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Abstract: We introduce a new three-parameter continuous lifetime. It combines Pareto and Weibull distributions to formulate the

extended odd Weibull Pareto distribution. This new distribution has many nice properties as it has a simple linear representation. We
observe its hazard rate function, moments and moment generating function, in addition to mean residual and mean inactivity time.

Different classical and Bayesian estimation methods are used to estimate the unknown parameters of extended odd Weibull Pareto

distribution. Monte Carlo Markov chain method are used for numerical analysis, simulation is used to assess the use of estimation

methods. Two real data examples are analyzed for illustrative purpose.
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1 Introduction

Many lifetime distributions were discussed in literature and many authors try to explore new distributions either by
adding parameters to the original one or by combining two well known distribution together. The need of generating new
life time distributions still essential as the amount of data available in nature has been growing increasingly, this urges
statisticians to work more on distribution theory in order to better describe phenomenon or experiment under study and
to predict more accurate future behaviors of the data based on an observed set of data. one of the main goals to establish
new distributions is to provide more flexibility in modeling data under test. Although, several researchers worked on the
field of statistical inference of the unknown parameters for several lifetime models, still, there is much space for new
work on the generalizations of new models and using some classical and Bayesian inference for the new parameters
under study.
Pareto distribution is a famous model, it was first studied by a professor of economics ”Vilfredo Pareto”. Many authors
studied several forms of Pareto distribution and it was used extensively in many scientific applications such as actuarial
sciences, finance, economic, life testing and climatology.
Recently, authors did several generalizations for Pareto distribution so that the new generalization is more flexible and
posses good properties so it can be used to model more phenomenal data. For example, exponentiated Pareto by
Stoppa [1], the beta-Pareto distribution by [2], the Kumaraswamy Pareto distribution by Bourguignon et al. [3],
Weibull-Pareto distribution by Alzaatreh et al. [4], new Weibull-Pareto distribution by Nasiru and Luguterah [5] and
Tahir et al. [6], the Marshall-Olkin Pareto distribution by Bdair and Haj Ahmad [7], Marshall-Olkin generalized Pareto
by Haj Ahmad and Almetwally [8], Marshall-Olkin Alpha Power Pareto (MOAPP) by Almetwally and Haj Ahmad [9],
and new four parameter distribution called new generalized Pareto distribution using transformation by
Jayakumar et al. [10], and others.
Here we study a new model with three parameters, it is called extended odd Weibull Pareto (EOWP) distribution. In this
paper we mainly work on two goals: (i) Study the main properties of the new model and compare it with other
sub-models using real data examples. (ii) Find point and interval estimation for the EOWP parameters by using the three
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classical estimation methods and the Bayes estimation method. (ii) Test the efficiency of the estimation methods and
obtain the best method of estimation that minimizes the mean square error (MSE) and Biases, for this purpose we used
simulation analysis wih R-package.

The EOWP has several attractive properties that will be obtained throughout this paper and we summarize them
as follows:

–The EOWP distribution is suitable of modeling constant, decreasing, increasing, upside down bathtub life times. Its
density can be symmetric or right-skewed. Also its hazard rate can be decreasing, upside down or constant. Most
distributions with these properties are much complicated.

–The EOWP is preferable to use for skewed data that may not be fitted properly by other distributions, also it can be
used in many problems in applied areas, such as medicine, engineering, industrial reliability and survival analysis.

–Real data applications from medical and engineering fields prove that the EOWP model acts better than other related
lifetime distributions which motivate its privilege in applied fields.

–The cumulative distribution function (CDF) and hazard rate function (HR) of EOWP have simple closed forms, hence
it is useful to work with censored and complete samples as well.

The EOWP distribution is obtained based on the extended odd Weibull-G (EOW-G) family introduced by
Alizadeh et al. [11]. We may also refer to Alzaatreh et al.[12] who introduced the basic T-X family and proved that it is

well defined family of probability distributions. Let G(x;θ ) = 1 − G(x;θ ) and g(x;θ ) = dG(x;θ)
dx

denote the survival
function (S) and probability density function (PDF) of a baseline model with parameter vector θ respectively, so the
CDF of the EOW-G family is given by:

F(x;α,β ,θ ) = 1−

{
1+β

[
G(x;θ )

G(x;θ )

]α}−1
β

,x ∈ R. (1)

The corresponding PDF of (1) is defined by

f (x;α,β ,θ ) =
α g(x;θ )G(x;θ )α−1

G(x;θ )α+1

{
1+β

[
G(x;θ )

G(x;θ )

]α}−1
β
−1

,x ∈R, (2)

where α and β are positive shape parameters. The random variable with PDF (2) is denoted by X ∼EOW-G(α,β ,θ ).
Many authors have discussed different studies based on EOW-G family as: Afify and Mohamed [13] discussed

EOW-exponential (EOWE) distribution, Almetwally [14] discussed EOW-inverse Rayleigh (EOWIR) distribution with
application on carbon fibres, Alshenawy et al. [15] discussed progressive type-II censoring schemes of extended odd
Weibull exponential (EOWE) distribution, and Almongy et al. [16] discussed EOW-Rayleigh (EOWR) distribution.

The rest of this paper is organized as follows. In Section 2, we define EOWP distribution. EOWP linear representation
of its PDF is obtained in Section 3, along with some of its statistical properties. Five methods of point estimation are
studied in Section 4. In Section 5, a simulation study is conducted in order to compare the performance of these estimation
methods. Two real data sets from different life applications are used in section 6 to prove the efficiency of the EOWP
distribution with respect to other distributions. Finally, conclusions are given in Section 7.

2 EOWP Distribution

The three-parameter EOWP distribution is a special model of EOW-G family with Pareto distribution as a baseline

function. The Pareto distribution under consideration has PDF and CDF of the form g(x;δ ) = δ
xδ+1 and

G(x;δ ) = 1− 1
xδ , x > 1, δ > 0. By substituting the CDF and PDF of the Pareto model in (1) and (2), we obtain the CDF

and PDF of the EOWP distribution respectively as:

F(x;α,β ,δ ) = 1−
{

1+β
[
xδ − 1

]α}−1
β
,x > 1,α,β ,δ > 0. (3)

f (x;α,β ,δ ) = αδxδ−1
(

xδ − 1
)α−1 [

1+β
(

xδ − 1
)α]− 1+β

β
,x > 1,α,β ,δ > 0. (4)

Therefore, a random variable with PDF (4) is denoted by X ∼EOWP(α,β ,δ ). The EOWP model reduces to the

two parameter Weibull Pareto model when β → 0+. Another important characterization is (a) if Y =
[
xδ − 1

]α
, then

FY (y) = 1− (1+β y)
−1
β and (b) if Y =

[
xδ − 1

]
then Y reduces to the Extended Weibull distribution.
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Fig. 1: Plots of the probability density function (PDF) of the EOWP distribution

The hazard rate function (HR) and the quantile function (Q) of the EOWP distribution are given by:

h(x;α,β ,δ ) =
αδxδ−1

(
xδ − 1

)α−1

1+β
(
xδ − 1

)α

and

Q(u) =

([
1

β

(
(1− u)−β − 1

)] 1
α

+ 1

) 1
δ

, 0 < u < 1,

respectively. To check the monotonic behavior of the PDF of EOWP we find the derivative of the logarithmic PDF with
respect to x then equate it to zero. Hence let

V = 1−
1

xδ

and substitute it in (4) which will reduce to

f (x;α,β ,δ ) =
αV ′V α−1

(1−V)α+1
[1+β [

V

1−V
]α ]

− 1
β
−1

. Now taking the derivative of the logarithmic function of the above formula we get:

∂ log f (x;α,β ,δ )

∂x
=

V ′′

V ′
+(α − 1)

V ′

V
+(α + 1)

V ′

1−V
−

αβ ( 1
β + 1)Vα−1V ′

(1−V)α+1 +βV α(1−V)

Since V is the CDF of the baseline function which is Pareto distribution, then it is clear that V > 0 and V ′ > 0 but V ′′ < 0.
We will have two cases to discuss: Case(1) If α < 1, in this case the first term and last term in the above equation are both
negative, while the second and third terms together will give a negative value. Hence the PDf of EOWP distribution is a
decreasing function for this case. Case (2) If α > 1, the above derivative has a single root r0, so the EOWP distribution is
increasing when x ∈ (0,r0), but it is decreasing when x ∈ (r0,∞). The above cases are illustrated in Figure (1). Figures 1
and 2 are different shapes of the PDF and HR of the EOWP distribution. These figures show that the PDF of the EOWP
distribution can be right-skewed, symmetric or decreasing curves. The HR of the EOWP distribution has some important
shapes, including, constant, decreasing, and upside down curve, which are attractive characteristics for any lifetime model.
It can be noticed from the application section, that the EOWP distribution possesses great flexibility and can be used to
model skewed data, hence widely applied in different areas such as biomedical studies, biology, reliability, physical
engineering, and survival analysis.

3 Statistical Properties

In this section, we observe some statistical properties of the EOWP distribution namely, the linear representation of PDF,
which is useful in finding the moments and moment generating function (MGF). Also we obtain the mean residual life
and mean inactivity time.
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Fig. 2: Plots of the hazard rate function (HR) of the EOWP distribution

3.1 Linear Representation

Linear representation for the EOWP density using series techniques is useful for finding many statistical values and
properties of the needed distribution. Alizadeh et al. [11] showed that EOW-G family has the following mixture
representation of its density:

f (x) =
∞

∑
j,k=0

a j,k hα j+k(x),

where a j,k =
−β jΓ (α j+k)(−1/β ) j

k! j!Γ (α j)
and hα j+k (x) = (α j+ k)G(x)α j+k−1g(x) is the Exponential-G density with positive

power parameter α j+ k. Now substituting the PDF and CDF of the Pareto distribution, the above equation can be written
as:

f (x) =
∞

∑
j,k=0

a j,k
δ (α j+ k)

xδ+1

(
1−

1

xδ

)α j+k−1

.

Applying the binomial expansion, the last equation reduces to:

f (x) =
∞

∑
j,k=0

∞

∑
m=0

(
α j+ k− 1

m

)
(−1)m a j,k

(α j+ k)

1+m

δ +mδ

xδ+mδ+1
. (5)

Equation (5) can be written as:

f (x) =
∞

∑
m=0

υm gm+1 (x;δ ) , (6)

where

υm =
∞

∑
j,k=0

(−1)ma j,k

m+ 1
(α j+ k)

(
α j+ k− 1

m

)

and gm+1 (x;δ ) = (m+1)δ

x(m+1)δ+1 denotes Pareto density with (m+ 1)δ as a scale parameter. Hence the PDF of EOWP can be

expressed as a linear combination of Pareto distribution. Let X be a random variable having Pareto distribution with PDF

g(x;δ ) = δ
xδ+1 , x > 1, δ > 0. Then, the ith ordinary moment, incomplete moments, and MGF of X are

µ ′
i,X =

δ

δ − i
, δ > i , (7)

ϕi,X (t) =
δ

i− δ
t i−δ ,δ > i

MX (t) = δ (−tδ )Γ (−δ ,−t), t < 0,

respectively, where Γ (−δ ,−t) =
∫ ∞
−t t−δ−1e−tdt denotes the upper incomplete Gamma function.
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Table 1: The numerical values of µ , σ2, γ1 and γ2 for the EOWP distribution

α = 0.5,β = 0.5 α = 2,β = 0.5 α = 2,β = 2 α = 0.5,β = 2 α = 5,β = 0.5$

µ 2.0943 1.4175 1.7836 30.1339 1.4028

σ2 7.4962 0.0665 1.3889 212.9285 0.0105

γ1 0.5766 0.1211 0.3407 0.7752 0.0149

γ2 1.7284 0.3442 1.0935 4.3189 0.0482
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Fig. 3: Plots of skewness of EOWP distribution
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Fig. 4: Plots of kurtosis of EOWP distribution

3.2 Moments and Moment Generating Functions

The ith moment of X follows directly from Equations (6) and (7)

µi = E(X i) =
∞

∑
m=0

υm
(m+ 1)δ

(m+ 1)δ − i
. (8)

Table 1 lists some numerical values such as the first moment or the mean (µ), variance (σ2), skewness (γ1), and kurtosis
(γ2) of the EOWP density, with δ = 2 and some suggested values of α and β . The values appear in Table 1 specifies that
the skewness of the EOWP which is ranging between 0.0149 and 0.7752 indicate that the EOWP is either skewed to the
right or nearly symmetry, while the dispersion of its kurtosis has much bigger ranging in the interval (0.0482,4.3189), so
it is said that it is leptokurtic (γ2 > 0). Therefore, the EOWP distribution can be used to model right skewed and symmetric
data. Figures 3 and 4 show different shapes of skewness and kurtosis of EOWP distribution.

The ith incomplete moment of X can be obtained from Equations (6) and (7) as

ϕi(t) =
∞

∑
m=0

υm
(m+ 1)δ

i− (m+ 1)δ
t i−(m+1)δ ,(m+ 1)δ > i.
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For i = 1 the first incomplete moment of X is

ϕ1(t) =
∞

∑
m=0

υm
(m+ 1)δ

1− (m+ 1)δ
t1−(m+1)δ ,(m+ 1)δ > 1. (9)

Referring to Equation (6), the MGF of the EOWP distribution is given by:

M(t) =
∞

∑
m=0

υm(m+ 1)δ (−t(m+1)δ)Γ (−(m+ 1)δ ,−t), t 6= 0.

3.3 Mean Residual Life and Mean Inactivity Time

The expected life of a unit at age t is called the mean residual life (MRL) which also represents the expected extra life
length for a unit, which is still alive at age t and is defined as mX (t) = E (X − t | X > t) , for t > 0.

The MRL of X is
mX (t) = [1−ϕ1 (t)]/S(t)− t, (10)

where ϕ1 (t) is given by (9) and S(t) is the survival function of the EOWP distribution. Substituting Equation (9) in (10),
we have

mX (t) =
1

S(t)
[1−

∞

∑
m=0

υm
(m+ 1)δ

1− (m+ 1)δ
t1−(m+1)δ ]− t.

The mean inactivity time (MIT) function is important measure in reliability analysis and actuarial studies, it is usually
known as the mean past lifetime or the mean waiting time functions. It is defined as

nX(t) =

t∫

0

F(x)

F(t)
dx, t > 0

=

t∫

0

1−
{

1+β
[
xδ − 1

]α}−1
β

1−
{

1+β
[
tδ − 1

]α}−1
β

dx

4 Parameter Estimation

In this section, we use different point estimation methods to estimate the unknown parameters of the EOWP. We use
classical and non-classical (Bayes) methods. The classical methods are: maximum likelihood estimator (MLE), Least
Square (LS), Weighted Least Square (WLS) and maximum product of spacing estimator (MPS). In addition to the
non-classical method which is Bayesian estimation method. In the last few years, parameter estimation using different
estimation methods got great attention by many authors such as Bdair and Haj Ahmad [7], Almetwally and Almongy
[17], Haj Ahmad and Almetwally [8], Basheer et al. [18] and Afify and Mohamed [13].

4.1 Maximum Likelihood Method

Let x1, · · · ,xn be a random sample from the EOWP distribution with parameters α,β , and δ . The likelihood function can
be written as:

L(Θ) = αnδ n
n

∏
i=1

xδ−1
i

(
xδ

i − 1
)α−1 [

1+β
(

xδ
i − 1

)α]− 1+β
β

, (11)

The log-likelihood function is

ℓ(Θ) = n log(α)+ n log(δ )+ (δ − 1)
n

∑
i=1

log(xi)+ (α − 1)
m

∑
i=1

log(Hi)−
β + 1

β

n

∑
i=1

log(1+β Hα
i ) , (12)

where Hi = (xδ
i − 1) and Θ = (α, β , δ ) is a vector of the EOWP parameters. The MLE are obtained by solving the

following normal equations,
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∂ℓ(Θ)

∂α
=

n

α
+

n

∑
i=1

log(Hi)− (β + 1)
n

∑
i=1

Hα
i log(Hi)

1+β Hα
i

= 0,

∂ℓ(Θ)

∂δ
=

n

δ
+

n

∑
i=1

log(xi)+ (α − 1)
n

∑
i=1

xα
i log(xi)

Hi

−α(β + 1)
n

∑
i=1

Hα−1
i xδ

i log(xi)

1+β Hα
i

= 0,

and
∂ℓ(Θ)

∂β
=

1

β 2

n

∑
i=1

log(1+β Hα
i )−

β + 1

β

n

∑
i=1

Hα
i

1+β Hα
i

= 0.

These equations cannot be solved explicitly, hence a nonlinear optimization algorithm as Newton Raphson method is
used.

4.2 Maximum Product Spacing

According to Cheng and Amin [19], the maximum product spacing method (MPS) is an efficient estimation method that
proved to have some advantages with respect to other point estimation methods. So we use MPS in this section to have
point estimation of the unknown parameters of EOWP distribution. This can be obtained by solving the normal equations
resulted from taking partial derivatives of logarithm of product spacing function G(Θ) which is written as:

G(Θ) =

{(
1−
{

1+β [H1]
α}−1

β

)(
1−
{

1+β [Hn]
α}−1

β

)
n

∏
i=2

[
{1+β [Hi−1]

α}
−1
β +

{
1+β [Hi]

α}−1
β

]} 1
n+1

.

and the logarithmic function is G(Θ)

logG(Θ) ∝ log

[
1−
{

1+β [H1]
α}−1

β

]
+ log

[
1−
{

1+β [Hn]
α}−1

β

]
+

n

∑
i=2

log

[
{1+β [Hi−1]

α}
−1
β +

{
1+β [Hi]

α}−1
β

] (13)

The MPS estimators of Θ are obtained by differentiating the log-product equation (13) with respect to each parameter
separately, then we solve the nonlinear system of equations found by using any iterative procedure techniques such as
conjugate-gradient algorithms. This developed in last few year to estimation parameter of model under censoring scheme
as Ng et al. [20], Basu et al. [21], Alotaibi et al. [22], Almetwally et al. [17,23], and El-Sherpieny et al. [24].

4.3 Least Square and Weighted Least Square Estimators

The least square (LS) and weighted least square (WLS) estimation methods were first introduced by Swain in 1988. This
method is based on the ordered sample y1 < · · ·< yn from the random sample x1, ...,xn with EOWP distribution, the least
squares method are obtained by minimizing

LS(Θ) =
n

∑
i=1

(
1−
{

1+β
[
yδ

i − 1
]α}−1

β
−

i

n+ 1

)2

. (14)

After differentiating equation (14) with respect to the parameters α,β and δ and equating them to zero, we get a

system of normal equations that can be solved Numerically. Hence we obtain the LS of α,β and δ denoted by α̂LS, β̂LS

and δ̂LS respectively.
Similarly we can use the WLS procedure to estimate the parameters α,β and δ of the EOWP distribution.

W LS(γ) =
n

∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)

(
1−
{

1+β
[
yδ

i − 1
]α}−1

β
−

i

n+ 1

)2

, (15)

Here we need to minimize (15) with respect to the parameters α,β and δ .
After differentiating Equation (15 ) with respect to parameters α,β and δ and equating them to zero we get the normal

equations that are solved numerically, hence the WLS estimators of α,β and δ are α̂W LS, β̂W LS and δ̂W LS respectively.
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4.4 Bayesian estimation

Bayesian methods is a statistical inference that depends on the choice of the prior distribution and the loss function. In
this method all parameters are considered as random variables with certain distribution called prior distribution. If prior
information is not available which is usually the case, we need to select one. Since the selection of prior distribution
plays an important role in estimation of the parameters, our choice for the priors are the independent gamma distributions.
On the other hand, the loss function is important in Bayesian methods. Most of the Bayesian inference procedures are
developed under the symmetric and asymmetric loss functions. One of the most common symmetric loss function is the
squared error loss function. The independent joint prior density function of Θ can be written as follows:

π(Θ) =
b

a1
1

Γ (a1)

b
a2
2

Γ (a2)

b
a3
3

Γ (a3)
αa1−1β a2−1δ a3−1e−(b1α+b2β+b3δ ). (16)

The joint posterior density function of Θ is obtained from (11) and (16) as follows:

π(Θ |x) =
ℓ(x|Θ).π(Θ)∫

Θ ℓ(x|Θ).π(Θ)dΘ
. (17)

The Bayes estimators of Θ , say (α̂B, β̂B, δ̂B) based on squared error loss function is given by

p̂
B−SEL

(α,β ,δ ) = E(α ,β ,δ |x)[p(α,β ,δ )]

=

∫ ∞

0

∫ ∞

0

∫ ∞

0
p(α,β ,δ )×π(Θ |x)dαdβ dδ . (18)

For more details about the Bayesian estimation, see for example, El-Sherpieny et al. [25], Nassr et al. [26],
El-Morshedy et al. [27], and Almetwally [28]. It is noticed that the integrals given by (18) can’t be obtained explicitly.
Because of that we use the Markov Chain Monte Carlo technique (MCMC) to find an approximate value of integrals in
(18). Many of studies used MCMC technique such as, Almetwally et al. [23,29].

5 Simulation Analysis

In this section Monte-Carlo simulation procedure is performed for comparison between the classical estimation methods:
MLE, LS,WLS, MPS and Bayesian estimation method under square error loss function based on MCMC, for estimating
parameters of EOWP distribution in life time by R language. Monte-Carlo experiments are carried out based on data-
generated 10000 random samples from EOWP distribution, where x has EOWP life time for different actual values of
parameters and different sample sizes n:(25, 50, 100 and 200). We could define the best estimators methods as which
minimizes the bias and mean squared error (MSE) of estimators.

Tables 2 and 3 summarizes the simulation results of point estimation methods proposed in this paper. We consider
the bias and the MSE values in order to perform the needed comparison between different point estimation methods. The
following remarks can be noted from these tables:

1.As sample size increases the biases and MSEs decrease .
2.In Table 2, within the classical methods of estimation we find that the WLS estimation performs better for estimating

α , β and δ with respect to MSE, while MPS is preferable for estimating α and β with respect to bias. MLE is
considered better for estimating δ with respect to bias.

3.To assess the performance between classical estimation methods and Bayesian method under SEL, we look for least
value of bias and MSE through which we realize that Bayesian estimation performs better than all other classical ones
for estimating α and β . For estimating δ , Bayesian method performs better than classical methods with respect to
MSE, but MLE method proves to behave better with respect to bias.

4.In table 3, the best classical method for estimating α , β and δ is MPS with respect to bias and MSE, while when
comparing with Bayesian method, Bayes estimation is superior to the proposed classical method.
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Table 2: Bias and MSE of EOWP distribution for MLE, LS, WLS, MPS and Bayesian when α = 0.5

α = 0.5 MLE LS MPS WLS Bayesian

β δ n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

0.5

0.5

25

α 0.0328 0.0197 -0.0032 0.0193 -0.0161 0.0104 0.0084 0.0208 0.0280 0.0101

β 0.1037 0.9125 -0.0325 0.0763 0.1847 0.3753 0.0520 0.2168 0.1210 0.1990

δ 0.1239 0.2101 0.0597 0.0703 0.1220 0.1127 0.0848 0.0796 0.0099 0.0012

50

α 0.0283 0.0136 0.0093 0.0058 0.0083 0.0096 0.0184 0.0075 0.0232 0.0060

β 0.0971 0.5344 0.0170 0.0915 0.2968 0.4828 0.1143 0.1404 0.0652 0.0515
δ 0.0917 0.1173 0.0549 0.0367 0.1692 0.1281 0.0851 0.0452 0.0188 0.0019

100

α 0.0007 0.0046 0.0022 0.0038 -0.0079 0.0040 0.0065 0.0040 0.0093 0.0036

β -0.0517 0.3644 0.0177 0.0648 0.0402 0.1984 0.0466 0.1259 0.0467 0.0464

δ 0.0038 0.0770 0.0191 0.0233 0.0272 0.0377 0.0301 0.0310 0.0088 0.0017

200

α 0.0062 0.0024 0.0060 0.0022 -0.0011 0.0022 0.0058 0.0019 0.0069 0.0019

β 0.0406 0.1544 0.0433 0.0592 0.0685 0.1178 0.0353 0.0746 0.0542 0.0391
δ 0.0236 0.0281 0.0191 0.0155 0.0304 0.0209 0.0186 0.0178 0.0141 0.0024

2

25

α 0.0088 0.0135 0.0192 0.0155 -0.0225 0.0107 0.0121 0.0153 0.0306 0.0095

β -0.3057 0.6527 -0.0213 0.1793 -0.1245 0.3658 0.0270 0.3274 0.1378 0.1432

δ -0.5326 0.7515 -0.1869 0.2843 -0.3373 0.4908 -0.1096 0.3488 -0.0022 0.0003

50

α 0.0123 0.0117 0.0019 0.0097 -0.0169 0.0105 -0.0015 0.0095 0.0242 0.0087

β -0.0214 0.6066 -0.0082 0.1184 -0.0298 0.2330 -0.0763 0.1873 0.1537 0.1355
δ -0.0315 0.7086 -0.0453 0.2246 -0.0824 0.3717 -0.1121 0.3357 0.0057 0.0002

100

α -0.0030 0.0038 -0.0032 0.0031 -0.0110 0.0041 0.0012 0.0029 0.0026 0.0031

β -0.0816 0.1540 0.0420 0.0444 -0.0171 0.1149 0.0314 0.0426 0.0157 0.0289

δ -0.0647 0.3922 0.0612 0.1552 -0.0394 0.2101 0.0688 0.1852 -0.0004 0.0003

200

α 0.0002 0.0016 0.0043 0.0018 -0.0021 0.0016 0.0057 0.0017 0.0073 0.0018

β -0.0571 0.1004 0.0003 0.0299 0.0127 0.0456 0.0133 0.0610 0.0268 0.0167
δ -0.0712 0.2781 -0.0189 0.1049 0.0011 0.1102 0.0127 0.1937 0.0007 0.0003

2

0.5

25
α 0.0295 0.0206 0.0063 0.0262 -0.0399 0.0155 0.0058 0.0219 0.0326 0.0120
β 0.1981 1.6083 -0.1150 0.1846 -0.0192 0.3655 0.0048 0.7132 0.1612 0.1205

δ 0.0829 0.1319 0.0190 0.0549 0.0395 0.0693 0.0406 0.0673 0.0117 0.0009

50

α 0.0210 0.0079 0.0076 0.0097 -0.0196 0.0065 0.0094 0.0084 0.0284 0.0067

β 0.1271 0.4311 0.0051 0.1791 0.0076 0.1824 -0.0092 0.2403 0.1805 0.1317

δ 0.0410 0.0402 0.0147 0.0242 0.0188 0.0291 0.0170 0.0441 0.0140 0.0010

100
α 0.0103 0.0042 -0.0028 0.0050 -0.0122 0.0035 0.0008 0.0042 0.0157 0.0037
β 0.1082 0.4131 -0.0388 0.1621 0.0065 0.0850 0.0288 0.2566 0.1161 0.0907

δ 0.0370 0.0380 0.0135 0.0150 0.0155 0.0128 0.0295 0.0255 0.0160 0.0011

200

α 0.0044 0.0019 -0.0027 0.0027 -0.0087 0.0017 -0.0010 0.0022 0.0083 0.0019

β 0.0956 0.3260 -0.0529 0.0411 -0.0069 0.0371 -0.0207 0.1752 0.1054 0.0690

δ 0.0268 0.0189 -0.0025 0.0051 0.0033 0.0051 0.0033 0.0101 0.0157 0.0011

2

25
α 0.0487 0.0386 0.0182 0.0391 -0.0246 0.0173 0.0177 0.0340 0.0473 0.0141
β 0.1944 2.5057 -0.0897 0.3576 -0.0925 0.3584 0.0015 1.1841 0.1737 0.1799

δ 0.1970 1.8015 -0.0178 0.2679 -0.0275 0.3381 0.0728 0.6695 0.0029 0.0001

50

α 0.0232 0.0093 0.0038 0.0126 -0.0162 0.0068 0.0094 0.0113 0.0292 0.0065

β 0.1548 1.3779 -0.0553 0.2253 -0.0394 0.1625 0.1637 1.4828 0.1552 0.1469

δ 0.1083 0.8110 -0.0319 0.1449 -0.0505 0.1567 0.1399 0.7692 0.0031 0.0001

100
α 0.0066 0.0039 0.0024 0.0062 -0.0145 0.0035 0.0065 0.0055 0.0166 0.0035
β 0.0626 0.4919 -0.0232 0.2072 -0.0373 0.0949 0.1490 0.8744 0.1132 0.1175

δ 0.0841 0.5531 -0.0242 0.1371 -0.0228 0.0899 0.1260 0.5653 0.0036 0.0002

200

α 0.0013 0.0022 -0.0033 0.0032 -0.0103 0.0019 -0.0009 0.0024 0.0066 0.0019

β 0.0389 0.3805 0.0144 0.2395 -0.0187 0.0561 0.0412 0.2968 0.0652 0.0632

δ 0.0424 0.2818 0.0234 0.1318 -0.0111 0.0515 0.0490 0.2347 0.0046 0.0001
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Table 3: Bias and MSE of EOWP distribution for MLE, LS, WLS, MPS and Bayesian when α = 1.5

α = 1.5 MLE LS MPS WLS Bayesian

β δ n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

0.5

0.5

25

α 0.2334 0.7820 -0.0113 0.0789 0.0428 0.2166 0.0586 0.2475 0.0340 0.0380

β 0.2315 1.9521 0.0797 0.1047 0.2334 0.5406 0.1670 0.5606 0.0965 0.1120

δ 0.0179 0.0243 0.0167 0.0093 0.0282 0.0153 0.0219 0.0118 0.0065 0.0015

50

α 0.0476 0.0957 0.0084 0.0408 0.0046 0.0853 0.0305 0.0683 0.0532 0.0357

β -0.0207 0.2495 0.0252 0.0630 0.0993 0.2555 0.0452 0.1610 0.1087 0.1156
δ -0.0024 0.0081 0.0076 0.0043 0.0139 0.0080 0.0083 0.0052 0.0119 0.0019

100

α 0.0196 0.0422 0.0048 0.0264 -0.0062 0.0377 0.0072 0.0278 0.0243 0.0239

β -0.0063 0.1015 0.0200 0.0503 0.0607 0.1011 0.0130 0.0546 0.0658 0.0598

δ -0.0028 0.0033 0.0015 0.0023 0.0067 0.0033 0.0006 0.0023 0.0072 0.0016

200

α 0.0025 0.0173 -0.0029 0.0100 0.0005 0.0192 -0.0046 0.0129 0.0148 0.0171

β -0.0136 0.0416 0.0144 0.0134 0.0447 0.0479 -0.0060 0.0199 0.0420 0.0436
δ -0.0033 0.0014 0.0011 0.0009 0.0048 0.0014 -0.0017 0.0009 0.0041 0.0010

2

25

α 0.1527 0.2911 0.1456 0.1745 -0.0583 0.1257 0.2323 0.2644 0.1839 0.0791

β 0.0471 1.3203 0.0033 1.1758 -0.0510 0.8935 0.2014 1.4017 0.4021 0.7364

δ -0.1396 0.1568 -0.1422 0.1396 -0.1487 0.1150 -0.0706 0.1349 0.0036 0.0035

50

α -0.0963 0.0934 0.0188 0.1030 -0.1343 0.1071 -0.0643 0.0707 -0.0740 0.0475

β -0.1906 0.1349 0.1785 0.3095 -0.0685 0.1121 -0.0115 0.0982 -0.0126 0.0495
δ -0.1787 0.0996 0.0386 0.1240 -0.0820 0.0740 -0.0475 0.0790 -0.0096 0.0025

100

α -0.0152 0.0407 0.0098 0.0481 -0.0354 0.0374 0.0016 0.0418 0.0145 0.0214

β -0.0439 0.1138 0.0611 0.1791 0.0298 0.1069 0.0233 0.1238 0.0536 0.0463

δ -0.0329 0.0463 0.0207 0.0598 0.0091 0.0427 0.0038 0.0451 0.0043 0.0020

200

α 0.0091 0.0207 0.0079 0.0327 0.0005 0.0193 0.0114 0.0250 0.0146 0.0143

β -0.0064 0.0453 0.0003 0.0870 0.0420 0.0448 0.0079 0.0625 0.0263 0.0235
δ -0.0079 0.0216 -0.0077 0.0312 0.0192 0.0212 -0.0017 0.0261 0.0019 0.0012

2

0.5

25
α 0.2156 1.1127 -0.0233 0.0921 -0.0825 0.1335 -0.0025 0.0979 0.0537 0.0313
β 0.3688 7.9755 0.0173 0.1811 -0.0200 0.9846 0.0248 0.4031 0.1559 0.1116

δ 0.0238 0.0450 0.0153 0.0162 -0.0034 0.0231 0.0139 0.0189 0.0129 0.0014

50

α 0.1564 0.4076 0.0072 0.0606 -0.0534 0.0724 0.0228 0.0545 0.0533 0.0270

β 0.4448 6.5051 0.0534 0.1988 0.0143 0.5612 0.0884 0.3485 0.1825 0.1108

δ 0.0288 0.0245 0.0096 0.0083 -0.0048 0.0114 0.0125 0.0103 0.0130 0.0013

100
α 0.0243 0.0500 0.0064 0.0257 -0.0465 0.0437 0.0231 0.0284 0.0382 0.0203
β -0.0047 0.4007 0.0266 0.0869 -0.0540 0.2953 0.0565 0.1384 0.1344 0.0951

δ 0.0020 0.0073 0.0087 0.0042 -0.0054 0.0056 0.0107 0.0046 0.0126 0.0012

200

α 0.0392 0.0322 0.0126 0.0180 -0.0182 0.0212 0.0179 0.0157 0.0429 0.0105

β 0.0847 0.3409 0.0343 0.0966 -0.0119 0.1690 0.0359 0.1108 0.1407 0.0865

δ 0.0098 0.0055 0.0066 0.0025 -0.0012 0.0032 0.0064 0.0028 0.0116 0.0011

2

25
α 0.5949 2.1576 -0.0168 0.1433 -0.0468 0.2002 0.0973 0.2960 0.0617 0.0339
β 1.7423 21.0769 -0.0272 0.6616 0.0907 1.5038 0.3816 2.9921 0.1654 0.1418

δ 0.3133 1.4757 -0.0104 0.2856 -0.0379 0.3651 0.1039 0.6139 0.0092 0.0021

50

α 0.1329 0.2930 -0.0037 0.0861 -0.0710 0.0975 0.0547 0.1602 0.0548 0.0259

β 0.3364 3.0759 0.0362 0.6843 -0.0553 0.7690 0.2128 1.5510 0.1366 0.1200

δ 0.0726 0.4384 0.0251 0.2596 -0.0526 0.2164 0.0616 0.3511 0.0046 0.0008

100
α 0.1341 0.1930 0.0396 0.0636 -0.0161 0.0533 0.0619 0.0859 0.0358 0.0213
β 0.4231 2.4133 0.1289 0.5425 0.0553 0.4511 0.2054 0.8652 0.0924 0.0838

δ 0.1243 0.2950 0.0500 0.1345 0.0012 0.1036 0.0696 0.1731 0.0045 0.0004

200

α 0.0289 0.0457 0.0207 0.0294 -0.0357 0.0265 0.0029 0.0347 0.0171 0.0128

β 0.1092 0.5297 0.1133 0.2883 -0.0190 0.2407 0.0424 0.3591 0.0689 0.0592

δ 0.0426 0.1102 0.0477 0.0695 -0.0117 0.0619 0.0195 0.0825 0.0076 0.0005

6 Applications to Engineering and Medical Data

In this section, two real data examples from physical engineering and medical sciences are given to test the goodness of the
EOWP distribution. The EOWP model is compared with other related models such as, Pareto, Marshall-Olkin alpha power
Pareto (MOAPP) [9] and Marshall-Olkin Pareto (MOP) distributions [7]. Tables 4 and 5 provide values of log likelihood
(ℓ), Akaike information criterion (AIC), corrected Akaike information criterion (CAIC), Bayesian information criterion
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(BIC), Hannan-Quinn information criterion (HQIC) and Kolmogorov-Smirnov (KS) statistic along with its P-value for all
models fitted based on two real data sets.

The medical data set consists of the relief times of 20 patients receiving an analgesic which was studied by Nadarajah
et al. [30]. The data are as follows: 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 1.6, and
2.0.

Table 4: MLE estimates, LL, AIC, CAIC, BIC HQIC, K-S and P-values for medical data

model α β δ LL AIC CAIC BIC HQIC KS p-value

EOWP
2.0071 0.6977 1.2250

15.2681 36.5362 38.0362 39.5234 37.1193 0.0963 0.9925
0.6433 0.7362 0.2354

EOWEx
7.8084 3.4516 0.4443

15.4847 36.9694 38.4694 39.9566 37.5525 0.0912 0.9963
3.3650 2.3087 0.0427

Pareto
1.6971

21.2071 44.4143 44.6365 45.4100 44.6087 0.2851 0.0775
0.3795

MOAPP
14.7117 4.7186 4.9261

15.4312 36.8624 38.3624 39.8496 37.4455 0.1008 0.9872
50.5351 8.2701 1.4283

MOP
8654.61 0.1022 0.1281

17.1729 40.3457 41.8457 43.3329 40.9288 0.1134 0.9592
15983.96 0.0519 0.0494
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Fig. 5: Estimated PDF, CDF, PP-plot and QQ-plot of EOWP for medical data

The second real data set consider physical data, these refer to the fatigue 101 times of 6061-T6 aluminum coupons
with maximum stress per cycle 26,000 psi are mentioned by Birnbaum and Saunders [31]. The data are given below:
Physical data Set: 370, 706, 716, 746, 785, 797, 844, 855, 858, 886, 886, 930, 960 ,988, 990 ,1000, 1010, 1016, 1018,
1020, 1055, 1085, 1102, 1102, 1108, 1115 ,1120, 1134, 1140, 1199, 1200, 1200, 1203 ,1222, 1235, 1238, 1252, 1258,
1262, 1269,1270, 1290, 1293, 1300, 1310, 1313, 1315, 1330, 1355, 1390, 1416, 1419, 1420, 1420, 1450, 1452, 1475,
1478, 1481, 1485, 1502, 1505, 1513, 1522, 1522, 1530, 1540, 1560, 1567, 1578, 1594, 1602, 1604, 1608, 1630, 1642,
1674, 1730, 1750, 1750,1763, 1768, 1781, 1782, 1792, 1820, 1868, 1881, 1890, 1893, 1895, 1910, 1923, 1940 ,1945,
2023, 2100, 2130, 2215, 2268 and 2440.
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Table 5: MLE estimates, MLE estimates, LL, AIC, CAIC, BIC HQIC, K-S and P-values for physical data

model α β δ LL AIC CAIC BIC HQIC KS p-value

EOWP
21.742 0.0748 0.0946

745.672 1497.345 1497.592 1505.190 1500.521 0.0498 0.9636
3.092 0.2219 0.0006

EOWEx
1.132 194.808 0.1230

835.466 1676.932 1677.179 1684.777 1680.108 0.4078 0.0000
10.441 98.676 1.1338

Pareto
0.1388

1027.825 2057.650 2057.690 2060.265 2058.708 0.5879 0.0000
0.0138

MOAPP
471.06 1756.66 1.3189

844.493 1694.986 1695.234 1702.832 1698.162 0.3409 0.0000
1380.4 946.85 0.1335

MOP
750.83 194.16 0.0232

747.079 1500.158 1500.405 1508.003 1503.334 0.0543 0.9266
1390.0 108.66 0.0761
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Fig. 6: Estimated PDF, CDF, PP-plot and QQ-plot of EOWP for physical data

From Tables 4 and 5 it is obvious that EOWP distribution has minimum values of all information criteria compared
with other distributions. Also the P-value for KS has its highest value when the life time is EOWP distribution. This leads
us to conclude that EOWP better fit the two real sets of data. Q-Q and P-P plots shown in figures 5 and 6, indicate that our
distribution is a good choice for modeling the above real data.

Furthermore, the suggested methods of estimation (see Section 4) for the EOWP parameters are considered based on
the previous data. Tables 6 and 7 displays different estimates of the EOWP parameters for the two data sets. In these data,
we cannot use MPS because there are equal observations in the data, so the spacing will be zero, hence the product will
also be zero and to compute the MPS estimator, we take the log of product spacing, as we know the log(0) equal -Inf.
Despite the effectiveness of the MPS method in the estimate, but this problem hinders their use in the estimation process.
So we add 0.00001 to equal observations, to solve this problem. The convergence of MCMC estimation of α,β and δ can
be showed in Figures 7, 8 for the two data examples, respectively.
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Table 6: Different estimators for EOWP parameters with respect to medical real data set

α β δ

MLE
estimate 2.00710 0.69774 1.22503

S.E 0.64326 0.73624 0.23538

LS
estimate 2.15732 0.99552 1.28241

S.E 5.68367 8.13187 1.55593

MPS
estimate 1.33010 0.39325 1.07357

S.E 2.23690 3.96574 1.60879

WLS
estimate 1.98972 0.92162 1.26866

S.E 0.39305 0.56513 0.12520

Bayesian
estimate 2.072872 1.026373 1.291105

S.E 0.35847 0.565325 0.123684
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Fig. 7: Convergence of MCMC estimation for medical data

Table 7: Different estimators for EOWP parameters with respect to physical data set

α β δ

MLE
estimate 21.74180 0.07480 0.09460

S.E 3.09180 0.22190 0.00060

LS
estimate 21.86567 0.18761 0.09485

S.E 0.09220 0.93604 0.00170

MPS
estimate 21.72633 0.15677 0.09470

S.E 0.07646 1.30353 0.00511

WLS
estimate 23.09613 0.25338 0.09499

S.E 0.00244 0.02940 0.00064

Bayesian
estimate 21.75317 0.070017 0.09455

S.E 0.071072 0.026161 0.000432
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Fig. 8: Convergence of MCMC estimation for physical data

7 Conclusion

In this paper we formulate a new generalization of Pareto and Weibull distributions which is called EOWP distribution.
We studied its statistical properties and obtained a linear representation for its pdf which was efficient in finding moments,
moment generating function, mean residual and others. Different classical and Bayes estimation methods were considered
to find point estimation of EOWP unknown parameters α,β and δ . A comparison was conducted via simulation analysis
using R package to distinguish the performance of different estimation method. MCMC method was used for that purpose,
also real data sets were considered and they showed that EOWP model better fit the real data and superior compared with
other competitive distributions. Still there is space for more work in this area, one can chose different baseline functions
and apply different point and interval estimation method, then using numerical methods and simulation to assess the
performance of new models and different estimation methods.
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