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Abstract: In many agricultural and allied research, neighboring treatment effects become the major source of bias which may be

reduced if neighbor balanced or strongly neighbor balanced designs are used. Strongly balanced neighbor designs play an important

role to incorporate the neighbor effects. Method of cyclic shifts (Rule I) provides minimal strongly balanced neighbor designs for some

combinations of v and k. For the remaining cases, the method of cyclic shifts (Rule II) provides their better alternates which are minimal

nearly strongly balanced neighbor designs that are highly efficient to estimate the treatment effects and neighbor effects separately. In

this article, some new construction procedures are developed to obtain minimal nearly strongly balanced neighbor designs in blocks of

(i) equal sizes, and (ii) two different sizes.
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1 Introduction

Neighbor balanced designs (NBDs) are used in the experiments where the response of a treatment applied on a given unit
is affected by the treatments applied to its neighboring units. Minimal NBDs are economical, therefore, these are used to
balance the neighbor effects. The bias due to neighbor effects is minimized with the use of NBDs, [1] and [2]. Minimal
strongly NBDs (SBNDs) are used to estimate the treatment direct effect and neighbor effects independently. A design is
said to be minimal neighbor balanced if each treatment has all other treatments once as its neighbors. If each treatment
also appears as its own neighbor, then the design is known as SBND. SBNDs play an important role to incorporate the
neighbor effects, therefore, these designs have an edge over neighbor balanced designs. For some combinations of v and
k, minimal SBNDs can be constructed through the method of cyclic shifts (Rule I). These designs should also be
constructed for the remaining cases. This problem can be solved through the method of cyclic shifts (Rule II) which
provides the nearly strongly balanced neighbor designs (NSBNDs) which are the best alternates to the SBNDs and are
highly efficient to estimate the treatment effects and neighbor effects separately.

(i) The designs in which each treatment appears an equal number of times with all other treatments (including itself
except treatment labeled as ”v-1” which does not appear with itself) as a neighbor are called NSBNDs.

(ii) The designs in which each treatment appears exactly once with all other treatments (including itself) except v− 1
which does not appear with itself as a neighbor, are called minimal NSBNDs.

These designs are not available in the literature, therefore, this study deals with the construction of minimal circular
NSBNDs (CNSBNDs). Minimal circular SBNDs and minimal CNSBNDs are applied in the biometrics, agriculture and
plant breeding experiments. Nearest neighbor balanced designs in linear blocks for the first-order autoregressive model
has been suggested by [3]. A catalogue of neighbor balanced designs using border plots was presented by [4]. Neighbor
designs were used in virus research as a technique by [5]. A brief review on one-dimensional neighbor designs since
1967 was given by [6], therefore, readers are referred to it for detailed literature discussion (1967− 2011). The designs
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which are balanced to estimate the direct and interference effects of treatments have been derived by [7]. To find left
and right neighbors of treatment from a balanced incomplete block design, a method that found left and right neighbor
designs possessing circular property from a series has been suggested by [8]. [9] constructed the one-sided right neighbor
designs and concluded that the neighbor treatments followed the circularity property of the same order. [10] described
some methods to construct CNBDs and CPNBDs to estimate treatment direct and neighbor effects. They also proposed
a class of CNBDs in blocks of unequal sizes. In this article, some new construction procedures are developed to obtain
minimal CNSBNDs in blocks of (i) equal sizes, and (ii) two different sizes, when left- and right- neighbor effects are
considered to be the same. The rest of the paper is organized as follows. In Section 2, the method of cyclic shifts (Rule II)
is explained for the construction of CNSBNDs. In Section 3, minimal CNSBNDs are constructed.

2 Method of cyclic shifts

[11] developed this method which is described here for the construction of CNSBNDs.

• Following is a design obtained from S1 = [2,4,5] and S2 = [1,3]t for v = 12 and k = 4, using Rule II.

Take ”v-1” blocks for [2,4,5]. Assign 0,1, ...,v− 2 to first unit of each block. To get the 2nd elements of all blocks, add
2 (mod (v− 1)) of [2,4,5] to the first element of all blocks. Add 4 (mod 11) to the 2nd element of all blocks. Then add 5
(mod 11) to the 3rd element of all blocks.

Take ”v-1” blocks for [2,4,5]. Assign 0,1, ...,v− 2 to first unit of each block. To get the 2nd elements of all blocks,
add 2 (mod (v− 1)) of [2,4,5] to the first element of all blocks. Add 4 (mod 11) to the 2nd element of all blocks. Then
add 5 (mod 11) to the 3rd element of all blocks.

Blocks

1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10 0 1

6 7 8 9 10 0 1 2 3 4 5

0 1 2 3 4 5 6 7 8 9 10

Take v− 1 more blocks for [1,3]t. Assign 0,1, ...,v− 2 to first unit of each block. To get the 2nd elements of all
blocks, add 1 (mod 11) to the first unit elements. Add 3 (mod 11) to the 2nd element of all blocks. Assign 11 as the 4th
element of all blocks.

Blocks

12 13 14 15 16 17 18 19 20 21 22

0 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 0

4 5 6 7 8 9 10 0 1 2 3

11 11 11 11 11 11 11 11 11 11 11

• How minimal CNSBNDs are constructed, using Rule II.

Let S j = [q j1,q j2, ...,q j(k−1)] and Si = [qi1,qi2, ...,qi(k−2)]t, where 0 ≤ q ji ≤ v− 2.

If each element 0,1,2, ...,v− 2 appears once in S∗, where

S∗ = [q j1,q j2, ...,q j(k−1),(q j1 + q j2 + ...+ q j(k−1)),(v− 1)− q j1,(v− 1)− q j2, ...,(v− 1)− q j(k−1),(v− 1)− (q j1+ q j2 +
...+ q j(k−1)),qi1,qi2, ...,qi(k−2),(v− 1)− qi1,(v− 1)− qi2, ...,(v− 1)− qi(k−2)]

then it will be minimal CNSBND.

Example 2.1: S1 = [2,4,5] and S2 = [1,3]t produce minimal CNSBND for v = 12 and k = 4. Here q11 = 2,q12 =
4,q13 = 5,(q11+q12+q13)mod (11) = 0 ,v−1−q11 = 9,v−1−q12 = 7,v−1−q13 = 6,v−1−(q11+q12+q13)mod (v−
1) = 0 ,q21 = 1,q22 = 3,v− 1− q21 = 10,v− 1− q22 = 8.NowS∗ = [2,4,5,0,9,7,6,0,1,3,10,8] in which each element
from 0,1,2, ...,10 appears exactly once. Hence [2,4,5] and [1,3]t produce minimal CNSBND for v = 12 and k = 4.
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3 Efficiency of Separability

Neighbor balanced designs must be able to measure the direct and neighbor effects separately, therefore, a measure of
Separability called efficiency of Separability (Es) is discussed here. To elaborate the concept of Es using the method of
chi-square explained by [12], we consider our proposed design obtained through S1 = [2,4,5],S2 = [1,3]t for v = 12 and
k = 4. The first step is to calculate the contingency table containing the number of observations having treatment in the
unit j (direct effect) related to the treatment applied in its neighboring units j± 1 (neighbor effect).

Neighbor effect

Direct effect

No 0 1 2 3 4 5 6 7 8 9 10 11 Total

0 0 2 1 1 1 1 1 1 1 1 1 1 2 14

1 0 1 2 1 1 1 1 1 1 1 1 1 2 14

2 0 1 1 2 1 1 1 1 1 1 1 1 2 14

3 0 1 1 1 2 1 1 1 1 1 1 1 2 14

4 0 1 1 1 1 2 1 1 1 1 1 1 2 14

5 0 1 1 1 1 1 2 1 1 1 1 1 2 14

6 0 1 1 1 1 1 1 2 1 1 1 1 2 14

7 0 1 1 1 1 1 1 1 2 1 1 1 2 14

8 0 1 1 1 1 1 1 1 1 2 1 1 2 14

9 0 1 1 1 1 1 1 1 1 1 2 1 2 14

10 0 1 1 1 1 1 1 1 1 1 1 2 2 14

11 0 2 2 2 2 2 2 2 2 2 2 2 0 22

Total 0 14 14 14 14 14 14 14 14 14 14 14 22 176

A column of ”No” in the contingency table exhibits the observations which do not have a neighbor effect. The
expected frequencies under the assumption of the independent model which shows that the probability of observation
that falls into the specific column is not the function of the row and where the observation occurs are mentioned below.

Carry-over effect

Direct effect

No 0 1 2 3 4 5 6 7 8 9 10 11

0 0 1.75 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.75

1 0 1.11 1.75 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.75

2 0 1.11 1.11 1.75 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.75

3 0 1.11 1.11 1.11 1.75 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.75

4 0 1.11 1.11 1.11 1.11 1.75 1.11 1.11 1.11 1.11 1.11 1.11 1.75

5 0 1.11 1.11 1.11 1.11 1.11 1.75 1.11 1.11 1.11 1.11 1.11 1.75

6 0 1.11 1.11 1.11 1.11 1.11 1.11 1.75 1.11 1.11 1.11 1.11 1.75

7 0 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.75 1.11 1.11 1.11 1.75

8 0 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.75 1.11 1.11 1.75

9 0 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 0.01 1.75 1.11 1.75

10 0 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.75 1.75

11 0 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 2.75
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The Pearson chi-square can be calculated as

χ2 = ΣΣ

(

(Oi j −Ei j)
2

Ei j

)

= 5.115

The chi-square value is then manipulated with the following relation called V c (Cramers V ).

Vc =





χ2

Total number o f incidences

min(number o f rows− 1,number o f columns− 1)





1/2

=

[

5.115
176

min(11,12)

]
1
2

= 0.079

Es = (1−Vc) = (1− 0.08) = 0.921

The high value of Es indicates the suitability of neighbor designs for the estimation of direct effects and neighbor
effects separately. All the designs proposed in this article are highly efficient in this regard.

4 Construction of Minimal CNSBNDs

In this Section, minimal CNSBNDs are constructed through the method of cyclic shifts (Rule II).

4.1 Minimal CNSBNDs in equal blocks sizes

Using Rule II, minimal CNSBNDs are constructed here in k sizes.

4.1.1 Construction

Minimal CNSBNDs can be obtained for v = 8i+ 4, i integer and k = 4 from (i+ 1) sets of shifts which are generated as:

• Consider B = [0,1,2,3, ...,m], where m = (v− 2)/2.

• Discard 1 and 3i from the elements of B.

• Divide remaining elements of B into i classes of k1 size such that their sum is multiple of (v− 1).

• From each class, discard one value (any), resulting are i sets.

• Consider [1,3i]t as the (i+ 1)th set.

Example 4.1.1: Minimal CNSBND can be constructed through 4.1.1 for v = 20 and k = 4 as: Here i = 2, m = 9 then
B = [0,1,2,3,4,5,6,7,8,9]. Discarding 1 and 6, remaining are divided into two groups (0,2,8,9) and (3,4,5,7). Hence
S1 = [2,8,9],S2 = [4,5,7],S3 = [1,6]t produce required design for v = 20 and k = 4 with Es = 0.90.

4.1.2 Construction

Minimal CNSBNDs can be constructed for v = 10i+6, i integer and k = 5 from (i+1) sets of shifts which are generated
as:

• Consider B = [0,1,2, ...,m− 1,m], where m = (v− 2)/2.

• Let b = [(m(m+ 1))/2] mod(v− 1). If b ≥ 3 then discard three values q1,q2 and q3 from B, where q1 + q2 + q3 =
b, otherwise replace one or more values with their complements such that b ≥ 3 then discard q1,q2 and q3 from B.
Complement of a is (v− 1)− a in Rule I.

• Divide remaining elements of B into i classes of k1 size such that their sum is multiple of (v− 1).

• From each class, discard one value (any), resulting are i sets.

c© 2022 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 11, No. 3, 883-891 (2022) / www.naturalspublishing.com/Journals.asp 887

• Consider [q1,q2,q3]t as (i+ 1)th set of shifts.

Example 4.1.2: Minimal CNSBND can be constructed through 4.1.2 for v = 26 and k = 5 as: Here i = 2,m = 12,B =
[0,1,2,3,4,5,6,7,8,9,10,11,12] and b= 3. Discarding 0,1 and 2, remaining are divided into two groups (3,4,5,6,7) and
(8,9,10,11.12). Hence S1 = [4,5,6,7],S2 = [9,10,11,12],S3 = [0,1,2]t produce required designs with Es = 0.90.

4.1.3 Construction

Minimal CNSBNDs can be constructed for v = 12i+8, i integer and k = 6 from (i+1) sets of shifts which are generated
as:

• Consider B = [0,1,2, ...,m− 1,m], where m = (v− 2)/2.

• Let b = [(m(m+ 1))/2] mod(v−1). If b ≥ 6 then discard four values q1,q2,q3 and q4 from B, where q1+q2+q3+q4 =
b, otherwise replace one or more values with their complements such that 6 ≤ b ≤ m− 2 then discard q1,q2,q3 and q4

from B.

• Divide remaining elements of B into i classes of k1 size such that their sum is multiple of (v− 1).

• From each class, discard one value (any), resulting are i sets.

• Consider [q1,q2,q3,q4]t as (i+ 1)th set.

Example 4.1.3: Minimal CNSBND can be constructed through 4.1.3 for v = 20 and k = 6 as: Here i = 1,m = 9,B =
[0,1,2,3,4,5,6,7,8,9] and b = 7. Discarding 0,1,2 and 4, remaining are (3,5,6,7,8,9). Hence S1 = [5,6,7,8,9],S2 =
[0,1,2,4]t produce required designs with Es = 0.91.

4.2 Minimal CNSBNDs in k1 and k2

Using Rule II, minimal CNSBNDs are constructed here in k1 and k2 sizes.

4.2.1 Construction

Minimal CNSBNDs can be constructed for v = 2ik1 + 2, i integer, k1 = 4 j, j integer, and k2 = 3 from (i+ 1) sets of
shifts which are generated as:

• Consider B = [0,1,2,3, ...,m], where m = (v− 2)/2.

• Discard c from B, where c = i j.

• Divide remaining elements of B into i classes of k1 size such that their sum is multiple of (v− 1).

• From each class, discard one value (any), resulting are i sets.

• Consider [c]t as (i+ 1)th set.

Example 4.2.1: Minimal CNSBND is obtained through 4.2.1 for v = 18,k1 = 8 and k2 = 3 as: Here i = 1, j = 2,m =
8,B = [0,1,2,3,4,5,6,7,8]. Discarding 2, remaining are (0,1,3,4,5,6,7,8). Hence S1 = [1,3,4,5,6,7,8],S2 = [2]t

produce required with Es = 0.95.

4.2.2 Construction

Minimal CNSBNDs can be constructed for v = 2ik1 +4, i integer, k1 = 4 j, j (integer)> 1 and k2 = 4 from (i+1) sets of
shifts which are generated as:

• Consider B = [0,1,2,3, ...,m], where m = (v− 2)/2.

• Discard 1 and i× (k1 − j) from the elements of B.

• Divide remaining elements of B into i classes of k1 size such that their sum is multiple of (v− 1).

• From each class, discard one value (any), resulting are i sets.

• Consider[1, i× (k1− j)]t as (i+ 1)th set.

Example 4.2.2: Minimal CNSBND is obtained through 4.2.2 for v = 36,k1 = 8 and k2 = 4 as: Here i = 2, j =
2,m = 17,B = [0,1,2, ...,17]. Discarding 1 and 12, remaining are divided into two groups (0,2,3,4,13,15,16,17) and
(5,6,7,8,9,10,11,14). Hence S1 = [2,3,4,13,15,16,17],S2 = [5,6,7,8,9,10,11],S3 = [1,12]t produce required designs
with Es = 0.94.
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4.2.3 Construction

Minimal CNSBNDs can be constructed for v = 2ik1 + 2, i integer,k1 > 3 and k2 = 3 from (i+ 1) sets of shifts which are
generated as:

• Consider B = [0,1,2, ...,m− 1,m], where m = (v− 2)/2.

• Let b = [(m(m+ 1))/2] mod(v− 1). If 1 ≤ b ≤ m then discard b from B, otherwise replace one or more values with
their complements such that 1 ≤ b ≤ m then discard b from B.

• Divide remaining elements of B into i classes of k1 size such that their sum is multiple of (v− 1).

• From each class, discard one value (any), resulting are i sets.

• Consider [b]t as (i+ 1)th set.

Example 4.2.3: S1 = [1,2,4,6,12],S2 = [7,8,9,10,11],S3 = [3]t produce minimal CNSBND through 4.2.3 for v= 26,k1 =
6 and k2 = 3 with Es = 0.96.

4.2.4 Construction

Minimal CNSBNDs can be constructed for v = 2ik1 + 4, i integer, k1 > 4 and k2 = 4 from (i+ 1) sets of shifts which are
generated as:

•Consider B = [0,1,2, ...,m− 1,m], where m = (v− 2)/2.

• Let b= [(m(m+ 1))/2] mod(v−1). If 1≤ b≤m then discard two values q1 and q2 from B, where q1+q2 = b, otherwise
replace one or more values with their complements such that 1 ≤ b ≤ m then discard q1 and q2 from B.

• Divide remaining elements of B into i classes of k1 size such that their sum is multiple of (v− 1).

• From each class, discard one value (any), resulting are i sets.

• Consider [q1,q2]t as (i+ 1)th set.

Example 4.2.4: S1 = [2,3,4,5,7],S2 = [0,1]t produce minimal CNSBND through 4.2.4 for v = 16,k1 = 6 and k2 = 4 with
Es = 0.94.

4.2.5 Construction

Minimal CNSBNDs can be constructed for v = 2ik1 + 6, i integer,k1 > 5 and k2 = 5 from (i+ 1) sets of shifts which are
generated as:

• Consider B = [0,1,2, ...,m− 1,m], where m = (v− 2)/2.

• Let b= [(m(m+ 1))/2] mod(v−1). If 3≤ b≤m−1 then discard three values q1,q2 and q3 from B, where q1+q2+q3 =
b, otherwise replace one or more values with their complements such that 3 ≤ b ≤ m− 1 then discard q1,q2 and q3 from
B.

• Divide remaining elements of B into i classes of k1 size such that their sum is multiple of (v− 1).

• From each class, discard one value (any), resulting are i sets.

• Consider [q1,q2,q3]t as (i+ 1)th sets.

Example 4.2.5: S1 = [4,5,10,12,13],S2 = [2,6,8,9,11],S3 = [0,1,3]t produce minimal CNSBND through 4.2.5 for v =
30,k1 = 6 and k2 = 5 with Es = 0.97.

5 Concluding Remarks

Neighbor balanced designs have been extensively used in the fields of life sciences especially in agricultural and botanical
experimentation where there exist neighboring effects on the plots from their adjacent plots. Well known method of
cyclic shifts has been utilized to propose new generators and construction procedures of these important designs. Method
of cyclic shifts (Rule I) provides us minimal CSBNDs while Rule II provides minimal CNSBNDs in which one pair of
(v−1,v−1) is missing. Both the proposed structure of designs proved to be efficient based on the efficiency of separability.
Therefore, researchers and experimenters have a wide range of choices for the designs where there are neighboring effects
from the adjacent plots. In the appendix, there are catalogs of proposed designs for equal and two different period sizes to
create a choice for the researchers to select designs of their interest.
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Appendix

Table1: Designs for v = 8i+ 4, i integer, k = 4 and v ≤ 100.

ν k sets

12 4 [2,4,5]+[1,3]t

20 4 [2,8,9]+[4,5,7]+[1,6]t

28 4 [2,12,13]+[3,5,8]+[4,6,7]+[1,9]t

36 4 [2,16,17]+[3,4,13]+[5,6,10]+[7,8,9]+[1,12]t

44 4 [2,20,21]+[3,4,17]+[5,6,14]+[7,8,12]+[9,10,11]+[1,15]t

Table 2: Designs for v = 10i+ 6, i integer, k = 5 and v ≤ 100.

ν k sets

16 5 [3,4,6,7]+[0,1,2]t

26 5 [4,5,6,7]+[8,9,10,11]+[0,1,2]t

36 5 [3,4,13,15]+[5,6,7,8]+[11,12,14,16]+[1,2,10]t

46 5 [3,4,8,10]+[5,6,7,9]+[11,12,14,21]+[15,16,17,19]+[0,1,2]t

Table 3: Designs for v = 12i+ 6, i integer, k = 6 and v ≤ 100.

ν k sets

20 6 [5,6,7,8,9]+[0,1,2,4]t

32 6 [4,5,10,13,14]+[6,7,8,9,12]+[0,1,2,3]t

44 6 [4,5,6,9,19]+[7,8,12,18,20]+[11,13,14,15,16]+[1,2,3,10]t

56 6 [5,6,7,8,9]+[10,15,16,22,23]+[12,13,14,18,26]+[4,11,17,19,25]+[0,1,2,3]t

Table 4: Designs for v = 2ik1 + 2, i integer, k1 = 4 j,1 ≤ j (integer)≤ 4 and k2 = 3.

ν k1 k2 sets

12 4 3 [2,3,4]+[1]t

20 4 3 [3,6,8]+[4,5,7]+[2]t

28 4 3 [2,11,12]+[6,8,10]+[5,7,9]+[3]t

36 4 3 [2,15,16]+[5,13,14]+[7,11,12]+[8,9,10]+[4]t

44 4 3 [2,19,20]+[7,15,18]+[3,8,13]+[4,9,12]+[6,10,11]+[5]t

50 4 3 [2,23,24]+[5,21,22]+[3,7,19]+[4,10,17]+[8,11,14]+[9,12,13]+[6]t

Table 5: Designs for v = 2ik1 + 4, i integer, k1 = 4 j,2 ≤ j (integer)≤ 5,k2 = 4 and v ≤ 100.

ν k1 k2 sets

20 8 4 [2,3,4,5,7,8,9]+[1,6]t

36 8 4 [2,3,4,13,15,16,17]+[5,6,7,8,9,10,11]+[1,12]t

22 8 4 [2,3,4,21,23,24,25]+[5,6,7,8,15,19,20]+[9,10,11,12,13,14,16]+[1,18]t

Table 6: Designs for v = 2ik1 + 2, i integer, 6 ≤ k1 ≤ 15,k2 = 3.

ν k1 k2 sets

14 6 3 [2,3,5,7,9]+[1]t

26 6 3 [1,2,4,6,12]+[7,8,9,10,11]+[3]t

38 6 3 [2,3,4,10,18]+[5,7,8,12,16]+[9,13,14,15,17]+[1]t

50 6 3 [3,4,5,14,23]+[1,2,7,11,13]+[9,10,12,21,22]+[16,17,18,19,20]+[6]t
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Table 7: Designs for v = 2ik1 + 4, i integer, 6 ≤ k1 ≤ 16,k2 = 4.

ν k1 k2 sets

16 6 4 [2,3,4,5,7]+[0,1]t

28 6 4 [2,3,4,6,12]+[5,7,8,10,11]+[1,9]t

40 6 4 [1,3,4,5,8]+[7,9,11,15,17]+[6,10,12,13,14]+[0,2]t

52 6 4 [2,3,5,17,24]+[6,7,8,9,10]+[13,14,15,16,21]+[12,19,20,22,25]+[1,18]t

Table 8: Designs for v = 2ik1 + 6, i integer, 6 ≤ k1 ≤ 15,k2 = 5.

ν k1 k2 sets

18 6 5 [3,4,5,6,7]+[0,1,2]t

30 6 5 [4,5,10,12,13]+[2,6,8,9,11]+[0,1,3]t

42 6 5 [6,7,8,15]+[9,11,18,19,20]+[12,13,14,16,17]+[0,2,3]t

54 6 5 [4,5,6,7,8]+[11,12,13,19,25]+[14,16,17,18,20]+[3,9,10,22,24]+[0,1,2]t
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