�

∑ 𝑥vM
|N� 𝐹d(𝑥)

≤
∑ 𝑥v𝐺̅(𝑥)M
|N¸

∑ 𝑥vM
|N¸ 𝐹d(𝑥)

																																																		(2.3)		 

 
and in view of (2.1) we can write, for all t ∈ [0,1,2, … }, 
 

∑ 𝑥v𝐺̅(𝑥)M
|N�

∑ 𝑥vM
|N� 𝐹d(𝑥)

≥
𝐺̅(𝑡)
𝐹d(𝑡)

																																																																(2.4) 
 Combining (2.3) and (2.4), for all 0 ≤ t ≤ s, we arrive at 
 

∑ 𝑥v𝐺̅(𝑥)M
|N¸

∑ 𝑥vM
|N¸ 𝐹d(𝑥)

≥
𝐺̅(𝑡)
𝐹d(𝑡)

										 

Therefore, for all 0 ≤ t ≤ s, we have 

h¯
𝑥v𝐺̅(𝑥)
𝐺̅(𝑡)

−
𝑥v𝐹d(𝑥)
𝐹d(𝑡) °

M

|N¸

 

Thus, for all s, t ≥ 0 it holds that 
 

h		∆ �h ¯
𝑢v𝐺̅(𝑢)
𝐺̅(𝑡)

−
𝑢v𝐹d(𝑢)
𝐹d(𝑡) °

|

CNz

�
M

|N¸

for	all	𝑠, 𝑡  

Applying a discrete version of Lemma 7.1(a) in [11], gives that  
 

h ℎ(𝑥)𝑤�(𝑥)
M

|Nz
𝑓𝑜𝑟	𝑎𝑙𝑙	𝑡 , and	hence	the	result	in	(i). 

(ii)In the light of (2.3) and (2.4), and substituting t=0, for all 𝑠 ≥ 0 we have 
 

∑ 𝑥v𝐺̅(𝑥)M
|N¸

∑ 𝑥vM
|N¸ 𝐹d(𝑥)

∑ 𝑥v𝐺̅(𝑥)M
|Nz

∑ 𝑥vM
|Nz 𝐹d(𝑥)

≥
𝐺̅(0)
𝐹d(0)

 

which proves the result. 
 
The following corollary follow easily form Theorem 2.3. 
Corollary 2.1 
Let X and Y be two lifetime random variables. Then 

i) 𝑋 ≤i-jkl 𝑌 implies  𝑋 ≤i-~jkl
v 𝑌, for	all	𝛽 ≥ 0. 

ii) 𝑋 ≤i-~jkl 𝑌 implies  𝑋 ≤i-~jkl
® 𝑌, for	all	𝛽 ≥ 1. 

iii) 𝑋 ≤i-~jkl 𝑌 implies  𝑋 ≤i-~~e 𝑌, for	all	𝑠 ≥ 0. 

.0³

.0³ .0³

.0³ .0³

³
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In many reliability problems, it is interesting to study X@ 	= 	 [X − 	Y|X	 	> Y	],	 the residual life of X with a random age 
Y. The residual life at random time (RLRT) represents the actual working time of the standby unit if X is regarded as the 
total random life of a warm standby unit with its age Y. Suppose that X and Y are independent. Then, the survival function 
of X@, for any x ≥ 0, is given by 

𝑃(𝑋{ > 𝑥) =
∑ 𝐹d(𝑥 + 𝑦)𝑔(𝑦)M
|Nz

∑ 𝐹d(𝑦)𝑔(𝑦)M
|Nz

																																								(2.5) 
 
Theorem 2.4 
X@ ≤,-J>/? X for any Y which is independent of X, if and only if, X§ ≤,-J>/? X for all t = 0,1,2,…. 
 
Proof 
First, let 
X§ ≤,-J>/? X for all t = 0,1,2,…. It then follows that, for all s = 1,2, … 
 

h𝑥𝐹d(𝑡 + 𝑥) ≤
𝐹d(𝑡 + 𝑥)
𝐹d(𝑠)

M

|N¸

h𝑥𝐹d(𝑥)
M

|N¸

																																					(2.6) 

 
By summing both sides of (2.6) over all nonnegative integral values of t and the pdf g, we have 
 

hh𝐹d(𝑡 + 𝑥)𝑔(𝑡)
M

|N¸

≤h�
𝐹d(𝑡 + 𝑥)
𝐹d(𝑠)

h𝑥
M

|N¸

𝐹d(𝑥)𝑔(𝑡)�
M

�Nz

M

�Nz

 

h𝐹d(𝑡 + 𝑥)𝑔(𝑡) ≤
∑ 𝑥M
|N¸ 𝐹d(𝑥)
𝐹d(𝑠)

M

�Nz

 

which is equivalent to saying that X@	 ≤,-J>/? 	X, for all Y that are independent from X. On the other hand, suppose that 
X@	 ≤,-J>/? 	X holds for any nonnegative random variable Y. Then	X§	 ≤,-J>/? 	X, for all t	 = 0,1, … follows by taking Y 
as a degenerate variable. 

3 Preservation Properties  
In this section, we develop some preservation properties of the CMRL order under some reliability operations such as 

monotone transformation and mixture. The next result shows that the CMRL order is preserved under monotone increasing 
convex transformations. 

 

Theorem 3.1 
Let ϕ be strictly increasing and convex such that ϕ(0) = 0, Then, X ≤,-J>/?Y implies	ϕ(X) ≤,-J>/? ϕ(Y). 

 
Proof 
Without loss of generality, assume that ϕ	is differentiable and denote its first derivative by ϕÅ . 
Notice that X ≤,-J>/?Y implies that, for all t = 0,1, … 

 

h ¯
𝑥𝐺(𝑥)

𝐺(𝜙-�(𝑡))
−

𝑥𝐹(𝑥)
𝐹(𝜙-�(𝑡))

°
M

|NÇÈÉ(�)

≥ 0 

 
On the other hand, 	X ≤,-J>/? Y	if and only if, for all t = 0,1, … 
 

∑ 𝑥𝑃(𝜙(𝑌) > 𝑥)M
|N�

𝑃(𝜙(𝑌) > 𝑥) ≥
∑ 𝑥𝑃(𝜙(𝑋) > 𝑥)M
|N�

𝑃(𝜙(𝑋) > 𝑥) , 

 
which is equivalent to, for all t = 0,1, … 
 

h 𝛾(𝑥) ¯
𝑥𝐺(𝑥)

𝐺(𝜙-�(𝑡))
−

𝑥𝐹(𝑥)
𝐹(𝜙-�(𝑡))

°
M

|NÇÈÉ(�)

≥ 0 
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where	γ(x) = Ì(¢)ÌÍ(¢)
¢

 . Its well-known that if ϕ(x) is nonnegative and convex with	ϕ(0) 	= 	0, then ϕ(x)/x is non-
decreasing. Thus, due to the assumption, γ(x)	is the product of two nonnegative non-decreasing functions and hence γ(x)	is 
non-decreasing. Finally, Lemma 7.1(a) of [12] concludes the proof.  
 

Theorem 3.2 
Let X, Y, and Θ be random variables such that	[X|Θ = θ] ≤,-J>/? [Y|Θ = θÅ] for all θ	and θÅin the support of Θ. 
Then	X ≤,-J>/? Y. 
 

Proof 
Select	θ and θÅ in the support of	Θ. Let F(∙ |θ	), G(∙ |θ	), F(∙ |θÅ	), and	G(∙ |θÅ	)	be the survival functions of	[X|Θ =
θ], [Y|Θ = θ], [X|Θ = θÅ]	and	[Y|Θ = θÅ], respectively. The proof is similar to that of Theorem 1.B.8 in [13]. It is sufficient 
to show that for each	υ ∈ (0.1) and for all t = 0,1, … we have  

 
𝜐∑ 𝐹(𝑢|𝜃) + (1 − 𝜐)∑ 𝐹(𝑢|𝜃Å)M

CN�
M
CN�

𝜐𝐹(𝑡|𝜃) + (1 − 𝜐)𝐹(𝑢|𝜃Å)
≤
𝜐∑ 𝐺(𝑢|𝜃) + (1 − 𝜐)∑ 𝐺(𝑢|𝜃Å)M

CN�
M
CN�

𝜐𝐺(𝑡|𝜃) + (1 − 𝜐)𝐺(𝑢|𝜃Å)
 

This is an inequality of the form 
𝑎 + 𝑏
𝑐 + 𝑑 ≥

𝑤 + 𝑥
𝑦 + 𝑧  

where all eight variables are non-negative and by the assumptions of the theorem they satisfy 
 

𝑎
𝑐 ≥

𝑤
𝑦 ,
𝑎
𝑐 ≥

𝑥
𝑧 ,
𝑏
𝑑 ≥

𝑤
𝑦 , and	

𝑏
𝑑 ≥

𝑥
𝑧 

It is easy to verify that the latter four inequalities imply the former one, completing the proof of the theorem.  
 
In Theorem 3.3, we discuss the preservation property of the CMRL order under finite mixture. Let X�, i = 1,… , n be a 

collection of independent random variables. Suppose that F� is the distribution function of	X�. Let	α = (α�, α�, … , α�) 
and	β = (β�, β�, … , β�) be two probability vectors and let X and Y be two random variables having the respective survival 
functions F and G defined by 

 

F(𝑥) =h𝛼�𝐹Ø(𝑥)	and	𝐺(𝑥)	
Ù

ØN�

=h𝛼�𝐺Ø(𝑥)
Ù

ØN�

																				(3.1) 

 
 

Next result gives conditions under which X and Y are comparable with respect to the CMRL order. The similar property 
for MRL order was obtained in [14]. 
 

Theorem 3.3 
Let X�, X�, … , X� be a collection of independent random variables with corresponding survival functions F�, F�, … , F� such 
that X� ≤,-J>/? X� ≤,-J>/? … ≤,-J>/? Y and Let	α = (α�, α�, … , α�) and	β = (β�, β�, … , β�) be such that	α ≤,?/ β  
Let X and Y have distribution functions F and G	defined in (3.1). Then X ≤,-J>/? Y 
 
Proof 
Because of Theorem 2.1(ii), we need to establish that, for all 0	 < 	x	 < 	y 
 

∑ (𝑥 + 𝑢)M
CNz ∑ 𝛽Ø𝐹Ø(𝑥 + 𝑢)Ù

ØN�

∑ (𝑥 + 𝑢)M
CNz ∑ 𝛼Ø𝐹Ø(𝑥 + 𝑢)Ù

ØN�
≥
∑ (𝑦 + 𝑢)M
CNz ∑ 𝛽Ø𝐹Ø(𝑦 + 𝑢)Ù

ØN�

∑ (𝑦 + 𝑢)M
CNz ∑ 𝛼Ø𝐹Ø(𝑦 + 𝑢)Ù

ØN�
							(3.2) 

 
By simple calculations, (3.2) can be written in the following form: 
 

h h�𝛽Ú𝛼Øh(𝑥 + 𝑢)𝐹Ú(𝑥 + 𝑢)
M

CNz

×h(𝑦 + 𝑣)𝐹Ø(𝑦 + 𝑣)
M

ÝNz

�
Ù

ÚN�

Ù

ØN�
																	ØÞÚ
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≥ h h�𝛽Ú𝛼Øh(𝑦 + 𝑣)𝐹Ú(𝑦 + 𝑣)
M

ÝNz

×h(𝑥 + 𝑢)𝐹Ø(𝑥 + 𝑢)
M

CNz

Ù

ÚN�

Ù

ØN�
																	ØÞÚ

+𝛽Ø𝛼Úh(𝑦 + 𝑣)𝐹Ø(𝑦 + 𝑣)
M

ÝNz

×h(𝑥 + 𝑢)𝐹Ú(𝑥 + 𝑢)
M

CNz

� 

Now, for each fixed pair (i, j) with i < j we have 

�𝛽Ú𝛼Øh(𝑦 + 𝑣)𝐹Ú(𝑦 + 𝑣)
M

ÝNz

×h(𝑥 + 𝑢)𝐹Ø(𝑥 + 𝑢)
M

CNz

+𝛽Ø𝛼Úh(𝑦 + 𝑣)𝐹Ø(𝑦 + 𝑣)
M

ÝNz

×h(𝑥 + 𝑢)𝐹Ú(𝑥 + 𝑢)
M

CNz

� 

−�𝛽Ú𝛼Øh(𝑥 + 𝑢)𝐹Ú(𝑥 + 𝑢)
M

CNz

×h(𝑦 + 𝑣)𝐹Ø(𝑦 + 𝑣)
M

ÝNz

+𝛽Ø𝛼Úh(𝑥 + 𝑢)𝐹Ø(𝑥 + 𝑢)
M

CNz

×h(𝑦 + 𝑣)𝐹Ú(𝑦 + 𝑣)
M

ÝNz

� 

= (𝛽Ú𝛼Ø − 𝛽Ø𝛼Ú) �h(𝑦 + 𝑣)𝐹Ø(𝑦 + 𝑣)
M

ÝNz

×h(𝑥 + 𝑢)𝐹Ú(𝑥 + 𝑢)
M

CNz

−h(𝑥 + 𝑢)𝐹Ú(𝑥 + 𝑢)
M

CNz

×h(𝑦 + 𝑣)𝐹Ø(𝑦 + 𝑣)
M

ÝNz

� 

which is nonnegative because both terms are nonnegative by the assumptions. This completes the proof.  
 

Consider a family of survival functions ß	Fà, θ ∈ χâ	where	χ is a subset of the real line	ℝ. Let	X(θ) = [X|Θ = θ] 
denote a random variable with survival function	Fà. For any random variable Θ�	with support in	χ, and with distribution 
function	Λ� we denote by X(Θ�) the random variable that has survival function F� given by 

𝐹Ø(𝑥) =h𝐹ä(𝑥)
	

å

𝜆Ø(𝜃) 

In this case, X(Θ�)  is called a mixture of X(θ)	or of the family ß	Fà, θ ∈ χâ	with respect to	Θ� for each i = 1,2. Below we 
make CMRL order between X(Θ�)	and X(Θ�)	under some suitable assumptions. Theorem 3.4 below provides another 
preservation property under mixture. 
 

Theorem 3.4 
Let X(Θ�)	and X(Θ�) be as described above. If 
 

	𝑋(θ�) ≤i-~jkl 𝑋(θ�), for	all	𝜃� ≤ 𝜃� ∈ 𝜒																				(3.3)				 
and if 

Θ� ≤i-mk Θ� 
then 

𝑋(Θ�) ≤i-~jkl 𝑋(Θ�) 
 
Proof 
We must prove that H�(t) = ∑ xF�(x)M

¢N§ 	is TP�	in (i, t) ∈ {1, 2} × [0,∞)	for all t = 0,1, … and	i	 = 	1, 2, we can get 
 

𝐻Ø(𝑡) =hh𝑥
M

êNz

M

|N�

Fä(x)λØ(𝜃) 	=h𝜙(𝑡, 𝜃)λØ(𝜃).
M

êNz

 

Because of Theorem 2.1 (iii), (3.3) implies that	ϕ(t, θ) = ∑ xFà(x)M
¢N§  is increasing in	θ, and because of Theorem 2.1(ii), 

(3.3) is equivalent to saying that	ϕ(t, θ) is TP� in(t, θ) ∈ [0,∞) × χ.  
Moreover, (3.4) means that Λ�(θ) is TP� in (i, θ)) ∈ {1, 2} × [0,∞)	 Now, Lemma 4.2 of [9] is applicable and completes 
the proof. 
 

For two weight functions	w� and w� assume that the notations	Xì�, and Xì� are used to denote two random 
variables with respective density functions. 

 

𝑓�(𝑥) =
𝑤�(𝑥)𝑓(𝑥)	

𝜇�
	for	𝑥 ≥ 0	and	𝑔�(𝑥) =

𝑤�(𝑥)𝑔(𝑥)	
𝜇�

	for	𝑥 ≥ 0, 

where	0 < µ� = E(w�(X)) < ∞	 and 0 < µ� = E(w�(X)) < ∞	 The random variables	Xì�, and	Xì� are weighted versions 
of X and Y respectively. Let β� = E(w�(X)|X > x)	and β� = E(w�(Y)|Y > x).	Then the corresponding survival functions 
are given by 

𝐹�(𝑥) =
𝛽�(𝑥)𝐹(𝑥)	

𝜇�
	for	𝑥 ≥ 0	and	𝐺�(𝑥) =

𝛽�(𝑥)𝐺(𝑥)
𝜇�

	for	𝑥 ≥ 0							(3.5) 
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4 Reliability Applications 
In this section, some relevant applications of the CMRL order in reliability theory are presented. Suppose that 

𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏 are i.i.d. lifetime random variables from F and that 𝒀𝟏, 𝒀𝟐, … , 𝒀𝒏 are also i.i.d. lifetime random variables 
from G. Denote by 

𝑻𝟏 = 𝒎𝒊𝒏{𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏} 

and  

𝑻𝟐 = 𝒎𝒊𝒏{𝒀𝟏, 𝒀𝟐, … , 𝒀𝒏} 

The lifetimes of the two associated series systems. In the following result, we show that if the lifetimes of two series 
systems with i.i.d. components are CMRL ordered then their components are CMRL ordered. 
 
Theorem 4.1 
If 𝑇� ≤~jkl 𝑇�, then 𝑋Ø ≤~jkl 𝑌Ø , for all i = 1, 2,… , n.  
 
Proof 
Let T� ≤J>/? T�, then, we have  

ö 𝒙{𝑮¤𝒏(𝒙)𝑭¤𝒏(𝒕) −	𝑮¤𝒏(𝒕)	𝑭¤𝒏(𝒙)}	𝒅𝒙	 ≥ 𝟎, 𝐟𝐨𝐫	𝐚𝐥𝐥	𝒕 ≥ 𝟎
M

𝒕

 

Due to fact that  

𝑮¤(𝒙)𝑭¤(𝒕) −	𝑮¤(𝒕)𝑭¤(𝒙) = 	 [𝑮¤𝒏(𝒙)𝑭¤𝒏(𝒕) −	𝑮¤𝒏(𝒕)	𝑭¤𝒏(𝒙)]𝒉(𝒙), 
Where  

ℎ(𝑥) = 	�h(𝐺̅(𝑥)𝐹d(𝑡))Ù-Ø(	𝐺¤ (𝑡)𝐹d(𝑥)Ø-�)
𝒏

𝒊N𝟏

�
-𝟏

 

is a non-decreasing function. On applying Lemma 7.1(a) of [12], it obtains that, for all t ≥ 0. 

ö 𝒙{𝑮¤(𝒙)𝐅d(𝒕) −	𝑮¤(𝒕)𝐅d(𝒙)}	𝒅𝒙	 ≥ 𝟎
M

𝒕

 

which means that 𝑋Ø ≤~jkl 𝑌Ø , for all i = 1, 2,… , n. 
 
Shock models are of great interest in the context of reliability theory. The system is assumed to have an ability to withstand 
a random number of these shocks, and it is commonly assumed that the number of shocks and the inter-arrival times of 
shocks are independent. Let N denote the number of shocks survived by the system, and let Xj denote the random inter-
arrival time between the (j — l)-th and j-th shocks. Then the lifetime T of the system is given by  T	 = ∑ X�%

�N� . In 
particular, if the inter arrivals are assumed to be independent and exponentially distributed with common parameter λ, then 
the survival function of T can be written as  

𝑯¤(𝒕) =h
𝒆-𝝀𝒕(𝝀𝒕)𝒌

𝒌!
M

𝒌N𝟎
𝑷¤𝒌	, 𝒕 ≥ 𝟎	,	 

where P¤, = P	[N > k] for all kϵ	N (and P¤z = 1). Shock models of this kind, called Poisson shock models, have been studied 
extensively. For more details, we refer to [11],[15],[16],[17] and [18]. 
 
Consider now two devices subjected to shocks occurring as events of a Poisson counting process, as above; and let and  
P¤,
[�],	 and P¤,

[�]  be the survival functions of the random number of shocks related to the two devices, respectively, which are 
the probabilities of surviving the first k shocks. Let 𝑇Ø , denote the lifetime of the device, and let  

 

𝑯¤𝒊(𝒕) =h
𝒆-𝝀𝒕(𝝀𝒕)𝒌

𝒌!
M

𝒌N𝟎
𝑷¤𝒌
[𝒊]	, 𝒕 ≥ 𝟎	,																																		(𝟒. 𝟏) 
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be its survival function. In the following, we give sufficient conditions under which the lifetimes 𝐓𝟏 and 𝐓𝟐 are ordered 
according to the CMRL order. 

Theorem 4.2 
If  

∑ 𝒌M
𝒌N𝒋u𝟏 𝑷¤𝒌-𝟏

[𝟐]

∑ 𝒌M
𝒌N𝒋u𝟏 𝑷¤𝒌-𝟏

[𝟏] 	𝐧𝐨𝐧− 𝐝𝐞𝐜𝐫𝐞𝐚𝐬𝐢𝐧𝐠	𝐢𝐧	𝒋	𝝐	𝑵, 

Then 𝐓𝟏 ≤𝐂𝐌𝐑𝐋 𝐓𝟐 

Proof 
In view of some routine calculation, we have from (4.1) that, for all t > 0 

ö 𝒙	𝑯¤𝒊(𝒙)	𝒅𝒙 = 	𝝀-𝟐h
𝒆-𝝀𝒕(𝝀𝒕)𝒋

𝒋!

M

𝒋N𝟎

M

𝒕

? h 𝑷¤𝒌-𝟏
[𝒊]

M

𝒌N𝒋u𝟏

@ 

Because 𝐞-𝛌𝐭(𝛌𝐭)𝐣/𝐣!  is TP2 in (t, j) and by assuming 

∑ 𝒌M
𝒌N𝒋u𝟏 𝑷¤𝒌-𝟏

[𝟐]

∑ 𝒌M
𝒌N𝒋u𝟏 𝑷¤𝒌-𝟏

[𝟏] 	𝐢𝐬	𝐧𝐨𝐧− 𝐝𝐞𝐜𝐫𝐞𝐚𝐬𝐢𝐧𝐠	𝐢𝐧	𝒋	𝝐	𝑵, 

The general composition theorem of [19] provides that  ∫ 𝒙	𝑯¤𝒊(𝒙)	𝒅𝒙	
M
𝒕  is TP2 in (i,t) 𝛜{1,2} × R+, which implies that 

𝐓𝟏 ≤𝐂𝐌𝐑𝐋 𝐓𝟐. 

Let {𝑿𝒏, 𝒏 = 𝟏, 𝟐,… } be a sequence of mutually independent and identically distributed (i.i.d.) non-negative 
random variables with common distribution function F. For 𝒏 ≥ 𝟏, denote 𝑺𝒏 = ∑ 𝐗𝐢𝐧

𝐢N𝟏   the time of the n-th arrival and 
𝑺𝟎 = 𝟎 , let 𝑵(𝒕) = 𝑺𝒖𝒑{𝒏: 𝑺𝒏 ≤ 𝒕} represent the number of arrivals during the interval [0, t ]. Then, N = {N(t), t ≥ 0} is a 
renewal process with underlying distribution F (see [20]). Let 𝛄 (t) be the excess lifetime at time t ≥ 0. that is, 𝛄(𝐭) =
𝐒𝑵(𝒕)u𝟏 − 𝒕. 

In this context we denote the renewal function by M(t)= E[N(t)] which satisfies the following well known fundamental 
renewal equation: 

𝑴(𝒕) = 	𝑭(𝒕) +	ö 𝑭(𝒕 − 𝒚)𝒅𝑴(𝒚),				𝒕 ≥ 𝟎
𝒕

𝟎
 

According to [12], it holds that, for all t ≥ 0 and x ≥ 0 

𝑷(𝜸(𝒕) > 𝒙) = 𝑭¤	(𝒕 + 𝒙) +	ö 𝑭¤(𝒕 + 𝒙 − 𝒖)𝒅𝑴(𝒖).
𝒕

𝟎
					(𝟒. 𝟐) 

In the literature, several results have been given to characterize the stochastic orders .Readers are referred to 
[21],[22] and [5]. Next, we will investigate the behavior of the excess lifetime of a renewal process with respect to the 
CMRL order. 

Theorem 4.3 
If  𝐗𝐭 ≤𝐂𝐌𝐑𝐋 𝐗, for all t ≥ 0, then 𝛄(𝐭) ≤𝐂𝐌𝐑𝐋 𝛄(𝟎) for all t ≥ 0. 

Proof 
First note that. 𝐗𝐭 ≤𝐂𝐌𝐑𝐋 𝐗, for all t ≥ 0, if and only if for any    t ≥ 0 and s > 0, 

 

ö 𝒙𝑭¤(𝒕 + 𝒙)𝒅𝒙	 ≤ 𝑭¤(𝒕 + 𝒔)
∫ 𝒙𝑭¤(𝒕)𝒅𝒙M
𝒔
𝑭¤(𝒔)

M

𝒔
																									(𝟒.𝟑) 

In view of the identity of (4.2) and the inequality in (4.3) we can get  
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ö 𝒙	𝑷	(𝜸(𝒕) > 𝒙)𝒅𝒙 =
M

𝒔
	ö 𝒙𝑭¤(𝒕 + 𝒙)𝒅𝒙 +	

M

𝒔
ö ö 𝒙𝑭¤(𝒕 − 𝒖+ 𝒙)𝒅𝒙𝒅𝑴(𝒖).

M

𝒔

𝒕

𝟎
 

≤ ö 𝑥𝐹d(𝑡 + 𝑥)𝑑𝑥 +	ö ¯
𝐹d(𝑡 − 𝑢	 + 𝑠)

𝐹d(𝑠)
	ö 𝑥𝐹d(𝑥)𝑑𝑥

M

¸
	° 𝑑𝑀(𝑢)

�

z
	

M

¸
 

													≤ 	
∫ 𝑥𝐹d(𝑥)𝑑𝑥M
¸
𝐹d(𝑠)

	[𝐹d	(𝑡 + 𝑠)] +	
∫ 𝑥𝐹d(𝑥)𝑑𝑥M
¸
𝐹d(𝑠)

	[𝑃	(𝛾(𝑡) > 𝑠) −	𝐹d	(𝑡 + 𝑠)] 

=	
∫ 𝑥𝐹d(𝑥)𝑑𝑥M
¸
𝐹d(𝑠)

	𝑃	(𝛾(𝑡) > 𝑠)	 

Hence, it holds that, for all t ≥ 0 and s ˃ 0,  

∫ 𝑥	𝑃	(𝛾(𝑡) > 𝑥)	𝑑𝑥M
¸

𝑃	(𝛾(𝑡) > 𝑠) 	≤ 	
∫ 𝑥𝐹d(𝑥)𝑑𝑥M
¸
𝐹d(𝑠)

 

Which means 𝜸(𝐭) ≤𝐂𝐌𝐑𝐋 𝜸(𝟎)for all t ≥ 0.  

5 Conclusion 
The concept of length-biased distributions plays an important role in statistics, reliability and survival analysis. The 
relationship of CMRL order with other well-known stochastic orders is discussed. It was shown that the CMRL order 
enjoys from several reliability properties which provide several applications in reliability and survival analysis. Several 
characterization and preservation properties of the CMRL order under reliability operations of monotone transformation, 
mixture, and weighted distributions have been discussed. To illustrate the concepts, some applications in the context of 
statistics and reliability theory are included. In addition, our results provide new applications in reliability, statistics, and 
risk theory. Further properties and applications of the CMRL order can be considered in the future of this research. The 
closure properties of the CMRL under reliability operations of convolution and coherent systems are interesting topics, and 
still remain as open problems. 
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