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Abstract: Observations that are considerably different from the rest of the data are referred to as outliers. Outliers in a 
dataset have a number of undesirable consequences for statistical analysis. The negative implications could include a 
decline in prediction quality and the inclusion of mistakes in model parameter estimates. Currently, just a few literature 
reviews have been done on these topics. As a result, four outlier detection methods that are specifically developed to find 
outliers in univariate standard normal time series datasets were compared. Comparative approaches that are simple like 
Mean Squared Error, Coefficient of Variation, Standard Error of Mean and Percentage Mean Success Rate, computed 
from outliers detected in a monte carlo simulation of samples of sizes 500 and 1,500 were proposed and used to select the 
best outlier detection method(s).  
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1 Introduction  

Any observation in a statistical data, collected for analysis and interpretation that differs obviously from the rest of the 
observations is called an outlier. Grubbs [1] remarked that an outlier is any member of the dataset that appears differently 
from the rest of the data in which it occurs. Outlier detection is the identification of these outliers. There are two types of 
outliers: univariate and multivariate. Univariate outliers can be detected in a single feature space, whereas multivariate 
outliers are frequently found in a q-dimensional space, where q is the number of features. Any of the following methods 
can be used to add outliers into a dataset: (1) by human errors during data entry (2) by experimental errors (3) by sampling 
errors (4) they can also occur naturally etc. Outlier detection is essential for almost any quantitative discipline where data 
analysis and visualization are carried out.  

This is simply because the presence of outlier affects the quality of model used for prediction or classification especially 
in machine learning and any quantitative discipline like Physics, Finance, Statistics, Cyber Security etc. Outlier detection 
can be used to tackle a variety of problems, including quality control on a factory manufacturing line to detect flaws, 
detecting differences in usage patterns that could suggest fraudulent activity, such as a stolen automated machine (ATM) 
card, and so on. The study of outlier detection in a data set is one of the basic screening processes before formal analysis 
in statistics. Since the presence of outliers in a dataset could reduce the precision of parameter estimation and violation of 
some laid down assumptions, it is therefore necessary to consider methods of removal of outliers from time series data.  

Some extant literatures exist on outlier detection methods in time series using different approaches – linear and Bayesian 
model-based approaches. The model-based approach which is often used when the series' structure is known was first 
studied by [2] in autoregressive models (AR). The approach was later extended to Autoregressive Moving Average 
(ARMA) models by [3, 4, 5, 6]. Secondly, Chen and Liu [6] suggested a linear model-based technique that uses an 
iterative procedure to detect outliers. Abraham and Box [7] proposed a Bayesian model-based technique for 
autoregressive models and Smith and West [8] proposed sequential judgments using dynamic linear systems. Some 
authors have also worked on comparison of outlier detection methods using simulation study [9, 10, 11, 12, 13, 14]. The 
impact of outliers on parameter estimation has been investigated by [15] considering autoregressive moving-average 
(ARMA) models and the implication on forecasts are addressed by [16] and [17]. When the time location of an outlier is 
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known or missing value approaches, intervention analysis by [18] was developed to handle outlier detection and also [19, 
20] may be useful. The case of the unknown time location is usually more controversial. Shittu [21] also detected outliers 
in discrete univariate samples with less attention paid on what to do with detected outliers. Ahmet [22] treated outliers in 
time series which have two special cases, Innovational outliers (IO) and additive outliers (AO). The presence of AO 
indicates that action is required, which could include adjusting the measurement device or correcting a mistake made by 
the person performing the observation and recording. If IO occurs, however, the measuring operation does not need to be 
adjusted. Seasonal outliers in time series were studied by [23] using a conventional approach for detecting and correcting 
outliers, such as additive, innovative, level shift, and transient change outliers. In linear regression, a new approach was 
utilized by [24] to detect outliers. The algorithm utilized in least trimmed squares (LTS) estimation was a non-iterative 
robust covariance matrix and concentration steps. Arimiyaw et al. [25] investigated the detection of influential outliers in 
linear regression analysis using one artificial and one real data set, and proposed the coefficient of determination ratio 
(CDR) as a metric for detecting influential outliers in linear regression analysis.  

Depending on the circumstances, such as the underlying distribution of the research data and the type of the data, the 
performance of many strategies in outlier detection may vary (discrete or continuous). However, the questions that may be 
raised are: is there any approach among the existing ones that can be deemed to be the best in terms of detecting outliers 
in some way? Are there any strategies that work better than others at detecting outliers? The main purpose of this research 
is to examine and compare some typical outlier identification strategies in univariate time series data, which may be 
useful in determining the best method for a given situation. We plan to (i) look at some existing outlier detection 
algorithms for univariate time series data that presume the dataset is normally distributed. (ii) Identify the effect of sample 
sizes on the performance of the approaches, and (iii) determine the optimum method of outlier detection (based on certain 
comparative criteria). 

Because all of the outlier identification approaches considered in this study require that the data follows normal 
distribution, this paper is limited to a Monte Carlo simulation that follows standard normal distribution. The four existing 
outlier detection methods in a time series data considered in this study are – (i) Standard deviation method (two standard 
deviations and three standard deviations approaches), (ii) Z-score method (the modified Z-score method), (iii)Median 
method and (iv) the box plot method.  

The rest of this paper is divided into five sections namely: materials and methods, results and discussion, summary, 
conclusion and recommendation, references and appendix. 

2 Experimental Sections 

This study uses Monte Carlo simulated univariate data with a mean of 0 and a standard deviation of 1 which is a standard 
normal distribution. Sample 1 (with a size of 500) and sample 2 (with a size of 500) will be screened using four outlier 
detection methods (of size 1,500). The reason for the different sample sizes is to investigate if there is any effect of 
sample size on the selected methods. The results from the outlier detection methods will be compared using the methods 
of comparison listed in section 2.2 of this study. 

2.1 Materials 

Some of the existing outlier detection methods considered in this paper will be reviewed and the outliers detected will be 
displayed graphically. The Figure which shows the graphical display shall have three lines – lower bound, mid-point and 
upper bound. Any point in the time series data less than the lower bound or greater than the upper bound is considered as 
an outlier. 

2.1(a) Standard Deviation (SD) Method Test 

The simple classical approach to screening outliers is to use SD (Standard Deviation) method. It is defined for 2 SD and 
3SD methods, respectively as 

                      (1) 

            (2) 

where  

 is the sample mean and SD is the sample standard deviation 

SDx 2±

SDx 3±

x
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The lower, mid-point and upper bound are specified as: 

Lower bound =  or ; Mid-point = ; Upper bound =  or  

2.1(b) Z-Score Test 

Another method used to screen data for outlier that uses the mean and standard deviation is the Z-Score test, which is 
expressed as 

                              (3) 

where  

 ,  is the ith simulated value and is the standard deviation of data.  

The lower, mid-point and upper bound are specified as: 

Lower = ;  Mid-point = ;  Upper = 3 

When data follows a normal distribution, it gives a fair criterion for identifying the outlier. According to [26], the 
maximum possible - score is determined by the sample size and is calculated as . It should be said here that z-
score method is not very good for outlier labeling, particularly in small data sets. 

2.1(c) The Modified Z-Score Test 

The sample mean and sample standard deviation are two estimators used in the Z – score outlier detection method. Even a 
single wild number can have an impact on these estimators. Using the median and median of absolute deviation (MAD) 
instead of the sample mean and standard deviation, the modified z-score test method solves this problem [27]. Let MAD 
= , where  is the sample median. Thus, the modified Z-score is computed as 

,      (4) 

where 

                                                                (5) 

For large normal data, [27] suggested that observations are labeled outliers when . 

The lower, mid-point and upper bound are specified as: 

Lower = ; Mid-point = ; Upper = 3.5 

2.1(d) Box Plot 

This is also known as Tukey's technique, which was developed by [28]. It imposes no distributional assumptions on the 
data; therefore, it is a good method for spotting outliers in univariate data. The quartiles are used to calculate it. To use 
this method to discover outliers, the following basic steps must be followed. 

Step 1: Calculate the upper quartile  

SDx 2- SDx 3- x SDx 2+ SDx 3+

s
xx

Z i -=

( )2,~ sµNX ix s

3- x

( ) nn 1-

xxi ~- x~ ( )iM

( )
MAD

xx
M i

i

~6745.0 -
=

( ) s675.0=MADE

5.3>iM

5.3- x
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Step 2: Calculate the lower quartile  

Step 3: Calculate the inter-quartile range ;                 (6) 

Step 4: The fence is given by      (7) 

Step 5: A value between intervals of the fence is called a possible outlier and data outside the outer fences are extreme 
outliers. This method is good when data is symmetric. It does not also depend on mean and standard deviation. 

The lower, mid-point and upper bound are specified as: 

Lower = ; Mid-point = ; Upper =  

2.1(e) Median Rule 

The following basic steps are followed to achieve outlier detection using this method. 

Step 1: Calculate the median of the data set 

Step 2: Calculate the median absolute deviations as  

 

  MAD =                      (8) 

Step 3: Find the median of the MADs in step two above as MMAD 

Step 4: A point is called outlier if  

 

        (9) 

The lower, mid-point and upper bound are specified as: 

Lower = ; Mid-point = ;  Upper =  

where  

 is the time series data point and is the median of the series. 

2.1(f) Median Absolute Deviation Rule (MADe) 

Ratcliffe [29] established one of the most basic robust outlier detection algorithms, which is essentially unaffected by 
the existence of extreme values in the data. The standard deviation method is comparable to this strategy. In this 
method, however, the median and median absolute deviation is frequently used instead of the mean and standard 
deviation. The MADe method is defined for 2 MADe and 3 MADe methods respectively as follows: 

                                                                        (10) 

                                                                                 (11) 

where 

                                           (12) 

1Q

H 13 QQH -=

[ ]HQHQ *5.1,*5.1 31 +-

HQ *5.11 - x~ HQ *5.13 +

xxi ~-

( )5MMAD/0.674*2~ >- xx

( )5MMAD/0.674*2~-x x~ ( )5MMAD/0.674*2~ +x

x x~

MADeMedian 2±

MADeMedian 3±

MAD483.1=MADe
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for large normal data. 

This is because when it is scaled by a factor of 1.483, it is similar to the standard deviation method in a normal 

distribution. 
The lower, mid-point and upper bound are specified as: 

Lower =  or ; Mid-point = ;  Upper =  or 

 

where  

 is the time series data point and is the median of the series. 

The data set for this method must be large and must be approximately normal. 

2.2 Methods of Comparison (Efficiency of outlier detection methods) 

With the above reviewed outlier detection methods, it is important to know which of these methods under study is most 
efficient in screening outlier. We are going to use four different methods of comparison to test for the more efficient 
method namely: 

Standard Error of Mean (SEM): The standard error of the mean is commonly defined as the difference between the 
estimated sample mean and the population mean. The sample will be more representative of the total population if the 
standard error is modest. However, the smaller the standard error tends to be the more data points used in the sample 
mean computation. It is mathematically given as: 

                                            (13) 

where  is the standard deviation of the points detected as outlier by the method and  is the number of points detected 
as outlier by the method. 

Mean Square Error (MSE): The mean square error is a statistic that measures how near forecasts or predictions (the values 
of outliers) are to the actual values. The mean square error is a statistical tool that calculates the average squares of 
mistakes or deviations using the following formula: 

                     (14) 

where  is the upper or lower bound value depending on the sign of the outlier detected and  is the ith outlier 
detected by the method.      

Percentage Mean Success Rate (PMSR): This metric represents the percentage of outliers found using a method in which 
the numerator is the number of outliers found and the denominator is the sample size of simulated time series data. The 
PMSR (percentage mean success rate) is calculated as follows: 

                        (15) 

( )MADe*2~ -x ( )MADe*3~ -x x~ ( )MADe*2~ +x
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Coefficient of Variation (CV): It is technically defined as the ratio of a sample's standard deviation to its mean for the 
univariate case, and it is one of the applications of standard deviation under the measures of dispersion in Statistics. It is 
significant since the standard deviation doesn't tell us anything about a single set of data's variabilities. The coefficient of 
variation increases as the level of dispersion around the mean increases, but the smaller the coefficient of variation, the 
more precise the estimate (outlier). The mathematical expression of the coefficient of variation is given by 

                                      (16) 

where  

 is the sample standard deviation of the points detected as outlier and  is the mean of the points detected as outlier. 

Consider Table 1, the standard error of the mean number of outliers detected by the various outlier detection methods 
were displayed and ranked in ascending order. The standard errors were computed using equation (13). The smaller the 
standard error, the better the method used. The median, two median absolute deviations and the two standard deviation 
methods were the best methods when comparing the methods with standard error criterion irrespective of the sample 
sizes. The N/A means not applicable and this is because no outliers were detected by the method. 

3 Results and Discussion 

Table 1 Comparison of outlier detection methods using Standard error of mean outliers detected. 
 

Sample 
Size 

Outlier Detection Method SEM Rank 
(Ascending) 

50
0 

Two Standard Deviation 0.461219 3 
Three Standard Deviation 2.980994 6 
Z-score 2.980994 6 
Modified Z-score N/A N/A 
Median 0.405016 1.5 
Two Median Absolute Deviation 
Rule  

0.405016 1.5 

Three Median Absolute Deviation 
Rule  

2.980994 6 

Box plot 1.216410 4 

1,
50

0 

Two Standard Deviation 0.288889 3 
Three Standard Deviation 1.924822 6.5 
Z-score 1.924822 6.5 
Modified Z-score N/A N/A 
Median 0.245998 1 
Two Median Absolute Deviation 
Rule  

0.267141 2 

Three Median Absolute Deviation 
Rule  

1.430479 5 

Box plot 0.852974 4 
 

Table 1 displays the coefficient of variation values of the outlier detection methods considered in this work. The 
coefficient of variation was computed using equation (16). Again, for this criterion we are interested in the methods 
with the lowest coefficient of variation value. The box plot, three median absolute deviations, three standard 
deviations and z-score methods were the three best methods in the 500 sample size while two standard deviations, 
three median absolute deviation and three standard deviation methods were the best when the sample size was 
increased from 500 to 1,500. The implication is that the efficiency of the box plot is affected by sample size. 

x
SV =C

S x
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Table 3 shows how the mean square errors were computed. The lower and upper values that determines if a data point 
is an outlier were used as the actual values and the data points detected as outlier were considered as the predicted 
values. 

Table 2 Comparison of outlier detection methods using coefficient of variation of outliers detected. 
Sample Size Outlier Detection Method CV Rank (Ascending) 

50
0 

Two Standard Deviation -3.738643 5 
Three Standard Deviation -76.51674 3 
Z-score -76.51674 3 
Modified Z-score N/A 

 

Median -2.753979 6.5 
Two Median Absolute Deviation Rule  -2.753979 6.5 
Three Median Absolute Deviation Rule  -76.51674 3 
Box plot -137.4133 1 

1,
50

0 

Two Standard Deviation -34.56066 1 
Three Standard Deviation -12.93339 3.5 
Z-score -12.93339 3.5 
Modified Z-score N/A N/A 
Median -6.397830 6 
Two Median Absolute Deviation Rule  -8.323819 5 
Three Median Absolute Deviation Rule  -17.72162 2 
Box plot 3.754439 7 

 
Table 3 Computation of the Mean square errors.  

Sample Size of 500 Sample size of 1,500 
Box plot method 

Outlier Upper or Lower MSE Predicted Actual MSE 
-3.03609 -2.50649 0.0727962 -3.03609 -2.56321 0.3033862 
-2.56286 -2.50649 

 
-2.6058 -2.56321 

 

-2.6058 -2.50649 
 

2.559552 2.530759 
 

2.559552 2.549602 
 

2.589201 2.530759 
 

2.589201 2.549602 
 

2.925898 2.530759 
 

2.925898 2.549602 
 

3.096502 2.530759 
 

   
-2.89691 -2.56321 

 
   

2.707111 2.530759 
 

   
2.901192 2.530759 

 
   

2.699391 2.530759 
 

   
2.681024 2.530759 

 
   

-4.17692 -2.56321 
 

 
The sample size (n) is the number of outliers detected by such method, for instance in Table 3, the sample sizes are 6 
and 12 for 500 and 1,500 sample sizes respectively. The mean square errors were computed using equation (14). 

Table 4 Comparison of outlier detection methods using Mean square error of outliers detected. 
Sample Size Outlier Detection Method MSE Rank (Descending) 

50
0 

Two Standard Deviation 0.223237883 5 
Three Standard Deviation 0.007418984 2 
Z-score 0.003396797 1 
Modified Z-score N/A N/A 
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Median 1.399866416 7 
Two Median Absolute Deviation Rule 0.251389185 6 
Three Median Absolute Deviation Rule 0.040926548 3 
Box plot 0.072796158 4 

1,
50

0 
Two Standard Deviation 5.580947065 7 
Three Standard Deviation 0.385533942 5 
Z-score 0.350309964 4 
Modified Z-score 0.458216625 6 
Median 0.248395324 1 
Two Median Absolute Deviation Rule 0.287264316 2 
Three Median Absolute Deviation Rule 0.320580088 3 
Box plot 0.303386161 6 

 
The mean square errors displayed in Table 4 suggested that box plot and standard deviations rule were the best 
methods for small sample sizes while median methods were better for large sample sizes (1,500). 

 

Table 5 Comparison of outlier detection methods using success rate of outliers detected. 
 

Sample Size Outlier Detection Method Number of outliers detected PMSR 

50
0 

Two Standard Deviation 25 5.00% 

Three Standard Deviation 2 0.40% 

Z-score 2 0.40% 

Modified Z-score 0 0.00% 

Median 29 5.80% 

Two Median Absolute Deviation Rule  29 5.80% 

Three Median Absolute Deviation Rule  2 0.40% 

Box plot 6 1.20% 

1,
50

0 

Two Standard Deviation 67 4.47% 

Three Standard Deviation 4 0.27% 

Z-score 5 0.33% 

Modified Z-score 1 0.07% 

Median 84 5.60% 

Two Median Absolute Deviation Rule  79 5.27% 

Three Median Absolute Deviation Rule  6 0.40% 

Box plot 12 0.80% 

 

Using the percentage mean success rate in equation (15), we are interested in an outlier detection method detecting as 
much outliers as possible. Table 5, therefore suggests that two standard deviations, median and two median absolute 
deviation rules were the best outlier detection methods for all sample sizes (small and large samples).  

 

 
 



 J. Stat. Appl. Pro. 11, No. 3, 819-834 (2022)/ http://www.naturalspublishing.com/Journals.asp                                                        827 
  

` 
 
         © 2022 NSP 
           Natural Sciences Publishing Cor. 

 

 
Figure 1 Two Standard Deviation Method (sample size of 500)                                  

 

 

 

 

 

 

 

Fig.1: Outlier detection output for Two Standard deviation method. 
 

 
 

 

 

 

 

 

 

Fig.2: Outlier detection output for Three Standard deviation method. 
 

 

 

 

 

 

 

 

 
  

Fig. 3: Outlier detection output for zscore method 
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Fig. 4: Outlier detection output for modified z-score method. 

 

Fig. 5: Outlier detection output for median method. 

 

Fig. 6: Outlier detection output for 2 median absolute deviation rule method. 

 

 

 



 J. Stat. Appl. Pro. 11, No. 3, 819-834 (2022)/ http://www.naturalspublishing.com/Journals.asp                                                        829 
  

` 
 
         © 2022 NSP 
           Natural Sciences Publishing Cor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The findings of this research were summarized in Table 6 and we therefore recommend any of the median methods 
(median, two absolute median deviation and three absolute deviation methods) or the standard deviation methods (two 
standard deviation and three standard deviation methods) as the best methods for detecting outliers in a univariate time 
series data that follows the normal distribution. This means that the median or standard deviation methods of detecting 
outlier should be considered often than box plot and the z score methods. However, it is also clear that for both sample 
sizes and based on the best method detected by the comparison methods, the median method of detecting outlier is better 
than the standard deviation method. 

4 Conclusions 

The summary of the findings is displayed using Table 6 and the best methods with methods affected by sample size 
variations are also shown. 

 

 
 

Fig. 7: Outlier detection output for 3 Median absolute deviation rule method. 

 
 

Fig. 8: Outlier detection output for Box plot method. 
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Table 6 Summary of the findings. 

Sample 
Size 

Three recommended methods 
 

 

Best Method 
 

 

Methods affected 
by sample size 

 SEM CV MSE PMSR Overall  
500 
(Small 
sample) 

The median 
method. 
Two median 
absolute 
deviation 
method. 
Two standard 
deviation 
method. 

 

Box plot 
method. 
Three 
median 
absolute 
deviation 
method. 
3)Three 
standard 
deviation 
method 

Z-score. 
Three 
standard 
deviation. 
3) Three 
median 
absolute 
deviation 
rule. 

Two 
standard 
error. 
Two 
median 
absolute 
deviation. 
3)Median 
method 

Any of the 
median 
methods or 
the standard 
deviation 
methods is 
recommended 

Three 
standard 
deviation 
and z-score 
methods 
were 
detected to 
be affected 
by sample 
sizes using 
SEM. 
Box plot and 
two standard 
deviation 
methods 
were 
detected to 
be affected 
by sample 
size using 
CV. 
3) z-score 
and median 
methods 
were 
detected to 
be affected 
by sample 
sizes using 
MSE. 

1,500 
(Large 
sample) 

The 
median 
method. 

Two 
median 
absolute 
deviation 
method. 

Two 
standard 
deviation 
method. 

 

Two 
standard 
deviation. 
Three 
median 
absolute 
deviation. 
3)Three 
standard 
deviation 
methods 

Median. 
Two 
median 
absolute 
deviation. 
3)Three 
median 
absolute 
deviation  

Median 
method. 
Two 
median 
absolute 
deviation 
method. 
3)Two 
standard 
deviation 
method 

Any of the 
median 
methods or 
the standard 
deviation 
methods. 
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Appendix (R 4.10 version) 
set.seed(234) 
y <- rnorm(1500,0,1) 
outlierDetection <- function (x,method="2SD",addthres=FALSE){ 
  if (method=="2SD") { 
    avrg <- mean(x) 
    stdev <-sd(x) 
    midp <<- avrg 
    lower <<- avrg-2*stdev 
    upper <<- avrg+2*stdev 
    dtf <<- data.frame(ID=seq.int(length(x)), obs=x, outlier= x > upper | x < lower) 
    outliern <<- length(which(dtf=="TRUE")) 
    mydtfsub <- filter(dtf, dtf$outlier == "TRUE") 
    View(mydtfsub$obs) 
    print(upper) 
    print(lower) 
    mean_outlier <- mean(mydtfsub$obs) 
    sd_outlier <- sd(mydtfsub$obs) 
    standard_error_of_mean <- (sd_outlier/sqrt(outliern)) 
    coefficient_of_variation <- (sd_outlier/mean_outlier) 
    print(list("standard_error_of_mean" = standard_error_of_mean, "coefficient_of_variation" = coefficient_of_variation, "number of 
outliers detected" = outliern)) 
  } else {} 
   
  if (method=="3SD") { 
    avrg <- mean(x) 
    stdev <-sd(x) 
    midp <<- avrg 
    lower <<- avrg-3*stdev 
    upper <<- avrg+3*stdev 
    dtf <<- data.frame(ID=seq.int(length(x)), obs=x, outlier= x > upper | x < lower) 
    outliern <<- length(which(dtf=="TRUE")) 
    mydtfsub <- filter(dtf, dtf$outlier == "TRUE") 
    View(mydtfsub$obs) 
    print(upper) 
    print(lower) 
    mean_outlier <- mean(mydtfsub$obs) 
    sd_outlier <- sd(mydtfsub$obs) 
    standard_error_of_mean <- (sd_outlier/sqrt(outliern)) 
    coefficient_of_variation <- (sd_outlier/mean_outlier) 
    print(list("standard_error_of_mean" = standard_error_of_mean, "coefficient_of_variation" = coefficient_of_variation,"number of 
outliers detected" = outliern)) 
  } else {} 
  if (method=="zscore") { 
    avrg <- mean(x) 
    stdev <-sd(x) 
    midp <<- avrg 
    statistic <- abs((x-avrg)/stdev) 
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    dtf <<- data.frame(ID=seq.int(length(x)), obs=x, outlier= statistic > 3) 
    outliern <<- length(which(dtf=="TRUE")) 
    mydtfsub <- filter(dtf, dtf$outlier == "TRUE") 
    View(mydtfsub$obs) 
    mean_outlier <- mean(mydtfsub$obs) 
    sd_outlier <- sd(mydtfsub$obs) 
    standard_error_of_mean <- (sd_outlier/sqrt(outliern)) 
    coefficient_of_variation <- (sd_outlier/mean_outlier) 
    print(list("standard_error_of_mean" = standard_error_of_mean, "coefficient_of_variation" = coefficient_of_variation, "number of 
outliers detected" = outliern)) 
  } else {} 
  if (method=="modzscore") { 
    avrg <- mean(x) 
    stdev <-sd(x) 
    midp <<- median(x) 
    MD <- median(abs((x-midp))) 
    statistic <- ((0.6745*(x-midp)/MD)) 
    upper <-  3.5 
    dtf <<- data.frame(ID=seq.int(length(x)), obs=x, outlier= abs(statistic) > 3.5) 
    outliern <<- length(which(dtf=="TRUE")) 
    mydtfsub <- filter(dtf, dtf$outlier == "TRUE") 
    View(mydtfsub$obs) 
    mean_outlier <- mean(mydtfsub$obs) 
    sd_outlier <- sd(mydtfsub$obs) 
    standard_error_of_mean <- (sd_outlier/sqrt(outliern)) 
    coefficient_of_variation <- (sd_outlier/mean_outlier) 
    print(list("standard_error_of_mean" = standard_error_of_mean, "coefficient_of_variation" = coefficient_of_variation, "number of 
outliers detected" = outliern)) 
  } else {} 
    if (method=="median") { 
    med <- median(x) 
    MAD <-median(abs(x -med)) 
    dtf <<- data.frame(ID=seq.int(length(x)), obs=x, outlier=abs(x-med)>2*(MAD/0.6745)) 
    midp <<- med 
    lower <<- med-2*(MAD/0.6745) 
    upper <<- med+2*(MAD/0.6745) 
    outliern <<- length(which(dtf=="TRUE")) 
    mydtfsub <- filter(dtf, dtf$outlier == "TRUE") 
    View(mydtfsub$obs) 
    print(upper) 
    print(lower) 
    mean_outlier <- mean(mydtfsub$obs) 
    sd_outlier <- sd(mydtfsub$obs) 
    standard_error_of_mean <- (sd_outlier/sqrt(outliern)) 
    coefficient_of_variation <- (sd_outlier/mean_outlier) 
    print(list("standard_error_of_mean" = standard_error_of_mean, "coefficient_of_variation" = coefficient_of_variation, "number of 
outliers detected" = outliern)) 
    } else {} 
  if (method=="2MADe") { 
    med <- median(x) 
    MAD <-median(abs(x-med)) 
    MADe <- 1.483*MAD 
    lower <<- med-2*(MADe) 
    upper <<- med+2*(MADe) 
    dtf <<- data.frame(ID=seq.int(length(x)), obs=x, outlier= x < lower| x > upper) 
    midp <<- med 
    outliern <<- length(which(dtf=="TRUE")) 
    mydtfsub <- filter(dtf, dtf$outlier == "TRUE") 
    View(mydtfsub$obs) 
    print(upper) 
    print(lower) 
    mean_outlier <- mean(mydtfsub$obs) 
    sd_outlier <- sd(mydtfsub$obs) 
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    standard_error_of_mean <- (sd_outlier/sqrt(outliern)) 
    coefficient_of_variation <- (sd_outlier/mean_outlier) 
    print(list("standard_error_of_mean" = standard_error_of_mean, "coefficient_of_variation" = coefficient_of_variation, "number of 
outliers detected" = outliern)) 
  } else {} 
  if (method=="3MADe") { 
    med <- median(x) 
    MAD <-median(abs(x-med)) 
    MADe <- 1.483*MAD 
    lower <<- med-3*(MADe) 
    upper <<- med+3*(MADe) 
    dtf <<- data.frame(ID=seq.int(length(x)), obs=x, outlier= x < lower| x > upper) 
    midp <<- med 
    outliern <<- length(which(dtf=="TRUE")) 
    mydtfsub <- filter(dtf, dtf$outlier == "TRUE") 
    View(mydtfsub$obs) 
    print(upper) 
    print(lower) 
    mean_outlier <- mean(mydtfsub$obs) 
    sd_outlier <- sd(mydtfsub$obs) 
    standard_error_of_mean <- (sd_outlier/sqrt(outliern)) 
    coefficient_of_variation <- (sd_outlier/mean_outlier) 
    print(list("standard_error_of_mean" = standard_error_of_mean, "coefficient_of_variation" = coefficient_of_variation, "number of 
outliers detected" = outliern)) 
  } else {} 
  if (method=="boxplot") { 
    Q1 <- quantile(x, 0.25) 
    Q3 <- quantile(x, 0.75) 
    IntQ <-Q3-Q1 
    dtf <<- data.frame(ID=seq.int(length(x)), obs=x, outlier=x<Q1-1.5*IntQ | x>Q3+1.5*IntQ) 
    midp <<- median(x) 
    lower <<- Q1-1.5*IntQ 
    upper <<- Q3+1.5*IntQ 
    outliern <<- length(which(dtf=="TRUE")) 
    mydtfsub <- filter(dtf, dtf$outlier == "TRUE") 
    View(mydtfsub$obs) 
    print(upper) 
    print(lower) 
    mean_outlier <- mean(mydtfsub$obs) 
    sd_outlier <- sd(mydtfsub$obs) 
    standard_error_of_mean <- (sd_outlier/sqrt(outliern)) 
    coefficient_of_variation <- (sd_outlier/mean_outlier) 
    print(list("standard_error_of_mean" = standard_error_of_mean, "coefficient_of_variation" = coefficient_of_variation, "number of 
outliers detected" = outliern)) 
  } else {} 
  if (addthres==TRUE) { 
    p <- ggplot(dtf, aes(x=ID, y=obs, label=ID)) + geom_point(aes(colour=outlier)) + geom_text_repel(data = subset(dtf, 
outlier=="TRUE"), aes(label = ID), size = 2.7, colour="black", box.padding = unit(0.35, "lines"), point.padding = unit(0.3, "lines")) + 
labs(x=paste("observation ID number\n number of outliers detected=", outliern, "\n( outlier detection method=", method, ")"), 
y="observation value") + geom_hline(yintercept = midp, colour="black", linetype = "longdash") + geom_hline(yintercept = lower, 
colour="black", linetype = "longdash") + geom_hline(yintercept = upper, colour="black", linetype = "longdash") 
  } else { 
    p <- ggplot(dtf, aes(x=ID, y=obs, label=ID)) + geom_point(aes(colour=outlier)) + geom_text_repel(data = subset(dtf, 
outlier=="TRUE"), aes(label = ID), size = 2.7, colour="black", box.padding = unit(0.35, "lines"), point.padding = unit(0.3, "lines")) + 
labs(x=paste("observation ID number\n( outlier detection method=", method, ")"), y="observation value") #requires 'ggrepel' 
  } 
  return(p) 
} 
outlierDetection(x, method ="modzscore", addthres=T) 
 


