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Abstract: Human motion analysis and assessment are important in determining Parkinsons disease and stroke, or in measuring skill
quality in basic motions. Reduced space is useful in representing motion segments and finding basic behavioral patterns for humanoid
robot control using the modularized approach. In the current paper, we represent motion-captured data of human action in a reduced
space of nonlinear degrees of freedom in which the original motion is characterized. First, we represent high-dimensional data, such as
motion sequence of the position of joints in Cartesian space, in a reduced space using the locality preserving projection (LPP) method.
Second, we find a similarity measure between the actions. Finally, we assess human motions using a similarity measure to find the most
similar one. The LPP is a linear dimensionality reduction algorithm that builds a graph for neighborhood information and maps data
points to a reduced space. The reason for using LPP in our study is that itis defined globally, and any new data element can be mapped
in the reduced space. Our method includes the generation of symbolic code sequence corresponding to complex, high-dimensional
motion. Interdisciplinary synergy combined with information technology and wearable sensor systems can broaden the possible future
applications in rehabilitation engineering.
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1 Introduction

Dimension reduction creates a meaningful representation
within low-dimensional space for high-dimensional data,
such as large pixel data of an image scene or the human
bodys joint data for a specific task [1][2]. Local metric
information and optimization technique can determine the
underlying manifold of a data set. The intrinsic dimension
of a data set is obtained by empirical deduction or by
maximum likelihood estimation. Sanger studied human
arm movements and found that low dimensionality might
be an efficient way to describe a large class of arm
movements [3]. Allen defined a low-dimensional
subspace called eigengrasps to approximate the hand
motion required for a given grasping task and designed
control algorithms to operate in the reduced dimension
[4]. Explicit representations for dynamic shape manifold
were studied on moving humans to recognize actions
using low-dimensional embedding by locality preserving
projections (LPP) [5]. Mao proposed the concept of
kinematic synergies to address the dimensionality
reduction problem for hand movement control and
coordination [6]. Optimization technique was applied to

find the weights and firing timings of extracted synergies,
decomposing basic motions. Low-dimensional
embeddings were used to represent muscle activations
and motion primitives from electromyographic signals,
which were recorded by upper limb motion [7]. He and
Niyogi introduced a new linear dimensionality reduction
algorithm called LPP, which has a transformation matrix
that maps data points into a subspace [8]. The LPP has
several interesting features, such as locality preservation
with objective functions to find linear approximation
rather than nonlinear manifold similar to Locally Linear
Embedding. Moreover, input space is globally defined,
and LPP can locate new data in the reduced dimension.
Statistically, LPP is linear mapping that preserves the
structure of the underlying distribution best in theL2

sense. Human motions are sets of time-trajectories for
body joints. The complexity of spatiotemporal motion
trajectories makes using dimensional reduction methods
necessary for further analysis and assessment of the
underlying information. Human motion assessment in
gait rehabilitation can be found in literature [9]. The
representation of movement primitives for the joint
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trajectories was conducted via a principal component
analysis of motion captured data. The method is
computationally efficient by representing an arbitrary
motion as a linearly combined basis functions [18]. To
derive sets of human motion primitive as atomic-level and
meta-level behavior primitives, a spatio-temporal intrinsic
dimension reduction technique was applied using a
manually segmented human motion capture data [19].
The extraction of trajectories through sensor systems has
been well studied by a number of researchers. However,
investigations and further analyses on the comparison of
given trajectories are rare [10]. In the field of surveillance
systems, research has focused mainly on the classification
of motion trajectories generally represented in
two-dimensional (2D) [11]. Using the obtained
trajectories, path modeling can recognize activity or
detect anomaly. Numerous methods can measure
similarity between trajectories in low-dimensional space.
The simplest method is to use the Euclidean distance
between two trajectories having the same length. Other
advanced measures for trajectory distance include spatial
similarity by Hausdorff distance [12], fitting by Hidden
Markov Model (HMM), and the degree of alignment
between two trajectory sequences by Longest Common
Subsequence distance or Dynamic Time Warping. Many
algorithms on analyzing trajectories on the 2D or
three-dimensional plane have been reported. The current
paper uses low-dimensional embeddings of
high-dimensional human motions to obtain meaningful
comparisons between two time trajectories of the motion
to be assessed. The approach focuses on the
representation and abstraction of highly complex joint
motions in the reduced space using motion capture data
by CMU Graphics Lab Motion Capture Database [13].
This paper is organized as follows. One of useful
nonlinear dimension reduction algorithm, LPP, will be
described in the next section. Using the low-dimensional
mapping, we describe the symbolization process to
represent the original high-dimensional data as a
sequence of symbols. The experimental results on the
comparison of human actions in daily life will be given in
the following section with discussions on the popular
trajectory analysis methods. We finally conclude our
works with further research directions.

2 Low Dimensional Representation and
Abstraction

2.1 Dimension Reduction by LPP

The generic problem of low-dimensional embedding is as
follows. Assume a data set of m-elements exists in
n-dimensional space, which can be written as

x1,x2, · · · ,xm ∈ R
n (1)

and we want to find a transformation matrixW ∈R
n×r

connecting the data points to a new set of points in the
reduced dimensionr ≤ n , where

yi = WT xi (2)

The LPP is a linear approximation of the Laplacian
Eigenmap [8]. First, using ε-neighborhood in the
Euclidean distance sense ork-nearest neighborhood, we
construct the adjacency graph. In this graph, nodesi and j
are connected by an edge ifxi andx j are close neighbors.
Second, we determine sparse symmetricm × m weight
matrix S, with Si j representing the weight connecting
nodesi and j. The kernel of radial basis function can be
used inS as follows:

Si j = e−
||xi−x j ||

2

σ (3)

where σ is a constant. We then compute the
generalized eigenvector problem to determine the
eigenvectors and eigenvalues using

XLXT w = λXDXT w (4)

where D is a diagonal matrix with elements in
column-wise (or row-wise) sums ofS , i.e.,Dii = ∑ j S ji .
The Laplacian matrix is defined asL = D − S . The
symbolX is a matrix thej-th column of which isx j . The
column vectorsw0,w1, · · · ,wr−1 are the solutions of Eq.
(4) ordered as corresponding eigenvalues in a
non-decreasing manner, which can be denoted as
0 ≤ λ0 ≤ λ1 ≤ ·· · ≤ λr−1 . The cost function to be
minimized for the solution is the same as the following
form with similarity matrix:

∑
i, j
(yi −y j)

2Si j (5)

TheSi j is used to preserve locality, which attempts to
ensure that if two points are in one neighborhood, then the
resulting points in the reduced dimension are also close.
The optimization of the Eq. (5) can be rewritten as

1
2 ∑

i, j
(yi −y j)

2Si j =
1
2 ∑

i, j
(wT xi −wT x j)

2Si j,

which is solved by standard graph theory to find the
eigenvectors by imposing a constraint, likeyT Dy = 1.

The LPP is derived by preserving local information
and is thus less sensitive to noises like outliers. LPP also
has more discriminating ability than the conventional
Principal Component Analysis since it maintains the
embedded structure of training samples unlike the PCA.

2.2 Abstraction by Symbolization

Let the high-dimensional trajectory data be represented
on ther-dimensional space. We rewrite the vector-valued

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 1, 441-446 (2014) /www.naturalspublishing.com/Journals.asp 443

sequence at instantk as the combined sequence by a
weighted Euclidean norm as

yk = [y1(k) y2(k) · · · yr(k)]
T (6)

yres(k) =
√

yT
k Ayk (7)

whereA ∈ R
r×r is a diagonal matrix whose elements

are the weights for each axis of representation. The
weights are determined by the user. The magnitude of the
combined signal yres(k) at a specific instantk is
partitioned intop0(k)-regions. Each region is assigned a
value between zero andp0(k)− 1. If we use theq-step
template, we have partitions in a time order as
p0(k), p1(k), · · · , pq−1(k). The total number of symbolsN
is

N = p0× p1×·· ·× pq−1 =
q−1

∏
i=0

pi (8)

We can make the sequence of symbols on the combined
signal, i.e., Eq. (7), using the partition template, i.e., Eq.
(8). Fig. 1 shows a brief illustration of the symbolization
procedure.

2.3 The Size of Reduced Dimension

The question on the size of dimension is a fundamental
one and it plays an important role on the accuracy and
robustness of the result. The dimension of the reduced
space is a key parameter determined by the user or by an
estimator. If the dimension is smaller than the intrinsic
one, some important information or features can be
missed. Otherwise, a too large dimension produces a
noise-laden output. No explicit agreement exists to
determine the intrinsic dimension. Bickel proposed a new
method to estimate the intrinsic dimension of a data set
using the principle of maximum likelihood estimation
(MLE) on the distances between close neighbors [14]. In
the current paper, MLE-based determination of intrinsic
dimension was used before the dimension reduction was
conducted by LPP. The basic idea to find the size of
low-dimensional space is to treat the observations of a
fixed point as a homogeneous Poisson process in a small
sphere. The MLE-based algorithm requires also the
choice of the number of neighbors in the calculation. The
negative bias problem also can be considered as a minor if
the intrinsic dimension of the real data is small.

3 Experiments

3.1 Representation of Activity in Daily Life

Motion capture data has played a significant role in
character animation in the multimedia industry. Kaneko
proposed an image-based user interface for retrieving

Fig. 1: Process of symbolization: the horizontal axis is related to
time; the vertical axis is the value of data points marked as black
dots. (A) Partition of data points into four possible codes for each
time instant. (B) Usingk-step template (e.g., 3 step, in this case),
words are formed by moving the template along the time axis. (C)
The decimal codes are generated as the final sequence of symbols
for the given series.

motion data using a self-organizing map (SOM) called a
Motion Map [15]. Li presented an efficient motion data
indexing and retrieval method based on SOM and the
Smith-Waterman string similarity metric [16]. Motion
data were obtained from the mocap database by CMU.
The categories are human interaction, interaction with
environment, locomotion, physical activity and sports,
situation and scenarios, and test motions. The physical
activities and sports category includes motions from
basketball, dance, gymnastics, acrobatics, martial arts,
racquet sports, soccer, boxing, golf, Frisbee, and general
exercise and stretching.

The upper body arm motions, including those of the
shoulder, elbow, and wrist joints, are characterized by
seven degrees of freedom (DOF). Using the kinematic
relation of the body structure, the arm posture can also be
represented using positions for each joint. MLE
estimation of the intrinsic dimension for the upper body
arm produces two or three dimensions of the arm postures
from the CMU database. As shown in Fig.2, the physical
intuition on the intrinsic dimensions is that arm posture
can be characterized by folding/stretching and
lowering/holding up. To obtain the linear transformation
matrix of Eq. (2), the motion capture data by subject no. 2
in the CMU database were used. The data consist of 10
motion clips for various expressions and human behaviors
like walking, running, jogging, punching, bending, lifting,
washing, and the combination of similar activities.

Fig. 3 shows the result of mapping eight sample upper
arm motions projected on the reduced dimension. The
motion sequence of drinking water is mapped as a
trajectory consisting of elements coinciding with the
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Fig. 2: Upper arm motion is represented on the reduced
dimension of two. The intrinsic dimension was determined by
MLE, and the dimension reduction technique used was LPP. The
dots represent the corresponding arm posture drawn in lines.

training data. However, the sequence of a swimming
stroke is represented as a trajectory with a few new
elements not used in the training process of obtaining the
transformation matrix. That is, new posture can be
mapped onto a point, which is an interpolated one
between the postures close to it.

These trajectories on the reduced dimension
characterize specific activities. Further analysis on the
trajectory will provide useful information on the activity,
and the characteristic properties, such as the similarity
between two limbs, can be assessed. Trajectories in
high-dimensional space mapped on the reduced
dimension of the intrinsic DOF can be classified and
recognized efficiently through abstraction and
representation. A similarity check was conducted for each
pair of activity motion by applying histogram analysis on
the abstracted trajectory, which is a coded sequence. The

Fig. 3: Typical results of the mapping sample motion sequences
on the reduced dimension. The eight motions plotted are
chopping wood, swimming, digging, hand shaking, playing
drums, drinking water, weight lifting, and rowing.

Table 1: Similarity analysis between the sample motion
sequences on the reduced dimension. Eight motions are denoted
by alphabet characters as A (chopping wood), B (swimming),
C (digging), D (hand shaking), E (playing drums), F (drinking
water), G (weight lifting), and H (rowing) [13]. Values are in
percent (%).

A B C D E F G H
A - 63.7 66.5 31.6 79.4 64.4 67.6 76.2
B 63.7 - 86.2 58.1 60.0 74.4 66.4 73.2
C 66.5 86.2 - 45.5 61.8 71.7 66.4 75.4
D 31.6 58.1 45.5 - 33.1 63.7 59.1 50.7
E 79.4 60.0 61.8 33.1 - 59.0 81.1 83.6
F 64.4 74.4 71.7 63.7 59.0 - 64.4 72.8
G 67.6 66.4 66.4 59.1 81.1 64.4 - 88.2
H 76.2 73.2 75.4 50.7 83.6 72.8 88.2 -

similarity index is as follows:

SI = 1−
∑i |hA(i)−hB(i)|

∑i |hA(i)+hB(i)|
(9)

wherehA, hB are histograms of the abstracted sequence A
and B, respectively. Table1 shows the result of the
similarity analysis between two of the eight motions.

3.2 Discussion

To analyze a time series trajectory represented on the
reduced dimension, we assume the following notation:

Ta : {(ya1, t1),(ya2, t2), · · · ,(yaN , tN)} (10)

where N is the duration of trajectory. A number of
measures can compare two trajectories. The simplest
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L-norm distance between two trajectories,Ta andTb, is

D1(Ta,Tb) =
1
N

N

∑
j=1

dL
j (11)

dL
j =

(

r

∑
i=1

{ya j(i)− yb j(i)}
L

)1/L

whereya j(i) is the i-th component of the vectorya j . Eq.
(11) is the average distance between the two
corresponding points on the trajectories. Distance
measureD1 is limited to the equal duration trajectories.
The spatial similarity between two trajectories can be
obtained by the Hausdorff distance.

D2(Ta,Tb) = max{D3(Ta,Tb),D3(Tb,Ta)} (12)

D3(A,B) = max
a∈A

min
b∈B

||a−b||

Hausdorff distanceD2 cannot distinguish the direction
of the trajectories and suffers from peak noise data. Using
a probabilistic model, a trajectory expressed as Eq. (10)
can be projected into parametric space, which is a set of
HMM parameters. Thus, the shortcomings of metrics such
as Eq. (11) or (12) can be overcome [17].

D4(Ta,Tb) = |L(Ta,λa)+L(Tb,λb)−L(Ta,λb)−L(Tb,λa)|
(13)

whereL(Ti,λ j) is the likelihood of the trajectoryTi to the
HMM model λ j. The modelλ j is fitted to the given
trajectory Tj by defining the structure of topology, the
number of states, and the probability model using a priori
knowledge. These numerous free parameters make
applying the HMM difficult in the analysis.

The objectives of comparing the trajectories are
mainly within the following categories: (1) classification,
(2) recognition, and (3) assessment. We focused on the
assessment of trajectory by comparing similarity with
others. In such process, the similarity of trajectories with
different durations and the variable sampling time are
challenging, and they should be pursued. Table1 shows
the similarity analysis, in which we can assess the motion
characteristics. Digging and swimming are similar
motions. Weight lifting and rowing motions are also
similar. Hand shaking has the least similarity with most of
the other test motions. The relative similarity between
motions can be found without complex calculations using
the histogram, regardless of the difference in motion
duration. This method can be applied to the automatic
investigation of motion improvement in rehabilitation
engineering. The integrated control of robotic
manipulators can be combined with the adaptation of
trajectories in low-dimensional space for the tool motion
[20] [21].

4 Conclusions

In this paper, we proposed a new approach to assess
human motions using similarity analysis of motion

trajectories. The motion capture database of human action
was used to illustrate the technique. High-dimensional
data are not appropriate for trajectory analysis; thus, the
dimension reduction approach was adopted to obtain
tractable simplified data while preserving important
features of the original data. Among the dimension
reduction algorithms, the locality preserving projection
method was used because of its linearity and interpolation
property on the reduced space. The motions of human
activities are represented in the intrinsic dimension space
and are characterized by the sequence of symbols. The
comparison of trajectories requires a technique imitating
humans intuitive reasoning. Previous methods suffer from
constraints or limitations on the duration, ambiguity in
direction, or outliers, whereas our method is based on the
spatiotemporal features of the trajectory; therefore it is
easily applied to compare trajectories with different
lengths. The proposed method can also be used for
motion retrieval system in computer graphics.

The control of robot system with redundant degree of
freedom can utilize the method of low-dimensional
embedding to find feasible solutions in complex
environment. Human arm has an extra degree of freedom
to follow the given trajectory in three-dimensional space
without colliding with obstacles. An investigation on the
property and the generalization of the method to various
human motions will be pursued. The application to the
intelligent control algorithm in the humanoid robot
system is another area of interest. We focus on the
assessment and evaluation of control performance for the
movement evolution during the rehabilitation training
using the proposed method of representing complex and
high dimensional data.
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