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Abstract: We investigate machine learning for the least square regression with data dependent hypothesis and coefficient regularization
algorithms based on general kernels. We provide some estimates for thelearning raters of both regression and classification when the
hypothesis spaces are sample dependent. Under a weak condition on thekernels we derive learning error by estimating the rate of some
K-functional when the target functions belong to the range of some Hilbert-Schmidt integral operator.
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1 Introduction

In this paper, we drive the error bound of coefficient
regularized learning algorithms for both regression and
classification when the hypothesis spaces are sample
dependent.

We formulate the problem of learning. Let(X,d) be a
compact metric space,ρ be a Borel probability measure on
Z :=X×Y with Y = ℜ. z= {(xi ,yi)}m

i=1 ⊂ Zm are samples
drawn independently and identically according toρ . Then,
it is known that the regression learning aims at, through the
samples, obtaining an approximatorfz of the regression
function

fρ(x) =
∫

Y
ydρ(y|x), x∈ X,

where ρ(y|x) is the conditional (with respect to x)
probability measure onY and ρX- is the marginal
probability measure on X. It is clear that if|y| ≤ M,

almost surely, then the regression functionfρ is bounded
and square integrable with respect toρX.

DefineEρ( f ) =
∫

Z

(

y− f (x)
)2

dρ andL2(ρX) = { f :

‖ f‖2,ρX =
(
∫

X

∣

∣ f (x)
∣

∣

2
dρX

)
1
2 <+∞}. Then,

fρ(x) = argmin
f

∫

Z

(

y− f (x)
)2

dρ , (1)

where the minimum is taken over all measurable functions
with respect toρX.

It is known that one of the purposes of learning is to
obtain fz through samplesz and provide the consistency
analysis of fz and fρ . Kernel-based method is a popular
way for this purpose, see [1,2,3,4,5,6,7].

Let K : X × X → ℜ be a continuous and bounded
function which is known as a general kernel. For a given
data X := {x1,x2, · · · ,xm} ⊂ X the data dependent
hypothesis space is defined by

HK,X :=
{

fα(x)=
m

∑
j=1

α jK(x,x j) : α = {α1, · · · ,αm}∈ℜm}
.

To obtain fz, in [8] the authors used the following
general coefficient regularization algorithm based on
kernelK(x,y)

fz = fαz,

αz : = arg min
α∈ℜm

( 1
m

m

∑
i=1

(

fα(xi)−yi
)2

+λΩ(α)
)

, (2)

whereΩ(α) is a positive function onℜm.

Let ‖a‖2
2 = a⊤a =

m
∑

i=1
|ai |2 for a ∈ ℜm. For

b = (b1,b2, · · · ,bm)
⊤ ∈ ℜm we define the usual inner
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product ofℜm by

(a,b)2 =
m

∑
i=1

ai bi = a⊤ b.

Then we recall the following coefficient regularized
scheme withl2-penalization

αz :=αz,λ = arg min
α∈ℜm

(

1
m

m

∑
i=1

(

yi − fα(xi)
)2

+λm‖α‖2
2

)

.

(3)
When X = (x1,x2, · · · ,xm) is a given data inX, the

convergence rates of the error‖ fαz − fρ‖2,ρX is discussed
in [9].

Denoted by k := sup
(x,y)∈X×X

|K(x,y)| and

|ρ |2 :=
∫

Z y2 dρ . Then, in [9] the authors proved that if

m ≥ M2

|ρ |2 and λ ≥ k2

m , then, for any 0< δ < 1, with
confidence 1−δ , there holds

‖ fαz − fρ‖2,ρX ≤
6k2
√

|ρ |2 log 2
δ

λ
√

m
+KX( fρ ,λ )

1
2 , (4)

whereKX( fρ ,λ ) is defined by

KX( fρ ,λ ) = inf
α∈ℜm

(

‖ fα − fρ‖2
2,ρX

+λm‖α‖2
2

)

.

On the other hand, in [10] the authors obtained the
convergence rates forKX( fρ ,λ ). Let K(x,y) be an
symmetric kernel onX×X and there isϕ ∈ L2(ρX) such
that

fρ(x) = LK(ϕ,x) =
∫

X
K(x, t)ϕ(t) dρX(t), x∈ X. (5)

Then, there is a discreteX ⊂ X such that

KX( fρ ,λ )≤
A−‖ fρ‖2

2,ρX

m
+λ ‖ϕ‖2

2,ρX
, (6)

whereA=
∫

X

∫

X ϕ(y)2 K(x,y)2 dρ(x) dρ(y).
Combining (4) with (6) we know that ifK(x,y) is a

bounded symmetric kernel onX ×X and (5) holds, then,
there is a discreteX ⊂ X such that, for any 0< δ < 1, with
confidence 1−δ , there holds

‖ fαz − fρ‖2,ρX = O
(

m− 1
6 (1+ log

2
δ
)
)

. (7)

In this paper, we will show that (7) still holds whenX
is taken from the randomized samplez. Our main result is
the following Theorem.

Theorem 1.1.Let K(x,y) be a general symmetric kernel
on X ×X and (5) holds. Then, for any 0< δ < 1, with
confidence 1−δ , there is

‖ fαz − fρ‖2,ρX = O

(

m− 1
6

(

1+ log
2
δ

))

. (8)

2 Proof of main result

Define the integral regularized risk scheme corresponding
to (3) by

α(ρ) := α(ρ)
λ = arg min

α∈ℜm

{

Eρ( fα)+λm‖α‖2
2

}

. (9)

Then, we have the following error decomposition.

‖ fαz − fρ‖2,ρX ≤ ‖ fαz − fα(ρ)‖2,ρX +‖ fα(ρ) − fρ‖2,ρX ,

(10)
where the first term of the right side is called the
approximation error and the second term is called the
sample error.

Since

‖ fαz − fα(ρ)‖2,ρX ≤ k
√

m‖αz−α(ρ)‖2. (11)

We reduce the sample error to‖αz−α(ρ)‖2.

Lemma 2.1. The solutions of the scheme (9) have the
following properties:

(i). There exists uniquely a minimizerα(ρ) of the
problem (9) and

∫

Z
(y− fα(ρ)(x))2 dρ ≤ |ρ |2. (12)

(ii).Let ρ and µ be distributions onZ = X ×Y with
|ρ |2 <+∞, |µ |2 <+∞,K(x,y) be a general kernel onX×
X with α(ρ) andα(µ) be the solutions of scheme (9) for ρ
andµ respectively. Then, there is

∥

∥α(ρ)−α(µ)∥
∥

2 ≤ 2
λm

×
∥

∥

∫

Z
KX(x)

⊤(y− fα(ρ)(x)
)

dρ

−
∫

Z
KX(x)

⊤(y− fα(ρ)(x)
)

d µ
∥

∥

2, (13)

where KX(x) = (K(x,x1), · · · ,K(x,xm)). For a
vector-valued function

f (x,y) = ( f1(x,y), · · · , fm(x,y))
⊤

and a scalar-valued functionα(x) we define

f (x,y)α(x) =
(

f1(x,y)α(x), · · · , fm(x,y)α(x)
)⊤

and
∫

Z
f (x,y)α(x) dρ =

(

∫

Z
f1(x,y)α(x)dρ , · · · ,

∫

Z
fm(x,y)α(x) dρ

)⊤
.

Proof of Theorem 1.1.By (13) we have

∥

∥α(ρ)−αz
∥

∥

2 ≤ 2
λm

×
∥

∥

∫

Z

(

y− fα(ρ)(x)
)

KX(x)
⊤ dρ

− 1
m

m

∑
i=1

(

yi − fα(ρ)(xi)
)

KX(xi)
⊤big‖2. (14)
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On the other hand, by the definition of norm‖ · ‖2 we
have
∥

∥

∫

Z

(

y− fα(ρ)(x)
)

KX(x)
⊤ dρ

− 1
m

m

∑
i=1

(

yi − fα(ρ)(xi)
)

KX(xi)
⊤∥
∥

2

= sup
α∈ℜm,‖α‖2≤1

|〈
∫

Z

(

y− fα(ρ)(x)
)

KX(x)
⊤ dρ

− 1
m

m

∑
i=1

(

yi − fα(ρ)(xi)
)

KX(xi)
⊤
,α〉2|

= sup
α∈ℜm,‖α‖2≤1

|〈
∫

Z

(

y− fα(ρ)(x)
)

KX(x)
⊤ dρ ,α〉2

− 〈 1
m

m

∑
i=1

(

yi − fα(ρ)(xi)
)

KX(xi)
⊤
,α〉2|

= sup
α∈ℜm,‖α‖2≤1

|
∫

Z

(

y− fα(ρ)(x)
)

〈KX(x),α〉2 dρ

− 1
m

m

∑
i=1

(

yi − fα(ρ)(xi)
)

〈KX(xi),α〉2|

= sup
α∈ℜm,‖α‖2≤1

|
∫

Z

(

y− fα(ρ)(x)
)

fα(x)dρ

− 1
m

m

∑
i=1

(

yi − fα(ρ)(xi)
)

fα(xi)|. (15)

Takeξ (x,y) =
(

y− fα(ρ)(x)
)

fα(x), then, for‖α‖2 ≤ 1
we have by (12) and (11) that

∫

Z
ξ (x,y)2dρ =

∫

Z

(

y− fα(ρ)(x)
)2

fα(x)
2dρ

≤ k2m‖α‖2
2

∫

Z

(

y− fα(ρ)(x)
)2

dρ

≤ k2mEρ( fα(ρ))≤ k2m|ρ |2. (16)

Hence,
∥

∥

∫

Z

(

y− fα(ρ)(x)
)

KX(x)
⊤ dρ

− 1
m

m

∑
i=1

(

yi − fα(ρ)(xi)
)

KX(xi)
⊤∥
∥

2

≤ sup
∫

Z ξ (x,y)2dρ≤k2m|ρ |2

∣

∣

∣

∣

∣

∫

Z
ξ (x,y)dρ − 1

m

m

∑
i=1

ξ (xi ,yi)

∣

∣

∣

∣

∣

. (17)

Moreover, by the (3.1) in Chapter 3 of [11] we know
the following results:

Let (z1,z2, · · · ,zm) be samples drawn independently
according to ρ , ξ (z) : Z → R satisfiesξ (z) ∈ L2(ρX).
Then,for any0< δ < 1, with confidence1−δ , holds

∣

∣

∣

∣

∣

1
m

m

∑
i=1

ξ (zi)−
∫

Z
ξ (z)dρ

∣

∣

∣

∣

∣

≤
√

σ2

mδ
, (18)

whereσ2 =
∫

Z ξ 2(z)dρ .

Applying (18) to (17), we have, with confidence 1−δ ,
holds
∥

∥

∫

Z

(

y− fα(ρ)(x)
)

KX(x)
⊤ dρ

− 1
m

m

∑
i=1

(

yi − fα(ρ)(xi)
)

KX(xi)
⊤∥
∥

2

≤ k

√

|ρ |2
δ

. (19)

It follows that

‖ fαz − fα(ρ)‖2,ρX ≤ k
√

m
∥

∥α(ρ)−αz
∥

∥

2

≤ 2k
λ
√

m

∥

∥

∫

Z

(

y− fα(ρ)(x)
)

KX(x)
⊤ dρ

− 1
m

m

∑
i=1

(

yi − fα(ρ)(xi)
)

KX(xi)
⊤∥
∥

2

≤ 2k2

λ
√

m

√

|ρ |2
δ

. (20)

The fact, see [1], Eρ( f )−Eρ( fρ) = ‖ f − fρ‖2
2,ρX

yields

‖ fαz − fρ‖2,ρX ≤ ‖ fαz − fα(ρ)‖2,ρX +
√

Eρ( fα(ρ))−Eρ( fρ)

≤ ‖ fαz − fα(ρ)‖2,ρX

+
√

Eρ( fα(ρ))−Eρ( fρ)+λm‖α(ρ)‖2
2

= ‖ fαz − fα(ρ)‖2,ρX

+

√

inf
α∈ℜm

(Eρ( fα)−Eρ( fρ)+λm‖α‖2
2)

= ‖ fαz − fα(ρ)‖2,ρX

+

√

inf
α∈ℜm

(‖ fα − fρ‖2,ρX +λm‖α‖2
2)

= ‖ fαz − fα(ρ)‖2,ρX +
√

KX( fρ ,λ ). (21)

By the (2.5) of [6] we know that if fρ satisfies (5), then,
for anyδ ∈ (0,1), with confidence 1−δ , holds

KX( fρ ,λ )≤
1
δ

[

A−‖ fρ‖2
2,ρX

m
+λ ‖ϕ‖2

2,ρX

]

. (22)

By (20), (21) and (22), settingλ = m− 1
3 we know with

1−2δ (8) holds.�.

3 Applications to classification

In this section we will derive a learning rate of coefficient
regularized binary classification algorithms by using the
results of above sections.

LetY = {−1,1} andρ be a probability distribution on
Z = X×Y.
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It is known that a binary classifier is a functionf (x) :
X → Y which dividesX into two classes, its prediction
ability is measured by the misclassification error

ℜ( f ) = Prob{ f (x) 6= y}=
∫

X
P(y 6= f (x)|x)dρX(x).

By [10] we know that the classifier which minimizes
the misclassification error is the Bayes rulefc := sgn( fρ),
where fρ is the regression function ofρ , i.e.,

fρ(x) =
∫

Y
ydρ(y|x) = P(y= 1|x)−P(y=−1|x).

In what follows, for a functionf : X → R the sign
function of f is defined assgn( f )(x) = 1 if f (x) ≥ 0 and
sgn( f )(x) =−1 if f (x)< 0.

Let z = ((xi ,yi))
m
i=1 be random samples drawn

independently according toρ . Then, the purpose of
classification learning is to find, through the samplez, a
good approximation of fc and estimate the excess
misclassification error

ℜ(sgn( fz))−ℜ( fc).

There are many ways for us to obtainfz and many are used
for the analysis of error, see [12,13,14,15,16,17,18,19].

The coefficient regularized classification learning
algorithm corresponding to (3) is the following scheme

αz := arg min
α∈Rm

[

Ez( fα)+λm
m

∑
i=1

α2
i

]

, (23)

where fα ∈ HK,X and

Ez( f ) = 1
m

m
∑

i=1

(

1−yi f (xi)
)2

= 1
m

m
∑

i=1

(

yi − f (xi)
)2
.

Scheme (23) can be interpreted as an stochastic
approximation of the following regularized risk
minimization

α(ρ) := α(ρ)
λ = arg min

α∈Rm

[

Eρ( fα)+λm
∥

∥α
∥

∥

2
2

]

, (24)

where

Eρ( f ) =
∫

Z

(

1−y f(x)

)2

dρ =
∫

Z

(

y− f (x)

)2

dρ .

Based on Theorem 1.1 we can derive the following
Theorem.
Theorem 3.1.Let K(x,y) be a general symmetric kernel
on X ×X and (5) holds. Then, for any 0< δ < 1, with
confidence 1−δ , there is

ℜ(sgn( fz))−ℜ( fc)≤ O
(

m− 1
6 (1+ log

2
δ
)
)

. (25)

Proof of Theorem 3.1.It is known from [12] that there is
a constantc> 0 such that

ℜ(sgn( fαz))−ℜ( fc) ≤ c
√

Eρ( fαz)−Eρ( fρ). (26)

Thus by Theorem 1.1 and above inequality we yield
the desired result.

4 Conclusion

A novel kernel-based learning algorithm for the
regression and classification was developed in this work.
We prove that this learning algorithm has a faster
convergence rate than previous algorithms, see [10]. The
main results also demonstrate some advantages of the
proposed learning algorithms. Firstly, a dimensional free
convergence rate can be easily achieved by using general
kernels. Secondly, we do not make any assumptions on
the capacity or regularity of the kernel. Finally comparing
with the previous learning algorithms, our assumptions
for the regression function are more natural and less
restrictive.
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