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Abstract: In this paper, we consider the problems of estimating the unknown parameters as well as predicting the failure times of the

removed units in multiple stages of the joint progressively censored sample coming from two Gompertz distributions. The likelihood,

Bootstrap and Bayesian methods are applied for the estimation problem. In Bayesian contexts, the posterior densities are estimated

by using Lindley’s approximation, importance sampling and Metropolis-Hastings methods under different loss error functions. The

confidence intervals based on the asymptotic normality and credible intervals based the Bayesian approach are discussed as well. A

real life data is analyzed for illustrative purposes and Monte Carlo simulations are conducted to compare the performances of the all

proposed methods.
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1 Introduction

The Gompertz distribution is one of the most well-known distributions in analyzing skewed data. The Gompertz model
was originally proposed by Benjamin Gompertz [1] and it has been used as a growth model, especially in epidemiological
and biomedical studies, and also can be used for adequate tumor growth. In hydrology, the Gompertz distribution is
applied to extreme events such as annual maximum rainfalls. More applications and survey of the Gompertz model can
be found in Ahuja [2] and Chen [3]. It is assumed that the lifetimes of the items being tested have a Gompertz distribution
with the probability density function (PDF)

f (t;α,θ ) = αθ exp(θ t −α(eθt − 1)), t ≥ 0 and α > 0, θ > 0, (1)

and cumulative distribution function (CDF)

F(t;α,θ ) = 1− exp(−α(eθt − 1)) , t ≥ 0and α > 0, θ > 0. (2)

Here α > 0,θ > 0 are the shape and scale parameters, respectively. The Gompertz distribution with the shape and scale
parameters as α and θ will be denoted by GO(α,θ ). The GO distribution has a decreasing and unimodal density but has
an increasing failure rate function. Since the CDF of the GO distribution is in closed form, it has been used very effectively
for analyzing censored lifetime data. Due to the time and cost constraints, the analysis of censored data arise naturally in
various fields such as reliability, survival, and medical studies.
The progressive censoring scheme is popular mechanism of collecting data in lifetime analysis. For a detailed study on
progressive censoring topic and related issues, one may refer to Balakrishnan and Aggarwala [4] and Balakrishnan and
Cramer [5]. A brief description of the type-II progressive scheme can be simply put as follows: assuming n identical
subjects are placed on a lifetime experiment. The integer k (0 < k < N) represents the number of failures to be observed in

the test and R1,R2, ...,Rk are k prefixed non-negative integers such that
k

∑
i=1

Ri + k = N. At the prefixed first time of failure,
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R1 items are randomly selected from the remaining N−1 items, and eliminated from the test. Similarly, at the second time
of failure, R2 items are randomly selected from the remaining N −R1−2 items, eliminated, and so on. At the final time of
kth failure, the remaining Rk items are eliminated, and the test is terminated. Inference on the progressive censoring data
has been addressed frequently by many authors. Among them, Ng [6], Raqab et al. [7], Pradhan and Kundu [8], Valiollahi
et al. [9], Maurya et al. [10].
In the practical experiments, there are situations where the experimenter would like to compare the life lengths of the
units coming from different two populations. In this context, Rasouli and Balakrishnan [11] developed such comparison
under the same environmental conditions. The resulting scheme coming from these distributions is called joint progressive
censoring (JPC). Under the JPC scheme, the two samples taken from two populations (Group 1 and Group 2) of sizes m

and n, respectively, are combined and put on a life testing experiment. The size of the combined sample is N = m+ n.

Let k < N and R1,R2, ...,Rk are non-negative integers satisfying
k

∑
i=1

Ri + k = m+ n, where Ri = Si +Wi with Si and Wi

being the number of removals at the i-th stage from Group 1 and Group 2, respectively. Based on the combined sample,
at the first failure time T1, R1 = S1 +W1 units are randomly withdrawn from the remaining (N − 1) surviving units where
S1 and W1 are the number of removed units from Group 1 and Group 2, respectively. Proceeding similarly, at the second
time of failure, T2, R2 = S2 +W2 items are chosen randomly and withdrawn from the remaining combined N − 2− R1

surviving units, and so on. In the final stage (at the time of the kth failure), all the remaining Rk = N − k−
k

∑
i=1

Ri surviving

units are withdrawn. The JPC scheme includes the complete sample and Type-II censoring schemes as special cases when
R1 = R2 = . . . = Rk = 0, for all i = 1,2, ...,k and R1 = R2 = ... = Rk−1 = 0, so that Rk = N − k, respectively. Based
on JPC data, Rasouli and Balakrishnan [11] considered the exact likelihood inference for two exponential populations.
Parsi and Bairamov [12] investigated the expected number of failures in the experimental test. Parsi et al. [13] provided
the conditional maximum likelihood and interval estimation of the parameters of two Weibull distributions. Mondal and
Kundu [14] studied the estimation of the parameters of two Weibull distributions. See also, Doostparast et al. [15], Ashour
and Abo-Kasem [16], and Mondal and Kundu [17].
The problem of estimation is the main problems considered in the real life situations. In the Bayesian inference, the
performance of the estimator or predictor depends on the prior distribution and the loss function used as well. Our main
aim is to develop the Bayes estimates of all parameters involved under different loss functions. The performances of the
Bayes estimators based on the different loss functions are compared with the classical maximum likelihood estimators
(MLEs) by extensive computer simulations. We further compute the symmetric credible intervals and compare them with
the confidence intervals based on the asymptotic distributions of the MLEs, by extensive computer simulations.
The layout of the paper is organized as follows. In Section 1, we provide the models description, loss functions and
priors. In Section 3, we derive the MLEs of the unknown parameters. The asymptotic and Bootstrap-t confidence intervals
(CIs) are also developed in Section 3. The Bayes estimates using Lindley’s approximation, importance and Metropolis-
Hastings methods have been considered in Section 4. Analyses of Real data sets representing the survival times in months
of Melanoma patients are analyzed and the performance of the different Bayes estimates and MLEs via simulation study
are performed in Section 5. Finally, we conclude the paper in Section 6.

2 Models description, loss functions and priors

Let X1,X2, ...,Xm being independent and identically (iid) distributed m units from Group 1 (Gr-1) of GO lifetime
distribution with CDF F(x;α1,θ ), and PDF f (x;α1,θ ). Furthermore, let Y1,Y2, ...,Yn be iid n units from Group 2 (Gr-2)
of GO lifetime distribution with CDF F(y;α2,θ ) and PDF f (y;α2,θ ). For a given (R1, . . . ,Rk), where k is a non-negative

integer such that (k ≥ 0) satisfying
k

∑
i=1

Ri = N − k, let (t,δ ,S) = {(t1,δ1,S1),(t2,δ2,S2), . . . ,(tk,δk,Sk)} , be the JPC

data from the combined population. Here for j = 1, . . . ,k, we have δ j = 1 if the failure at t j occurs from Gr-1, and δ j = 0
if the failure at t j occurs from Gr-2, S j and then Wj = R j − S j, denotes the number of items removed at t j from Gr-1 and
Gr-2, respectively.

The likelihood function based on JPC sample is given by

L(data | α1,α2,θ ) =C
k

∏
i=1

[

f (ti,α1,θ )

]δi
[

f (ti,α2,θ )

]1−δi
[

1−F(ti,α1,θ )

]Si
[

1−F(ti,α2,θ )

]Wi

, (3)
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where k1 =
k

∑
i=1

δi, k2 = k− k1, Sk = m− k1 −
k−1

∑
i=1

Si, C = D1D2 with D1 and D2 being

D1 =
k

∏
j=1

[

(

m−
j−1

∑
i=1

δi −
j−1

∑
i=1

Si

)

δ j +

(

n−
j−1

∑
i=1

(1− δi)−
j−1

∑
i=1

Wi

)

(1− δ j)

]

,

and

D2 =
k−1

∏
j=1

(m
j−1

∑
i=1

δi−
j−1

∑
i=1

Si

S j

)(n−
j−1

∑
i=1

(1−δi)−
j−1

∑
i=1

Wi

Wj

)

(N− j−
j−1

∑
i=1

Ri

R j

)

.

It is well-known that the error loss functions play an important role in the Bayesian estimation. One of the most popular
symmetric loss function is the squared error (SE) loss function which gives equal weight to overestimation as well as
underestimation. In some cases, the use of symmetric loss function may be inappropriate, see for example, [18]. For this
reason, asymmetric loss functions can be proposed. One of the well-known asymmetric loss function is the
linear-exponential (LINEX) loss function which was introduced by Varian [19]. Another alternative function is the
general entropy (GE) loss function (see, Ren et al. [20]). For estimating any parameter (say, ξ ) by a decision rule d,
using the Bayes approach, the following loss functions are considered.

SQUARE ERROR (SE) LOSS FUNCTION:
L1 = (ξ − d)2.

The Bayes estimate under the SE loss function is

ξ̂S = E(ξ |t)
LINEAR-EXPONENTIAL (LINEX) ERROR LOSS FUNCTION:

L2 = eω(d−ξ )−ω(d− ξ )− 1,ω 6= 0.

With an appropriate LINEX parameter ν , we can reflect small (large) losses for underestimation and overestimation,
which is not the case for SE loss function. For history and motivation, see for example, Zellner [21] and Christoffersen
and Diebold [22]. The BEs of ξ under LINEX loss functions is

ξ̂L = E
(

e−ωξ |t
)

.

ENTROPY LOSS FUNCTION:

Basu and Ebrahimi [18] defined a modified LINEX loss which does not change the characteristics of LINEX loss. A
suitable alternative to the modified LINEX loss is the GE loss proposed by Calabria and Pulcini [23]. It is given by

L3 = (
d

ξ
)ρ −ρ log(

d

ξ
)− 1, ρ 6= 0,

which has a minimum at d = ξ . The Bayes estimate of ξ based on GO joint progressive data under the GE loss function
may be defined as

ξ̂E =
[

E
(

ξ−ρ |t
)]−1/ρ

,

provided that E (ξ−ρ |t) exists and is finite.
Now, we specify the prior distributions of α1,α2, and θ . It is desirable that the model parameters are independent such
that all prior and posterior densities belong to similar families. These prior choices allow the posterior distribution to be
analytically tractable and computationally efficient. A natural choice for the priors of α1,α2, and θ would be to assume that
the three quantities are independent gamma G(ai,bi), i = 1,2 and G(a0,b0) distributions, respectively, with the following
densities:

gai,bi
(αi) =

b
ai
i

Γ (ai)
αai−1

i e−biαi , (4)

and

ga0,b0
(θ ) =

b
a0
0

Γ (a0)
θ a0−1e−b0θ , (5)

where αi, and θ > 0 and ai, bi, and a0,b0, are chosen to reflect prior knowledge about αi and θ .
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3 Maximum likelihood estimation and its approximation

Here in this section, we consider the likelihood and bootstrap methods for estimating the unknown parameters and
corresponding confidence intervals. By combining (1), (2), and (3), we write the likelihood function of JPC GO data
which can be viewed as a function of α1, α2 and θ as

L(data|α1,α2,θ ) =C αk1
1 αk2

2 θ k e
θ

k

∑
i=1

ti−α1

k

∑
i=1

uiAθ (ti)−α2

k

∑
i=1

viAθ (ti)
, (6)

where
Aθ (ti) = eθti − 1, ui = δi + Si and vi = 1− δ i+Wi.

The corresponding log-likelihood function can be written as

l(data|α1,α2,θ ) ∝ k1 log α1 + k log θ + k2 log α2 +θ
k

∑
i=1

ti −α1

k

∑
i=1

ui Aθ (ti)−α2

k

∑
i=1

viAθ (ti). (7)

The MLEs can be obtained by taking the first partial derivatives of Eq.(7) concerning α1,α2 and θ and equating each to
zero. That is, for k1 > 0 and k2 > 0, the likelihood equations can be obtained as follows:

∂ l(α1,α2,θ)
∂α1

= k1
α1

−
k

∑
i=1

uiAθ (ti) = 0, (8)

∂ l(α1,α2,θ)
∂α2

= k2
α2

−
k

∑
i=1

viAθ (ti) = 0, (9)

∂ l(α1,α2,θ )

∂θ
=

k

θ
+

k

∑
i=1

ti −α1

k

∑
i=1

uitie
θti −α2

k

∑
i=1

vitie
θti = 0. (10)

It follows from (8) and (9) that the MLEs of α1 and α2 can be obtained, respectively,

α̂1(θ ) =
k1

k

∑
i=1

uiAθ (ti)

, α̂2(θ ) =
k2

k

∑
i=1

viAθ (ti)

. (11)

Upon plugging α̂1 and α̂2 into Eq. (10), we immediately have

∂ l(α1,α2,θ )

∂θ
=

k

θ
+

k

∑
i=1

ti −
k1

k

∑
i=1

uitie
θti

k

∑
i=1

ui Aθ (ti)

−
k2

k

∑
i=1

vitie
θti

k

∑
i=1

vi Aθ (ti)

= 0. (12)

It can be checked that for given θ , the log-likelihood function in (7) is unimodal. This in turns out the estimates given in

(11) are the MLEs of α1 and α2. Further, for given α j( j = 1,2), ∂ l
∂θ is a monotone decreasing function starting from ∞ at

0 to a negative constant when θ → ∞. By using this fact and ∂ 2l
∂θ 2 < 0, we conclude that the MLE of θ exists and unique.

The non-linear equation (12) cannot be solved analytically and a numerical method such as Newton-Raphson method can

be applied. Once the MLE of θ , θ̂ is computed, the MLEs α̂1 and α̂2 are obtained directly using (11).

For special cases where Ri = 0, for all i = 1,2, . . . ,k, and then Si = Wi = 0, the terms
k

∑
i=1

SiAθ (ti),
k

∑
i=1

WiAθ (ti), and

k

∑
i=1

Sitie
θti in (8), (9), and (12) reduce to 0. This in turns out that the likelihood equations become

∂ l(α1,α2,θ )

∂α1

=
k1

α1

−
k

∑
i=1

δiAθ (ti) = 0,
∂ l(α1,α2,θ )

∂α2

=
k2

α2

−
k

∑
i=1

(1− δi)Aθ (ti) = 0,

and
∂ l(α1,α2,θ )

∂θ
=

k

θ
+

k

∑
i=1

ti −α1

k

∑
i=1

δitie
θti −α2

k

∑
i=1

(1− δi)tie
θti = 0.
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It follows that

α̂1 =
k1

k

∑
i=1

δiAθ (ti)

, α̂2 =
k2

k

∑
i=1

(1− δi)Aθ (ti)

,

and

θ̂ =
k

k

∑
i=1

ti − α̂1

k

∑
i=1

δitieθti − α̂2

k

∑
i=1

(1− δi)tieθti

.

Clearly, the MLEs are not expressed in closed forms and their respective variances cannot be obtained. Because of that,

we propose to use the asymptotic variances of α̂1, α̂2, and θ̂ . From the log-likelihood function in Eq.(7), we have

∂ 2l

∂α2
1

=− k1

α2
1

,

∂ 2l

∂α1 ∂α2

=
∂ 2l

∂α2 ∂α1

= 0,

∂ 2l

∂α2
2

=− k2

α2
2

,

∂ 2l

∂α1 ∂θ
=

∂ 2l

∂θ ∂α1

=−
k

∑
i=1

uitie
θti ,

∂ 2l

∂α2 ∂θ
=

∂ 2l

∂θ ∂α2

=−
k

∑
i=1

vitie
θti ,

∂ 2l

∂θ 2
=− k

θ 2
−α1

k

∑
i=1

uit
2
i eθti −α2

k

∑
i=1

vit
2
i eθti .

(13)

To this end, let us consider Q = (α1,α2,θ ). Under the usual regularity conditions (Lehmann and Casella [24]) and large

k, the asymptotic normality of Q̂ = (α̂1, α̂2, θ̂ ) that based on the convergence in distribution (
D−→) of Q̂ can be described

as

Q̂
D−→ N3(Q,I−1(Q)),

where I−1(Q) is the inverse of the Fisher information matrix of the unknown parameters Q [we find it by taking the
negative expectation of the expressions in (13)]. In practical applications, one may use the approximation

Q̂
D−→ N3(Q,J−1(Q)), where J−1(Q) denotes the inverse of the observed information matrix of Q. Hence, we can define

the observed information matrix J(Q) by taking the negative of the expressions in (13) as follows:

J(Q) =









− ∂ 2l

∂α2
1

− ∂ 2l
∂α1∂α2

− ∂ 2l
∂α1∂θ

− ∂ 2l
∂α2∂α1

− ∂ 2l

∂α2
2

− ∂ 2l
∂α2∂θ

− ∂ 2l
∂θ∂α1

− ∂ 2l
∂θ∂α2

− ∂ 2l
∂θ 2









.

Therefore, the 100(1− γ)% approximate CIs for α1,α2 and θ are

(α̂1 − z1−γ/2

√
V11, α̂1 + z1−γ/2

√
V11), (α̂2 − z1−γ/2

√
V22, α̂2 + z1−γ/2

√
V22),

and
(θ̂ − z1−γ/2

√

V33, θ̂ + z1−γ/2

√

V33),

respectively, where V11, V22 and V33 are the elements of the main diagonal of J−1(Q̂) and zγ is 100γth percentile of the
standard normal distribution. Usually, the CI based on the asymptotic results do not perform quite well for small sample
size. For this reason, it is more appropriate to propose alternative CI, say, Bootstrap-t method (Boot-t method), see for
example, Ahmed [25]. The following algorithm describes the steps for obtaining Boot-t CIs.

–Step 1: Estimate α1, α2 and θ using the maximum likelihood based on the observed informative sample (say α̂1, α̂2

and θ̂ ).
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–Step 2: Using α̂1, α̂2 and θ̂ obtained in Step 1, generate a Bootstrap sample and then obtain the first k observed

censored units, B1,B2, . . . ,Bk under the GO model. Then compute the corresponding MLEs α̂∗
1 , α̂∗

2 and θ̂ ∗ of α1, α2

and θ and the elements (V ∗
11,V

∗
22,V

∗
33) of the main diagonal of J∗−1(α̂∗

1 , α̂
∗
2 , θ̂

∗).
–Step 3: Based on the Bootstrap sample in Step 2, define an estimated Bootstrap version

Q∗
1 =

α̂∗
1 − α̂1
√

V ∗
11

, Q∗
2 =

α̂∗
2 − α̂2
√

V ∗
22

and Q∗
3 =

θ̂ ∗− θ̂
√

V ∗
33

.

–Step 4: Generate M = 1000 Bootstrap samples and versions of Q∗
1, Q∗

2 and Q∗
3 then we obtain the 100γth sample

quantiles of Q∗
1, Q∗

2 and Q∗
3 (say q∗1,γ , q∗2,γ and q∗3,γ).

–Step 5: Compute the approximate 100(1− γ)% CIs for α1, α2 and θ as

(α̂1 − q∗1,1−γ/2

√
V11, α̂1 − q∗1,γ/2

√
V11), (α̂2 − q∗2,1−γ/2

√
V22, α̂2 − q∗2,γ/2

√
V22),

and
(θ̂ − q∗3,1−γ/2

√

V33, θ̂ − q∗3,γ/2

√

V33).

4 Bayesian estimation of the parameters

In this section, we formulate the posterior densities of the parameters α1,α2, and θ based on joint progressive censored
sample coming from from two-parameter GO distribution and then obtain the corresponding Bayes estimators (BEs) of
these unknown parameters as well as the credible intervals (CrIs) under different error loss functions, L1,L2, and L3, with
respect to the priors as described in Section 2.

By combining the prior distributions given in (4) and (5) and likelihood function in (6), we can express the joint posterior
density of α1, α2 and θ as

π(α1,α2,θ |data) ∝ αk1+a1−1
1 e

−α1

(

b1+
k

∑
i=1

uiAθ (ti)

)

×αk2+a2−1
2 e

−α2

(

b2+
k

∑
i=1

viAθ (ti)

)

×θ k+a0−1e
−θ

(

b0−
k

∑
i=1

ti

)

.

By setting

∆θ (t) =
k

∑
i=1

uiAθ (ti) and ∆ θ (t̃) =
k

∑
i=1

vi Aθ (ti),

we may rewrite the joint posterior distribution as

π(α1,α2,θ |t) ∝ p1(α1|θ , t)×p2(α2|θ , t)×p3(θ |t), (14)

where p1(α1|θ , t), and p2(α2|θ , t), are PDFs of G(k1 + a1,b1 +∆θ (t)), and G
(

k2 + a2,b2 +∆ θ (t)
)

, respectively, while
p3(θ |t) is defined by

p3(θ |t) = g1(θ |t)× g2(θ , t), (15)

with g1(θ |t) being the PDF of G(k+ a0,b0) and g2(θ , t) =
e

θ ∑k
i=1

ti

(b1+∆θ (t))
k1+a1(b2+∆θ (t))

k2+a2
.

Under the error loss functions, L1, L2 and L3, the BE of any function of α1, α2 and θ (say, λ (α1,α2,θ )), respectively,
takes the following form:

λ̂S(α1,α2,θ ) =

∫ ∞
0

∫ ∞
0

∫ ∞
0 λ (α1,α2,θ )p1(α1|θ , t)p2(α2|θ , t)p3(θ |t)dα1dα2dθ
∫ ∞

0

∫ ∞
0

∫ ∞
0 p1(α1|θ , t)p2(α2|θ , t)p3(θ |t)dα1dα2dθ

, (16)

λ̂L(α1,α2,θ ) =− 1

ν
log

(

∫ ∞
0

∫ ∞
0

∫ ∞
0 e−νλ (α1,α2,θ)p1(α1|θ , t)p2(α2|θ , t)p3(θ |t)dα1dα2dθ
∫ ∞

0

∫ ∞
0

∫ ∞
0 p1(α1|θ , t)p2(α2|θ , t)p3(θ |t)dα1dα2dθ

)

, (17)

and

λ̂E(α1,α2,θ ) =

(

∫ ∞
0

∫ ∞
0

∫ ∞
0 (λ (α1,α2,θ ))

−ν
p1(α1|θ , t)p2(α2|θ , t)p3(θ |t)dα1dα2dθ

∫ ∞
0

∫ ∞
0

∫ ∞
0 p1(α1|θ , t)p2(α2|θ , t)p3(θ |t)dα1dα2dθ

)− 1
ν

. (18)
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It is clear to note that Eq.’s (16), (17) and (18) cannot be simplified into closed-form expressions and produce the BEs
of α1,α2 and θ and must be calculated numerically. Among the various methods suggested to approximate the joint
posterior density, Lindley approximation that may be used to approximate the ratio of two integrals. Although, this method
can produce BEs of the parameters using numerical integration or approximation, but it is not possible to construct CrIs
for the parameters involved. For this reason, alternative method called importance sampling will be proposed to provide
sample based estimates of the parameters.

4.1 Lindley approximation method

Lindley [26] proposed an approximation procedure to evaluate the expressions given in Eq.’s (16), (17) and (18). Several
authors have used this approximation for obtaining the BEs based on some lifetime distributions under the considered
prior distribution (see, Howlader and Hossain in [27] and Jaheen [28]). If k is sufficiently large, according to Lindley [26],
any ratio of the integrals of the form

I(data) =

∫ ∞
0

∫ ∞
0

∫ ∞
0 λ (α1,α2,θ ) el(data|α1,α2,θ)+ρ(α1,α2,θ)dα1dα2dθ
∫ ∞

0

∫ ∞
0

∫ ∞
0 el(data|α1,α2,θ)+ρ(α1,α2,θ)dα1dα2dθ

, (19)

can be approximated as

I(data) = λ (α̂1, α̂2, θ̂ )+ (λ1c1 +λ2c2 +λ3c3 + c4 + c5)+
1

2
[A(λ1σ11 +λ2σ12 +λ3σ13)

+B(λ1σ21 +λ2σ22 +λ3σ23)+C(λ1σ31 +λ2σ32 +λ3σ33)], (20)

where α̂1, α̂2 and θ̂ are the MLEs of α1, α2 and θ , respectively, and other terms in the (19) and (20) are defined to be
l(data|α1,α2,θ ) is the log-likelihood function,

ρ(α1,α2,θ ) is the logarithm of the joint prior density π∗(α1,α2,θ ) = π1(α1)π2(α2)π3(θ ),

ci = ρ1σi1 +ρ2σi2 +ρ3σi3 , i = 1,2,3,

c4 = λ12σ12 +λ13σ13 +λ23σ23,

c5 =
1
2
(λ11σ11 +λ22σ22 +λ33σ33),

A = σ11l111 + 2σ12l121 + 2σ13l131 + 2σ23l231 +σ22l221 +σ33l331,

B = σ11l112 + 2σ12l122 + 2σ13l132 + 2σ23l232 +σ22l222 +σ33l332,

C = σ11l113 + 2σ12l123 + 2σ13l133 + 2σ23l233 +σ22l223 +σ33l333,

ρi =
∂ logπ∗

∂θi
, λi =

∂λ
∂θi

, λi j =
∂ 2λ

∂θi∂θ j
, i, j = 1,2,3,

li j =
∂ 2l

∂θi∂θ j
, li jk =

∂ 3l
∂θi∂θ j∂θk

, i, j,k = 1,2,3,

σi j is the (i, j)th elements of the inverse of the matrix having elements [−li j] calculated at (α̂1, α̂2, θ̂ ). Further, all the

expressions in Eq.(20) are also evaluated at (α̂1, α̂2, θ̂ ). This implies that,

ρ(α1,α2,θ ) ∝ (a1 − 1) logα1 +(a2 − 1) logα2 +(a0 − 1) logθ − b1α1 − b2α2 − b0θ ,

and also

ρ1 =
a1 − 1

α1

− b1, ρ2 =
a2 − 1

α2

− b2, ρ3 =
a0 − 1

θ
− b0, l11 =− k1

α2
1

, l12 = l21 = 0,

l13 = l31 =−
k

∑
i=1

uitie
θti , l22 =− k2

α2
2

, l23 = l32 =−
k

∑
i=1

vitie
θti ,

l33 =− k

θ 2
−α1

k

∑
i=1

uit
2
i eθti −α2

k

∑
i=1

vit
2
i eθti ,
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and the values of li jk for all i, j,k = 1,2,3, are computed to be

l111 = 2
k1

α3
1

, l222 = 2
k2

α3
2

, l133 = l313 = l331 =−
k

∑
i=1

uit
2
i eθ ti ,

l233 = l323 = l332 =−
k

∑
i=1

vit
2
i eθ ti , l333 = 2

k

θ 3
−α1

k

∑
i=1

uit
3
i eθ ti −α2

k

∑
i=1

vit
3
i eθ ti ,

l112 = l113 = l121 = l122 = l123 = l131 = l132 = l211 = l212 = l213 = l221 = l223 = l231 = l232 = l311 = l312 = l321 = l322 = 0.

As a consequence of that, the BEs under L1, L2 and L3 can be expressed as follows:

1.Under SE loss function:

–If λ (α̂1, α̂2, θ̂ ) = α̂1 then α̂1S = α̂1 + c1 +
1
2
[Aσ11 +Bσ21 +Cσ31].

–If λ (α̂1, α̂2, θ̂ ) = α̂2 then α̂2S = α̂2 + c2 +
1
2
[Aσ12 +Bσ22 +Cσ32].

–If λ (α̂1, α̂2, θ̂ ) = θ̂ then θ̂S = θ̂ + c3 +
1
2
[Aσ13 +Bσ23 +Cσ33].

2.Under LINEX loss function:

–If λ (α̂1, α̂2, θ̂ ) = e−να̂1 then α̂1L = α̂1 − 1
ν log

(

1−ν(c1 − ν
2

σ11 +
1
2
[Aσ11 +Bσ21 +Cσ31])

)

.

–If λ (α̂1, α̂2, θ̂ ) = e−να̂2 then α̂2L = α̂2 − 1
ν log

(

1−ν(c2 − ν
2

σ22 +
1
2
[Aσ12 +Bσ22 +Cσ32])

)

.

–If λ (α̂1, α̂2, θ̂ ) = e−νθ̂ then θ̂L = θ̂ − 1
ν log

(

1−ν(c3 − ν
2

σ33 +
1
2
[Aσ13 +Bσ23 +Cσ33])

)

.

3.Under Entropy loss function:

–If λ (α̂1, α̂2, θ̂ ) = α̂−ν
1 then α̂1E = α̂1

[

1− ν
α̂1
(c1 − ν+1

2α̂1
σ11 +

1
2
[Aσ11 +Bσ21 +Cσ31])

]− 1
ν
.

–If λ (α̂1, α̂2, θ̂ ) = α−ν
2 then α̂2E = α̂2

[

1− ν
α̂2
(c2 − ν+1

2α̂2
σ22 +

1
2
[Aσ12 +Bσ22 +Cσ32])

]− 1
ν
.

–If λ (α̂1, α̂2, θ̂ ) = θ̂−ν then θ̂E = θ̂
[

1− ν
θ̂
(c3 − ν+1

2θ̂
σ33 +

1
2
[Aσ13 +Bσ23 +Cσ33])

]− 1
ν
.

4.2 Bayesian sample based methods

In light of the JPC sample, one can update the prior information about the shape and scale parameters via the posterior
model, it is possible to provide approximate BEs of α1,α2 and θ based on importance sampling technique. In the context
of the approach introduced by Geman and Geman [29], we generate the posterior distribution of α1,α2 and θ based on
the conditional arguments in (14) as follows:

Algorithm of Bayesian sample-based method:

–Step 1: Generate θ from g1(θ |t);
–Step 2: Generate α1 from π1(α1|θ , t) and α2 from π2(α2|θ , t);
–Step 3: Repeat steps 1-3, M times and then obtain (θ1,α11,α21), . . . ,(θM,α1M,α2M);
–Step 4: Compute

wi(θi,α1i,α2i) =
g2(θi, t)

∑M
i=1 g2(θi, t)

,

and then compute an approximate BE of a function of α1,α2 and θ (say, λ (α1,α2,θ )) under a SE loss function as

λ̂S =
M

∑
i=1

wi(α1i,α2i,θi)λ (α1i,α2i,θi).

The other Bayesian estimates under L2 and L3 can be computed readily based on the following expressions:

λ̂L =− 1

ν
log

[

M

∑
i=1

wi(α1i,α2i,θi)e
−νλ (α1i,α2i,θi)

]

,

and

λ̂E =

[

M

∑
i=1

wi(α1i,α2i,θi)(λ (α1i,α2i,θi))
−ν

]−1/ν

.
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Using the percentile-based argument used in Chen and Shao [30], we can provide CrI of any function of the parameters,
λ (α1,α2,θ ). The 100γth (0 < γ < 1) quantile of λ is λγ such that P(λ ≤ λγ) = γ . Let us assume that λ(1), . . . ,λ(M) be

order statistics of λ1, . . . ,λM and w(1), . . . ,w(M) be the values associated with λ(1), . . . ,λ(M). This implies that the consistent

sample based estimate of λγ is λ̂γ = λ(κ), where κ is an integer satisfying

κ−1

∑
i=1

w(i) ≤ γ ≤
κ

∑
i=1

w(i).

This in turns that (1− γ)100% CrI of λ can be computed as (λ̂ γ
2
, λ̂1− γ

2
), say, C-S CrI. It is important to point out that

the CrIs obtained by the previous approach does not specify whether the values of λ within these intervals have highest
probability than that of the values outside the intervals. It is more desirable to have CrI of λ (α1,α2,λ ) with the highest
posterior density (HPD). For any probability content, 1− γ , the HPD interval is of the shortest width and the posterior
density for every point outside the interval is less than that for every point inside the interval. For M sufficiently large,
the 100(1− γ)% HPD interval for λ may be chosen as the shortest of the intervals Cκ(M),κ = 1,2, . . . ,M − [(1− γ)M],
where [x] is the largest integer that is less than or equal to x, with

Cκ(M) =
(

λ(κ),λ(κ+[(1−γ)M])

)

.

Therefore, the HPD intervals of the three parameters are computed in this way.

Another Bayesian sampling algorithm is to estimate the posterior distribution based on Gibbs sampler approach. This
approach requires being able to sample from the full conditional distributions from each parametric quantity involved.
This can be applied for α1 and α2 but not for θ . Consequently, Metropolis-Hastings (M-H) steps are proposed into the
Gibbs sampler so that α1 and α2 are sampled directly from their full conditional distributions, whereas θ can be updated
via a M-H steps as explained in Tierney [31], using G(k+ a0,b1) as a proposal distribution. The M-H steps proceed as
follows:

Algorithm of M-H method:

–Step 1: Select an initial guess θ0;
–Step 2: For t = 1,2, . . . ,M, repeat:
(a) Draw candidate θ ∗ from G(k+ a0,b0) with its pdf gk+a0,b1

(θ ∗|θt−1) and u from U(0,1);
(b) Compute the acceptance probability

ε =
p3(θ

∗)/gk+a0,b1
(θ ∗|θt−1)

p3(θt−1)/gk+a0,b0
(θt−1|θ ∗)

=
p3(θ

∗)
p3(θt−1)

gk+a0,b0
(θt−1)

gk+a0,b0
(θ ∗)

= h(θ ∗,θt−1)× e
(θ∗−θt−1)

k

∑
i=1

ti
,

where

h(θ ∗,θt−1) =

(

b1 +∆θt−1
(t)
)k1+a1

(

b2 +∆θt−1
(t)
)k2+a2

(b1 +∆θ∗(t))k1+a1
(

b2 +∆θ∗(t)
)k2+a2

.

(c) If u < min(1,ε), then set θt = θ ∗, else go to (a).

Once the posterior samples have been obtained, the simulation consistent Bayes estimates under different loss functions
can be computed. The associated CrIs of the parameters can also be constructed.

5 Simulation results and data analysis

Here in this section, we perform a comprehensive simulation study to assess the performance of the estimates developed
in the previous sections. Also, we analyze a real data set from GO distribution for illustrative purposes. All computations
are performed using R software.

5.1 Data analysis

In this section, we present the analysis of real data sets to illustrate the performance of the obtained methods. The data
represent the survival time in months of stage 4 Melanoma patients based on their gender who received treatment at the
University of Oklahoma Health Sciences Center from 1974-1978. The data were originally reported by Lee et al.[32] and
for more details, see for example Lee and Wang [33]. The sets of data are:
Data set 1 (female patients):
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1.3 2.7 3.8 4.2 7.4 9.3 10.5 11.4 13.3 13.8 13.8 20 22.2

Data set 2 (male patients):

0.4 0.9 1.2 1.5 1.6 1.7 2.5 2.5 3.9 3.9 4 4.2 4.5 5.8 5.9 6.3

7.3 7.4 8.3 9.8 11 11.1 16.1 20.5

Table 1 presents the ML estimate of the unknown parameters, the goodness-of-fit tests based on Kolmogrov-Smirnov
(K-S) and Cramer-von Mises (CvM) statistics. It is easily seen that the GO model fits both data sets very well. This
conclusion is also supported by diagnostic plots of the empirical and fitted distribution functions in Figures 1 and 2. In
addition, it is of interest to study the null hypothesis H0 : θ1 = θ2 = θ (i.e., the scale parameters are equal) versus the
alternative hypothesis H1 : θ1 6= θ2 using the likelihood ratio test. For the given data, the test statistic is computed as
∆ = L1/L2 = 0.465558, −2log(∆) = 1.529034 and the p-value of the test is P(χ2

(1) > 0.465558)= 0.495065. Hence, the

assumption of equality of the scale parameters cannot be rejected.

Table 1: MLEs, K-S and CvM goodness-of-fit tests.

Data Set Scale Parameter Shape Parameter K-S(p-value) CvM(p-value)

1 0.9900692 1.0227568 0.13925933(0.9931) 0.03012802(0.899)

2 0.9900692 0.4378163 0.09860765(0.9368) 0.0285854(0.9954)
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Fig. 1: Empirical and fitted distribution functions and Q-Q Plots for Data Set 1.

For explanation purposes, we suggest the following joint progressive type-II censored sample with m = 13 and
n = 24, k = 10, Ri = 2, i = 1, ...,3 and Ri = 3, i = 4, . . . ,10. The resulting data set is recorded as follows:

(0.4,0,0), (0.9,0,2), (1.2, 0,1), (1.3,1,0), (1.5,0,1), (1.6,0,2), (1.7,0,1),

(2.5,0,1), (2.7,1,1), (3.8,1,2).

Based on the above observed joint progressive type II censored data, we obtain the MLEs and BEs of α1, α2 and θ
under SE, LI and GE loss functions. We have generated 5000 observations to compute the BEs of α1, α2 and θ based on
the importance sampler after discarding the initial 500 burn-in samples. Note that, for computing the BEs and HPD CrIs,
we assume that the priors of α1, α2 and θ are improper, i.e. a1 = b1 = a2 = b2 = a3 = b3 = 0, since we do not have any prior
information. The M-H algorithm is also used to compute the BEs of θ where we use the gamma distribution as a proposal
distribution. Here, the best fitted model for the full conditional distribution can be concluded by managing the choice of
the parameters for the proposal distribution. Therefore, to generate numbers from the target probability distribution, we

use the M-H algorithm with gamma proposal distribution. We assumed the initial value of θ to be its MLE, θ̂ which is
computed using EM-algorithm. Here, we generated 50,000 random variates and we checked the acceptance rate for this
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Fig. 2: Empirical and fitted distribution functions and Q-Q Plots for Data Set 2.

choice of variance to be 68.27% which is quite satisfactory. We discarded the initial 5000 burn-in samples and computed
the BEs based on the remaining observations.

Graphical diagnostics tools involving trace and ACF plots are used to check the convergence of M-H algorithm. Figure
3 shows the trace and ACF plots for θ . From the trace plot, we can easily observe a random scatter about some mean value
represented by a solid line with a fine mixing of the chains for the simulated values of θ . The ACF plot shows that chains
have low autocorrelations. As a result, these plots indicate the rapid convergence of the M-H algorithm based on the
proposed gamma distribution.

The results for MLEs and BEs using importance and M-H samplers along with the 95% Boot-t CI, asymptotic CI and
HPD CrIs for α1, α2 and θ are presented in Tables 2 and 3.

Table 2: MLEs and BEs of α1, α2 and θ based on joint progressive censored data.

MLE Method SE LINEX GE

ω= -0.5 ω=0.5 ρ= -0.5 ρ=0.5

α1 0.1366 Lindley 0.1904 0.1918 0.1890 0.1894 0.1876

Importance 0.1213 0.1216 0.1210 0.1180 0.1095

M-H 0.1685 0.1707 0.1665 0.1572 0.1347

α2 0.2940 Lindley 0.3136 0.3222 0.3049 0.2961 0.2633

Importance 0.2640 0.2648 0.2632 0.2604 0.2515

M-H 0.3274 0.3311 0.3238 0.3161 0.2927

θ 0.4498 Lindley 0.4990 0.4992 0.4991 0.4985 0.4982

Importance 0.4515 0.4518 0.4511 0.4508 0.4497

M-H 0.3992 0.3993 0.3991 0.3990 0.3985

5.2 Numerical comparisons

Now, we compare the performances of the different methods of estimation based on Monte Carlo simulations. We compare
the performance of the MLEs, and BEs in terms of biases and MSEs. In this simulation, the values of GO parameters are
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Table 3: The corresponding 95% CIs for α1, α2 and θ
Approx. Boot-t Loss HPD (Importance) HPD (M-H)

α1 (0.0528,0.7261) (0.0245,0.6258) SE (0.0268,0.2650) (0.1126,0.3113)

LINEX ω= - 0.5 (0.0268,0.2050) (0.0929,0.2332)

ω= 0.5 (0.0268,0.1925) (0.0932,0.2213)

GE ρ= - 0.5 (0.0227,0.2126) (0.0919,0.2409)

ρ= 0.5 (0.0227,0.2052) (0.0956,0.2324)

α2 (0.0901,1.2781) (0.0413,0.9146) SE (0.0827,0.3226) (0.1773,0.3781)

LINEX ω= - 0.5 (0.1086,0.3187) (0.1816,0.3535)

ω= 0.5 (0.1089,0.2912) (0.1784,0.3354)

Entropy ρ= - 0.5 (0.0986,0.3223) (0.1863,0.3667)

ρ= 0.5 (0.1093,0.3032) (0.1772,0.3462)

θ (0.1295,1.1700) (0.2788,0.7127) SE (0.2128,0.5202) (0.3308,0.5694)

LINEX ω= - 0.5 (0.2352,0.4735) (0.3411,0.5412)

ω= 0.5 (0.2928,0.4702) (0.3584,0.5186)

GE ρ= - 0.5 (0.2223,0.4915) (0.3345,0.5504)

ρ= 0.5 (0.2628,0.4616) (0.3419,0.5231)
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Fig. 3: Plots of Metropolis-Hastings Markov chains for θ .

considered as α1 = 2, α2 = 1.5 and θ = 2. Here, we consider different effective sample sizes, k = 20,25 and different
censoring schemes. For conducting the Bayesian analysis, we assume two priors. For the first prior (Prior 0), we assume
that a1 = b1 = a2 = b2 = a3 = b3 = 0. Then we assume an additional prior; Prior 1 with a1 = a2 = a3 = 1, b1 = b2 = b3 = 2.
We use the following notation for a particular progressive censoring scheme. For example k = 6 and R = (4,0(5)) means
R1 = 4, R2 = R3 = R4 = R5 = R6 = 0.

To conduct the comparison process, we have randomly generated six different joint progressive censored schemes
from the GO distribution and for k = 20 and k = 25 summarized in Table 4. We then compute the average biases, mean
square errors (MSEs) for the estimates and CIs for GO parameters. Under the non-informative and informative priors, the
biases and MSEs of estimates over 1000 replications are computed for various censoring schemes of k = 20 and k = 25.
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Table 4: Censoring schemes.

k C.S.

R1 20 R = (7,0(18),15)

R2 20 R = (0(9),7,0(9),15)

R3 20 R = (0(18),7,15)

R4 25 R = (7,0(23),10)

R5 25 R = (0(11),7,0(12),10)

R6 25 R = (0(23),7,10)

The average biases and MSEs of the MLEs and BEs under SE, LI and EE loss functions of α1, α2 and θ with Prior 0
and Prior 1 are computed over 5000 replications and displayed in Tables 5 and 6. The MLEs are computed by maximizing
the likelihood function and so by solving the likelihood equations (11) and (12). For the LI and GE loss functions, the
BEs are computed using different values of ω and ρ (say, ω = −0.5,0.5, ρ = −0.5,0.5), respectively. As seen in Tables
5 and 6, the BEs perform well for k = 20 and k = 25 in the sense of bias and MSE. As expected, the BEs under Prior 1 are
better than that under Prior 0. Further, we can easily notice that the M-H method beats the Lindley’s approximation and
importance sampling methods in the sense of MSEs and biases values for all parameters and under all error loss functions
applied. Under LI error loss function, the estimates based on M-H algorithm show the least MSEs and biases values over
SE and GE error loss functions in all parameters and all methods of estimation.

Tables 7, 8 and 9 present the average lengths (ALs) and coverage probabilities (CPs) of 95% CIs for α1, α2 and θ
based on Boot-t, asymptotic maximum likelihood and Bayesian methods with Prior 0 and Prior 1 under SE, LI and GE
loss functions. From Tables 7, 8 and 9, it is observed that the HPD CrIs are shorter than the asymptotic and Boot-t CIs
under all priors and all loss functions for k = 20 and k = 25. It can also be noticed that M-H CrIs are the shortest over all
other intervals. Furthermore, the CrIs under LI loss function is better than SE and GE in all types of estimation used. The
performances of HPD CrI tend to be high under the informative prior when compared to HPD CrI under noninformative
prior, asymptotic and Boot-t CIs. While the Boot-t method performs well when compared to asymptotic method for
estimating of all parameters. It can be also observed that all CIs are shorter for k = 25 when compared to k = 20.

In summary, it is clear that the BEs based on Lindley’s approximation, importance sampling and M-H methods under
different error loss functions and priors work better than the MLEs in all the cases considered for estimating the
parameters. The MSEs and biases of the BEs obtained by M-H algorithm are smaller than that of the BEs computed from
the Lindley’s approximation and importance sampling methods under the different loss functions. When comparing the
BEs under LI and GE loss functions, we can notice the LI loss function provides better results than GE. It is realized that
the HPD intervals based on M-H method compete the ones based on importance sampling method in terms of ALs and
CPs criteria under SE, LI and GE loss functions. It is also checked that the ALs and CPs of HPD CrIs based on LI and
GE loss functions tend to be close.

6 Conclusions

In this work, the estimation problem of the parameters based on joint Type-II progressive censoring scheme when their
lifetimes follow Gompertz distributions with different shape parameters. It is shown that the maximum likelihood
estimators of the model parameters and their asymptotic confidence intervals can be obtained. We have also proposed
different Bayesian procedures to estimating the parameters involved, namely, Lindley’s approximation, importance
sampling procedure and Metropolis-Hastings algorithm. The corresponding credible intervals are also discussed. The
performance of all methods presented in this paper are evaluated and compared via Monte Carlo simulations. It is
observed that the Bayes estimates under Metropolis-Hastings method outperform the frequentist methods as well as the
Bayes ones under the Lindley’s approximation and importance sampling methods in the sense of bias and mean square
error for all parameters under the error loss functions applied here. Under LINEX error loss function, the MSEs and
biases of Metropolis-Hastings based estimates tend to be smaller over square and general entropy error losses. By
considering the average length and coverage probability as optimality criteria for the credible intervals of the parameters,
it is also evident that the highest posterior density credible intervals using Metropolis-Hastings compete the approximate,
Bootstrap-t confidence intervals, and the posterior density credible intervals based on importance sampling.

Although, we have mainly restricted our attention to the joint Type-II progressive censoring scheme produced from the
two populations, but the so developed procedures can be extended to more than two populations as well. More investigation
is needed along this line.

c© 2022 NSP
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Table 5: Biases and MSEs of the MLEs and BEs of α1, α2 and θ under Prior 0 (the entries in parentheses are MSEs).

C. S. MLE BEs (SE) BEs (LINEX) BEs (GE)

ω =−0.5 ω = 0.5 ρ =−0.5 ρ = 0.5
R1 α1 -2.2299(2.21170) Lindley -1.5607(1.1748) -0.9853(0.8337) -1.1243(0.9041) -1.1462(0.9778) 1.5313(1.0404)

Importance -1.1463(1.0433) -0.7778(0.6839) -0.8332(0.7366) -0.8804(0.7836) -0.9081(0.8251)

M-H -0.9865(0.9551) -0.7496(0.6056) -0.7945(0.6948) -0.8329(0.7755) -0.8467(0.8145)

α2 -0.8938(0.3016) Lindley -0.1883(0.1608) -0.1240(0.1040) -0.1369(0.1254) -0.1595(0.1385) -0.1697(0.1443)

Importance 0.1475(0.0237) 0.1138(0.0199) 0.1211(0.0220) 0.1392(0.0223) 0.1433(0.0230)

M-H 0.1275(0.0223) 0.1129(0.0159) 0.1184(0.0192) 0.1226(0.0199) 0.1251(0.0210)

θ 2.3451(1.0226) Lindley 1.8790(0.8841) 1.8239(0.8589) 1.8301(0.8664) 1.8414(0.8702) 1.8493(0.8758)

Importance -0.5623(0.3181) -0.5614(0.3171) -0.5615(0.3172) -0.5616(0.3173) -0.5618(0.3175)

M-H -0.5493(0.3043) -0.5468(0.3017) -0.5472(0.3021) -0.5476(0.3025) -0.5479(0.3029)

R2 α1 -2.8720(2.6084) Lindley -1.8800(1.5875) -1.5352(1.3135) -1.6297(1.3641) -1.7125(1.4552) -1.7896(1.4667)

Importance -1.8505(1.3601) -1.0555(1.0417) -1.2110(1.0738) -1.2793(1.1116) -1.3536(1.1631)

M-H -1.5459(1.2136) -1.0265(0.8845) -1.1542(1.0646) -1.2367(1.0858) -1.3352(1.1101)

α2 1.3110(0.3244) Lindley -0.2140(0.1859) -0.1431(0.1150) -0.2074(0.1368) -0.2092(0.1553) -0.2107(0.1677)

Importance 0.1576(0.0262) 0.1338(0.0225) 0.1468(0.0245) 0.1491(0.0249) 0.1533(0.0256)

M-H 0.1337(0.0252) 0.1202(0.0183) 0.1277(0.0219) 0.1291(0.0226) 0.1314(0.0239)

θ 2.5163(1.0646) Lindley 2.1510(0.9523) 2.0042(0.8684) 2.0240(0.8775) 2.0657(0.8851) 2.0973(0.8899)

Importance -0.5680(0.3246) -0.5672(0.3238) -0.5673(0.3239) -0.5674(0.3240) -0.5676(0.3241)

M-H -0.5494(0.3045) -0.5471(0.3021) -0.5475(0.3024) -0.5478(0.3028) -0.5481(0.3032)

R3 α1 -2.8802(2.6612) Lindley 2.0111(1.7321) 1.6318(1.5084) 1.7402(1.5978) 1.7587(1.6882) 1.8175(1.6991)

Importance -1.9933(1.4117) -1.4519(1.2045) -1.5022(1.2253) -1.5449(1.2426) -1.6496(1.2841)

M-H -1.6882(1.2854) -1.4295(1.1707) -1.4511(1.1818) -1.4713(1.1921) -1.5193(1.2121)

α2 2.0606(0.3579) Lindley -0.3941(0.2883) -0.3245(0.2244) -0.3258(0.2304) -0.2566(0.3259) -0.2697(0.3365)

Importance 0.2365(0.0677) 0.2138(0.0613) 0.2199(0.0647) 0.2314(0.0651) 0.2340(0.0664)

M-H 0.1831(0.0339) 0.1581(0.0253) 0.1717(0.0298) 0.1739(0.0360) 0.1785(0.0322)

θ 2.7829(1.2112) Lindley 2.7413(1.1987) 2.5482(1.1321) 2.6898(1.1784) 2.6917(1.1840) 2.7260(1.1918)

Importance -0.5688(0.3256) -0.5681(0.3248) -0.5682(0.3249) -0.5683(0.3250) -0.5684(0.3251)

M-H -0.5509(0.3062) -0.5487(0.3038) -0.5491(0.3042) -0.5494(0.3045) -0.5497(0.3049)
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Table 5: Continued (the entries in parentheses are MSEs).

C. S. MLE BEs (SE) BEs (LINEX) BEs (GE)

ω =−0.5 ω = 0.5 ρ =−0.5 ρ = 0.5
R4 α1 -2.00034(1.9505) Lindley -1.1695(1.0797) -0.9154(0.7257) -1.0048(0.7772) -1.0561(0.7984) -1.0657(0.8728)

Importance -1.0891(0.9215) -0.6279(0.4572) -0.6510(0.5651) -0.6854(0.6650) -0.8091(0.7050)

M-H -0.7669(0.6280) -0.2102(0.1626) -0.3279(0.3204) -0.4763(0.4432) -0.4982(0.4909)

α2 -0.5653(0.2172) Lindley -0.1045(0.0647) -0.0750(0.0455) -0.0908(0.0510) -0.0939(0.0581) -0.0986(0.0600)

Importance 0.1034(0.0147) 0.0648(0.0124) 0.0750(0.0136) 0.0760(0.0139) 0.0787 (0.0143)

M-H 0.0759(0.0109) 0.0608(0.0058) 0.0693(0.0085) 0.0711(0.0090) 0.0735(0.0100)

θ 2.2216(0.9134) Lindley 1.5885(0.8498) 1.4893(0.7356) 1.5059(0.8173) 1.5411(0.8314) 1.5576(0.8365)

Importance -0.4122(0.1725) -0.4116(0.1720) -0.4117(0.1721) -0.4118(0.1722) -0.4119(0.1723)

M-H -0.4006(0.1644) -0.3968(0.1615) -0.3975(0.1621) -0.3982(0.1626) -0.3986(0.1629)

R5 α1 -2.4630(1.9543) Lindley -1.2940(1.1556) -1.0583(0.9041) -1.0987(1.0021) -1.1219(1.0964) -1.1485(1.1270)

Importance -1.2816(1.1374) -0.9002(0.8845) -0.9420(0.9514) -1.0171(1.0078) -1.1292(1.0334)

M-H -1.1971(1.0740) -0.8814(0.8097) -0.9345(0.9070) -0.9652(0.9415) -0.9989(0.9839)

α2 0.5822(0.2396) Lindley -0.1177(0.0920) -0.1026(0.0595) 0.1084(0.0596) -0.1130(0.0642) -0.1154(0.0845)

Importance 0.1076(0.0187) 0.0830(0.0156) 0.0949(0.0173) 0.0981(0.0176) 0.1028(0.0181)

M-H 0.0987(0.0118) 0.0790(0.0065) 0.0919(0.0092) 0.0937(0.0098) 0.0962(0.0108)

θ 2.3007(0.9792) Lindley 1.8172(0.8950) 1.7102(0.8144) 1.7121(0.8514) 1.7509(0.8716) 1.7699(0.8808)

Importance -0.4174(0.1768) -0.4168(0.1764) -0.4169(0.1765) -0.4170(0.1765) -0.4171(0.1766)

M-H -0.4040(0.1670) -0.4007(0.1644) -0.4013(0.1649) -0.4019(0.1653) -0.4022(0.1656)

R6 α1 -2.6101(2.0283) Lindley -1.8125(1.4257) -1.5121(1.2412) -1.5627(1.2997) -1.6510(1.3088) -1.6587(1.3163)

Importance -1.6278(1.2757) -1.2467(1.0694) -1.2822(1.0930) -1.3161(1.1283) -1.3908(1.1789)

M-H -1.4259(1.1816) -1.0489(1.0075) -1.1962(1.0911) -1.2621(1.1072) -1.2974(1.1229)

α2 -0.6615(0.2427) Lindley -0.1790(0.1367) -0.1175(0.1013) -0.1294(0.1254) -0.1386(0.1291) -0.1512 (0.1334)

Importance 0.1411(0.0244) 0.1105(0.0195) 0.1263(0.0218) 0.1315(0.0222) 0.1357(0.0232)

M-H 0.1390(0.0201) 0.0920(0.0124) 0.1149(0.0164) 0.1292(0.0172) 0.1342(0.0186)

θ 2.6249(1.3120) Lindley 1.8656(0.9650) 1.7712(0.9288) 1.7782(0.9337) 1.8164(0.9426) 1.8363(0.9495)

Importance -0.4175(0.1771) -0.4170(0.1767) -0.4171(0.1768) -0.4172(0.1769) -0.4172(0.1769)

M-H -0.4055(0.1680) -0.4029(0.1660) -0.4034(0.1664) -0.4039(0.1667) -0.4041(0.1669)
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Table 6: Biases and MSEs of the MLEs and BEs of α1, α2 and θ under Prior 1(the entries in parentheses are MSEs).

C. S. BEs (SE) BEs (LINEX) BEs (GE)

ω =−0.5 ω = 0.5 ρ =−0.5 ρ = 0.5
R1 α1 Lindley -1.2589(1.1205) -0.9593(0.8247) -1.0111(0.8440) -1.0604(0.9300) -1.1041(0.9674)

Importance -1.1289(1.0428) -0.7405(0.6344) -0.8273(0.7128) -0.8439(0.7587) -0.9850(0.9585)

M-H -0.9552(0.7871) -0.7311(0.5352) -0.7921(0.6871) -0.8285(0.7436) -0.8708(0.7747)

α2 Lindley -0.1347(0.0794) -0.1110(0.0512) -0.1240(0.0556) -0.1264(0.0632) -0.1305(0.0730)

Importance 0.1145(0.0188) 0.1041(0.0137) 0.1126(0.0160) 0.1139(0.0166) 0.1143(0.0177)

M-H 0.0869(0.0160) 0.0753(0.0129) 0.0819(0.0149) 0.0832(0.0151) 0.0850(0.0156)

θ Lindley 1.0418(0.5610) 0.9765(0.5605) 0.9814(0.5606) 0.9977(0.5607) 1.0094(0.5607)

Importance -0.5586(0.3169) -0.5293(0.3164) -0.5348(0.3165) -0.5378(0.3166) -0.5473(0.3167)

M-H -0.5363(0.2910) -0.5172(0.2836) -0.5305(0.2847) -0.5315(0.2859) -0.5326(0.2870)

R2 α1 Lindley -1.7315(1.3326) -1.4479(1.2406) -1.4754(1.2415) 1.5764(1.2443) 1.7276(1.2986)

Importance -1.7125(1.3155) -1.0395(0.9172) -1.0703(0.9850) -1.0965(1.0178) -1.1318(1.0620)

M-H -1.2687(1.1013) -0.8925(0.7973) -0.9423(0.8738) -0.9814(0.9701) -1.0189(0.9992)

α2 Lindley 0.1591(0.1335) 0.1199(0.0954) 0.1331(0.0963) 0.1387(0.0965) 0.1413(0.1261)

Importance 0.1440(0.0214) 0.1088(0.0156) 0.1269(0.0183) 0.1355(0.0190) 0.1397(0.0201)

M-H 0.0985(0.0183) 0.0850(0.0149) 0.0926(0.0171) 0.0941(0.0173) 0.0963(0.0178)

θ Lindley 1.2626(0.6562) 1.1476(0.6199) 1.2157(0.6294) 1.2196(0.6350) 1.2335(0.6425)

Importance -0.5615(0.3188) -0.5611(0.3182) -0.5612(0.3183) -0.5612(0.3184) -0.5613(0.3187)

M-H -0.5449(0.2996) -0.5399(0.2942) -0.5407(0.2951) -0.5414(0.2959) -0.5422(0.2967)

R3 α1 Lindley -1.9507(1.6870) -1.5933(1.3221) -1.7276(1.4775) -1.7459(1.5342) -1.7616(1.6082)

Importance -1.8672(1.3662) -1.2824(1.1321) -1.3197(1.1485) -1.3534(1.1631) -1.4149(1.1893)

M-H -1.6128(1.2472) -1.1025(1.0841) -1.2163(1.0960) -1.2742(1.1114) -1.3767(1.1377)

α2 Lindley -0.2473(0.1882) -0.2230(0.1231) -0.2249(0.1451) -0.2252(0.1615) -0.2283(0.1708)

Importance 0.2273(0.0608) 0.2109(0.0531) 0.2184(0.0573) 0.2211(0.0578) 0.2242(0.0593)

M-H 0.1558(0.0249) 0.1311(0.0177) 0.1446(0.0215) 0.1470(0.0221) 0.1514(0.0235)

θ Lindley 1.4046(0.8491) 1.3724(0.8003) 1.4049(0.8150) 1.4064(0.8235) 1.4275(0.8339)

Importance -0.5638(0.3201) -0.5633(0.3196) -0.5634(0.3197) -0.5635(0.3198) -0.5635(0.3199)

M-H -0.5498(0.3049) -0.5458(0.3006) -0.5464(0.3013) -0.5470(0.3020) -0.5476(0.3026)
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Table 6: Continued (the entries in parentheses are MSEs).

C. S. BEs (SE) BEs (LINEX) BEs (GE)

ω =−0.5 ω = 0.5 ρ =−0.5 ρ = 0.5
R4 α1 Lindley -1.1537(1.0704) -0.6858(0.6377) -0.7257(0.6994) -0.7595(0.7412) -0.8125(0.7687)

Importance -0.9891(0.9186) -0.6173(0.3998) -0.6489(0.5071) -0.6367(0.6092) -0.6901(0.6460)

M-H -0.6449(0.5509) -0.2120(0.1608) -0.2170(0.2581) -0.4191(0.3721) -0.4227(0.4170)

α2 Lindley -0.0767(0.0594) -0.0466(0.0414) -0.0606(0.0494) -0.0659(0.0497) -0.0762(0.0499)

Importance 0.0631(0.0087) 0.0464(0.0065) 0.0558(0.0077) 0.0579(0.0079) 0.0605(0.0083)

M-H 0.0449(0.0023) 0.0208(0.0007) 0.0344(0.0015) 0.0375(0.0017) 0.0412(0.0020)

θ Lindley 0.9225(0.5355) 0.6394(0.4661) 0.8977(0.5049) 0.9055(0.5145) 0.9101(0.5222)

Importance -0.3964(0.1602) -0.3960(0.1598) -0.3961(0.1599) -0.3962(0.1600) -0.3963(0.1601)

M-H 0.3833(0.1507) 0.3810(0.1490) 0.3814(0.1493) 0.3819(0.1495) 0.3821(0.1496)

R5 α1 Lindley -1.2763(1.1925) -0.9969(0.9411) -1.0241(0.9741) -1.1079(0.9571) -1.1410(1.0919)

Importance -1.2632(1.1237) -0.8684(0.7944) -0.9130(0.8753) -0.9509(0.9281) -0.9870(0.9800)

M-H -1.2099(1.0621) -0.7549(0.7474) -0.8342(0.8061) -0.9047(0.8606) -0.9608(0.8831)

α2 Lindley -0.1121(0.0769) 0.0708(0.0485) -0.0767(0.0548) -0.0811(0.0599) -0.0897(0.0678)

Importance 0.0869(0.0091) 0.0609(0.0068) 0.0754(0.0080) 0.0784(0.0083) 0.0826(0.0087)

M-H 0.0636(0.0078) 0.0461(0.0039) 0.0561(0.0059) 0.0582(0.0064) 0.0609(0.0070)

θ Lindley 1.0855(0.6118) 0.7880(0.4980) 1.0264(0.5479) 1.0633(0.5723) 1.0740(0.5848)

Importance -0.3969(0.1608) -0.3966(0.1605) -0.3967(0.1606) -0.3967(0.1606) -0.3968(0.1607)

M-H -0.3834(0.1513) -0.3814(0.1480) -0.3818(0.1494) -0.3821(0.1497) -0.3823(0.1498)

R6 α1 Lindley -1.6394(1.2466) -1.4162(1.0146) -1.5608(1.0653) -1.5981(1.1126) -1.6201(1.1493)

Importance -1.3863(1.1772) -0.9894(0.9648) -1.0075(0.9944) -1.0480(1.0235) -1.1088(1.0528)

M-H -1.2819(1.1216) -0.9875(0.9638) -0.9994(0.9854) -1.0472(1.0089) -1.0896(1.0295)

α2 Lindley -0.1542(0.1080) -0.1105(0.0777) -0.1273(0.0866) -0.1304(0.0935) -0.1431(0.0980)

Importance 0.1392(0.0238) 0.1065(0.0123) 0.1158(0.0216) 0.1199(0.0221) 0.1353(0.0230)

M-H 0.1231(0.0195) 0.0917(0.0105) 0.1080(0.0161) 0.1175(0.0168) 0.1203(0.0181)

θ Lindley 1.3641(0.7472) 1.2404(0.6148) 1.3111(0.7007) 1.3237(0.7032) 1.3463(0.7065)

Importance -0.4010(0.1639) -0.4006(0.1635) -0.4007(0.1636) -0.4008(0.1637) -0.4009(0.1638)

M-H -0.3885(0.1543) -0.3869(0.1532) -0.3872(0.1534) -0.3875(0.1536) -0.3877(0.1537)
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Table 7: ALs and CPs of 95% approximate and Boot-t CIs of α1, α2 and λ when m = 20 and n = 25.

Approx Boot-t

C. S.

R1 α1 AL 1.8292 1.6115

CP 0.6285 0.6652

α2 AL 1.3666 0.7526

CP 0.6126 0.6865

θ AL 1.5442 1.3756

CP 0.6153 0.7111

R2 α1 AL 1.9264 1.7950

CP 0.6616 0.7135

α2 AL 1.4377 0.9382

CP 0.6567 0.7023

θ AL 1.7112 1.5641

CP 0.6591 0.7112

R3 α1 AL 2.0057 1.8869

CP 0.7180 0.7560

α2 AL 1.5039 1.0467

CP 0.7126 0.7622

θ AL 1.8848 1.7137

CP 0.7112 0.7153

R4 α1 AL 1.6714 1.4578

CP 0.5395 0.6308

α2 AL 0.9944 0.7411

CP 0.5472 0.5619

θ AL 0.9153 0.8792

CP 0.5429 0.5486

R5 α1 AL 1.6867 1.5641

CP 0.5468 0.6432

α2 AL 1.0007 0.7412

CP 0.5407 0.5808

θ AL 1.2853 0.9249

CP 0.5479 0.6301

R6 α1 AL 1.9288 1.8593

CP 0.6180 0.6633

α2 AL 1.1787 0.8443

CP 0.5623 0.5866

θ AL 1.2980 1.0277

CP 0.6068 0.7057
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Table 8: ALs and CPs of 95% CIs of α1, α2 and θ when m = 20 and n = 25 under Prior 0.
HPD (Importance) HPD M-H

C. S.

SE LINEX GE SE LINEX GE

ω =−0.5 ω = 0.5 ρ =−0.5 ρ = 0.5 ω =−0.5 ω = 0.5 ρ =−0.5 ρ = 0.5
R1 α1 AL 0.9935 0.7431 0.9156 0.9214 0.9808 0.1251 0.1097 0.1126 0.1191 0.1213

CP 0.8424 0.8957 0.8941 0.8925 0.8908 0.9502 0.9721 0.9683 0.9603 0.9600

α2 AL 0.3610 0.3559 0.3566 0.3569 0.3588 0.0660 0.0620 0.0615 0.0642 0.0648

CP 0.8955 0.9124 0.9107 0.9090 0.9074 0.9760 0.9808 0.9806 0.9804 0.9761

θ AL 0.1935 0.1909 0.1923 0.1926 0.1930 0.1722 0.1716 0.1718 0.1719 0.1720

CP 0.8571 0.8633 0.8617 0.8602 0.8586 0.9603 0.9754 0.9640 0.9607 0.9605

R2 α1 AL 1.6631 1.1173 1.3498 1.3976 1.4986 0.1621 0.1150 0.1165 0.1215 0.1357

CP 0.8775 0.9107 0.8957 0.8941 0.8909 0.9603 0.9807 0.9801 0.9800 0.9645

α2 AL 0.3692 0.3573 0.3672 0.3676 0.3684 0.0918 0.0880 0.0903 0.0904 0.0912

CP 0.9000 0.9137 0.9113 0.9099 0.9085 0.9778 0.9813 0.9811 0.9807 0.9794

θ AL 0.2275 0.2250 0.2263 0.2264 0.2269 0.2077 0.2062 0.2069 0.2070 0.2074

CP 0.8909 0.8992 0.8976 0.8960 0.8944 0.9720 0.9767 0.9725 0.9724 0.9723

R3 α1 AL 1.8401 1.1961 1.4714 1.4909 1.6857 0.1689 0.1215 0.1326 0.1364 0.1484

CP 0.9090 0.9157 0.9140 0.9124 0.9107 0.9725 0.9847 0.9805 0.9801 0.9760

α2 AL 0.4195 0.4102 0.4166 0.4169 0.4171 0.1005 0.0967 0.0983 0.0986 0.0994

CP 0.9074 0.9141 0.9124 0.9107 0.9090 0.9877 0.9887 0.9885 0.9883 0.9878

θ AL 0.2357 0.2330 0.2344 0.2345 0.2351 0.2298 0.2294 0.2295 0.2296 0.2297

CP 0.8940 0.9160 0.9040 0.9040 0.8980 0.9800 0.9807 0.9805 0.9803 0.9802

R4 α1 AL 0.7672 0.5516 0.7318 0.7387 0.7540 0.1219 0.0556 0.0849 0.0950 0.1075

CP 0.8243 0.8743 0.8727 0.8273 0.8258 0.8608 0.9107 0.8957 0.8941 0.8909

α2 AL 0.3579 0.3556 0.3563 0.3566 0.3576 0.0631 0.0607 0.0608 0.0619 0.0620

CP 0.8752 0.8955 0.8921 0.8905 0.8888 0.9563 0.9606 0.9605 0.9604 0.9567

θ AL 0.1907 0.1887 0.1898 0.1899 0.1903 0.1692 0.1686 0.1687 0.1688 0.1689

CP 0.8433 0.8617 0.8602 0.8586 0.8571 0.9600 0.9643 0.9607 0.9605 0.9603

R5 α1 AL 1.0998 0.8349 0.9685 0.9913 1.0835 0.1333 0.0972 0.1078 0.1131 0.1263

CP 0.8608 0.8974 0.8941 0.8909 0.8792 0.9527 0.9730 0.9720 0.9680 0.9605

α2 AL 0.3672 0.3566 0.3599 0.3600 0.3641 0.0751 0.0699 0.0703 0.0721 0.0732

CP 0.8888 0.8955 0.8938 0.8921 0.8905 0.9600 0.9685 0.9683 0.9608 0.9601

θ AL 0.2184 0.2156 0.2171 0.2172 0.2178 0.1775 0.1771 0.1772 0.1773 0.1774

CP 0.8453 0.8639 0.8612 0.8592 0.8581 0.9680 0.9688 0.9687 0.9685 0.9683

R6 α1 AL 1.6783 0.8471 1.3516 1.3636 1.3867 0.1666 0.0867 0.1177 0.1218 0.1424

CP 0.8909 0.9107 0.8957 0.8941 0.8925 0.9601 0.9807 0.9803 0.9685 0.9683

α2 AL 0.3732 0.3625 0.3669 0.3675 0.3700 0.0970 0.0946 0.0950 0.0952 0.0958

CP 0.8895 0.9141 0.8938 0.8921 0.8905 0.9647 0.9752 0.9700 0.9681 0.9680

θ AL 0.2329 0.2300 0.2315 0.2316 0.2323 0.2101 0.2096 0.2098 0.2099 0.2100

CP 0.8750 0.8812 0.8797 0.8781 0.8765 0.9760 0.9767 0.9765 0.9763 0.9763
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Table 9: ALs and CPs of 95% CIs of α1, α2 and θ when m = 20 and n = 25 under Prior 1.

HPD (Importance) HPD M-H

C. S.

SE LINEX GE SE LINEX GE

ω =−0.5 ω = 0.5 ρ =−0.5 ρ = 0.5 ω =−0.5 ω = 0.5 ρ =−0.5 ρ = 0.5
R1 α1 AL 0.7496 0.6535 0.6581 0.6726 0.6972 0.0940 0.0710 0.0756 0.0791 0.0802

CP 0.8544 0.8727 0.8547 0.8546 0.8545 0.9325 0.9447 0.9403 0.9401 0.9363

α2 AL 0.2748 0.2637 0.2709 0.2710 0.2727 0.0609 0.0574 0.0587 0.0590 0.0601

CP 0.8703 0.8812 0.8752 0.8736 0.8719 0.9400 0.9408 0.9405 0.9403 0.9402

θ AL 0.1917 0.1896 0.1906 0.1909 0.1913 0.1692 0.1686 0.1687 0.1688 0.1689

CP 0.8243 0.8453 0.8438 0.8407 0.8392 0.9400 0.9407 0.9405 0.9404 0.9403

R2 α1 AL 0.9228 0.7541 0.8461 0.8472 0.8792 0.0960 0.0762 0.0786 0.0798 0.0865

CP 0.8545 0.8791 0.8775 0.8743 0.8727 0.9400 0.9607 0.9520 0.9487 0.9401

α2 AL 0.3319 0.3240 0.3300 0.3301 0.3307 0.0727 0.0704 0.0712 0.0715 0.0718

CP 0.9378 0.9440 0.9438 0.9430 0.9320 0.9525 0.9601 0.9563 0.9560 0.9527

θ AL 0.2203 0.2182 0.2193 0.2194 0.2198 0.1904 0.1900 0.1901 0.1902 0.1903

CP 0.8392 0.8453 0.8438 0.8422 0.8407 0.9400 0.9607 0.9407 0.9405 0.9404

R3 α1 AL 1.2695 0.9335 1.0856 1.0977 1.1733 0.0983 0.0800 0.0840 0.0846 0.0908

CP 0.8576 0.8974 0.8775 0.8759 0.8743 0.9405 0.9752 0.9607 0.9502 0.9500

α2 AL 0.3843 0.3678 0.3809 0.3811 0.3821 0.0908 0.0867 0.0876 0.0880 0.0892

CP 0.9498 0.9520 0.9510 0.9490 0.9480 0.9600 0.9752 0.9607 0.9605 0.9603

θ AL 0.2295 0.2266 0.2282 0.2283 0.2289 0.2080 0.2069 0.20757 0.2076 0.2078

CP 0.8392 0.8633 0.8438 0.8422 0.8407 0.9600 0.9754 0.9605 0.9604 0.9603

R4 α1 AL 0.7136 0.6014 0.6575 0.6587 0.6971 0.0937 0.0636 0.0744 0.0770 0.0794

CP 0.8000 0.8424 0.8226 0.8211 0.8014 0.9163 0.9440 0.9241 0.9240 0.9205

α2 AL 0.2670 0.2630 0.2646 0.2660 0.2661 0.0478 0.0458 0.0467 0.0468 0.0471

CP 0.8703 0.8768 0.8752 0.8736 0.8719 0.9252 0.9407 0.9405 0.9403 0.9400

θ AL 0.1829 0.1802 0.1816 0.1820 0.1825 0.1675 0.1669 0.1670 0.1672 0.1674

CP 0.7857 0.7913 0.7899 0.7885 0.7871 0.9004 0.9207 0.9205 0.9203 0.9200

R5 α1 AL 0.8861 0.7315 0.8155 0.8211 0.8653 0.0945 0.0723 0.0760 0.0775 0.0859

CP 0.8196 0.8608 0.8409 0.8394 0.8363 0.9365 0.9561 0.9405 0.9403 0.9367

α2 AL 0.2927 0.2616 0.2742 0.2749 0.2845 0.0697 0.0674 0.0675 0.0676 0.0687

CP 0.8518 0.8955 0.8752 0.8736 0.8534 0.9200 0.9407 0.9252 0.9206 0.9204

θ AL 0.1951 0.1922 0.1938 0.1941 0.1946 0.1721 0.1716 0.1718 0.1719 0.1720

CP 0.8035 0.8038 0.8037 0.8036 0.8036 0.9200 0.9407 0.9205 0.9204 0.9203

R6 α1 AL 1.0759 0.8189 0.9089 0.9171 0.9836 0.0976 0.0744 0.0769 0.0794 0.0862

CP 0.8545 0.8974 0.8775 0.8759 0.8743 0.9400 0.9607 0.9603 0.9405 0.9403

α2 AL 0.3414 0.3378 0.3378 0.3387 0.3411 0.0752 0.0708 0.0724 0.0727 0.0732

CP 0.8703 0.8955 0.8782 0.8781 0.8750 0.9360 0.9443 0.9441 0.9407 0.9405

θ AL 0.2241 0.2221 0.2231 0.2232 0.2236 0.1958 0.1950 0.1955 0.1956 0.1957

CP 0.8214 0.8273 0.8258 0.8243 0.8228 0.9400 0.9607 0.9405 0.94030 0.9403

c© 2022 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 11, No. 3, 759-780 (2022) / www.naturalspublishing.com/Journals.asp 779

Acknowledgements:
The authors would like to thank the editor and referees for their comments and helpful suggestions.

Conflicts of Interests
The authors declare that they have no conflicts of interests

References

[1] B. Gompertz, On the nature of the function expressive of the law of human mortality and on the new mode of determining the value

of life contingencies, Philosophical Transactions of the Royal Society, 115-A, 513-580 (1824).

[2] J.C. Ahuja, and S.W. Nash, The generalized Gompertz-Verhulst family of distributions, Sankhya, 29-A, 141-156 (1967).

[3] J. Chen, Parameter estimation of the Gompertz population, Biometrical, 39, 117-124 (1997).

[4] N. Balakrishnan, R. Aggarwala, Progressive Censoring: Theory, Methods and Applications, Birkhauser, Boston (2000).

[5] N. Balakrishnan, E. Cramer, The Art of Progressive Censoring: Applications to Reliability and Quality, Springer, New York (2014).

[6] H. K. T. Ng, Parameter estimation for a modified Weibull distribution for progressively type-II censored samples, IEEE Transactions

on Reliability, 54, 374-380 (2005).

[7] M. Z. Raqab, A. Asgharzadeh, R. Valiollahi, Prediction for Pareto distribution based on progressively type-II censored samples,

Computational Statistics & Data Analysis, 54, 1732-1743 (2010).

[8] B. Pradhan, D. Kundu, On progressively censored generalized exponential distribution, Test, 18, 497 (2009).

[9] R. Valiollahi, M. Z. Raqab, A. Asgharzadeh, F. A. Alqallaf, Estimation and prediction for power Lindley distribution under

progressively type II right censored samples, Mathematics and Computers in Simulation, 149, 32-47 (2018).

[10] R. K. Maurya, Y. M. Tripathi, M. K. Rastogi, Estimation and prediction for a progressively first-failure censored inverted

exponentiated Rayleigh distribution, Statistical Theory and Practice, 13, (2019).

[11] A. Rasouli, N. Balakrishnan, Exact likelihood inference for two exponential populations under joint progressive type-II censoring,

Communications in Statistics-Theory and Methods, 39, 2172-2191 (2010).

[12] S. Parsi, I . Bairamov, Expected values of the number of failures for two populations under joint type-II progressive censoring,

Computational Statistics & Data Analysis, 53, 3560-3570 (2009).

[13] S. Parsi, M. Ganjali, S. Farsipour, Conditional maximum likelihood and interval estimation for two Weibull populations under

joint type-II progressive censoring, Communication in Statistics- Theory and Methods, 40, 2117-2135 (2010).

[14] S. Mondal, D. Kundu, Point and interval estimation of Weibull parameters based on joint progressively censored data, Sankhya,

81-B, 1-25 (2019).

[15] M. Doostparast, M. Vali, M. Ahmadi, J. Ahmadi, Bayes estimation based on joint progressive type II censored data under LINEX

loss function, Communication in Statistics- Simulation and Computation, 42, 1865-1886 (2013).

[16] S.K. Ashour, O.E. Abo-Kasem, Statistical inference for two exponential populations under joint progressive type-I censored

scheme, Communication in Statistics- Theory and Methods, 46, 3479-3488 (2017).

[17] S. Mondal, D. Kundu, On the joint type-II progressive censoring scheme, Communications in Statistics-Theory and Methods, 49,

958-976 (2020).

[18] A.P. Basu, N. Ebrahimi, Bayesian approach to life testing and reliability estimation using asymmetric loss function, Statistical

Planning and Inference, 29, 21-31 (1991).

[19] H. R. Varian, A Bayesian approach to real estate assessment, In: Studies in Bayesian Econometrics and Statistics in Honor of

Leonard J. Savage, Stephen E. Fienberg and A. Zellner, Eds., pp. 195-208, North-Holland ‘Publishing Company, Amsterdam, The

Netherlands (1975).

[20] C. Ren, D. Sun, D. K. Dey, Bayes and frequentist estimation and prediction for exponential distribution, Statistical Planning and

Inference, 136, 2873-2897 (2006).

[21] A. Zellner, Bayesian estimation and prediction using asymmetric loss function. American Statistical Association, 81, 446-451

(1986).

[22] P.F. Christoffersen, F.X. Diebold, Further results on forecasting and model selection under asymmetric loss, Applied Econometrics,

11, 561-571 (1996).

[23] R. Calabria, G. Pulcini, Point estimation under asymmetric loss functions for left-truncated exponential samples, Communications

in Statistics-Theory and Methods, 25, 585-600 (1996).

[24] E. L. Lehmann, G. Casella, Theory of Point Estimation, Second Edition, Springer, Berlin (1998).

[25] E. A. Ahmed, Bayesian estimation based on progressive type-II censoring from two-parameter bathtub-shaped lifetime model: an

Markov Chain Monte Carlo Approach, Applied Statistics, 41, 752-768 (2014).

[26] D. Lindley, Approximate Bayes methods, Trabajos de Estadistica Y de Investigacion Operativa, 31, 223-245 (1980).

[27] H. Howlader, A. Hossain, Bayesian survival estimation of Pareto distribution of the second kind based on failure censored data,

Computational Statistics & Data Analysis, 38, 301-314 (2002).

[28] Z. F. Jaheen, On record statistics from a mixture of two exponential distributions, Statistical Computation and Simulation, 75, 1-11

(2005).

[29] S. Geman, D. Geman, Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images, IEEE Transactions on

Pattern Analalysis and Machine Intelligence, 6, 721-741 (1984).

c© 2022 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


780 F. Boulkeroua et al.: Statistical analysis of JPC data from...

[30] M. H. Chen, Q. M. Shao, Monte Carlo estimation of Bayesian credible and HPD intervals, Computational and Graphical Statistics,

8, 69-92 (1999).

[31] L. Tierney, Markov chains for exploring posterior distributions, Annals of Statistics, 22, 1701-1728 (1994).

[32] E. T. Lee, D. R. Ishmael, R. H. Bottomley, J. L. Murray, An Analysis of skin tests and their relationship to recurrence and survival

in stage III and stage IV Melanoma patients, Cancer, 49, 2336-2341 (1982).

[33] E. T. Lee, J. W. Wang, Statistical Methods for Survival Data Analysis, Third Edition, John Wiley & Sons, Inc., Hoboken, New

Jersey (2003).

c© 2022 NSP

Natural Sciences Publishing Cor.


	Introduction
	Models description, loss functions and priors
	Maximum likelihood estimation and its approximation
	Bayesian estimation of the parameters
	Simulation results and data analysis
	Conclusions

