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Abstract: The estimating problems of the model parameters, reliability and hazard functions of extended exponential distribution when

sample is available from Type-I progressive hybrid censoring scheme will be considered. The maximum likelihood estimation has been

obtained for any function of the model parameters. Based on the normality property of the classical estimators, approximate confidence

intervals for the unknown parameters and any function of them are constructed. Further, to construct the asymptotic confidence interval

of the reliability and hazard rate function. Using independent gamma priors, the Bayes estimators of the unknown parameters are

derived based on both the symmetric squared error and asymmetric LINEX loss functions. Since the Bayes estimators are obtained

in a complex form therefore, Markov Chain Monte Carlo using Metropolis-Hastings algorithm has been used to carry out the Bayes

estimates and also to construct the associate highest posterior density credible intervals. To evaluate the performance of the proposed

methods, a Monte Carlo simulation study is carried out. Finally, we consider medical data to illustrate the applicability of the methods

covered in the paper.

Keywords: Extended exponential distribution, Reliability and hazard rate functions, Bayesian and non-Bayesian estimation, Markov

chain Monte Carlo, Type-I progressive hybrid censoring

1 Introduction

A new generalization of the exponential distribution as an alternative to gamma, Weibull and generalized-exponential
lifetime models has been introduced by [1]. The extension of the exponential distribution was named NHD by [2] as an
abbreviation for the name authors Nadarajah and Haghighi. Also, many properties of extended exponential distribution
are discussed by [1]. Suppose that the lifetime X of a testing unit follows two-parameter extended exponential distribution
(α,λ ). The probability density function f (·), cumulative distribution function F(·), reliability function S(·) and hazard
rate function H(·), for given mission time t, are given respectively by

f (x;α,λ ) = αλ (1+λ x)α−1
exp

[
1− (1+λ x)α

]
; x > 0, α,λ > 0, (1)

F(x;α,λ ) = 1− exp
[
1− (1+λ x)α

]
; x > 0, α,λ > 0, (2)

S(t;α,λ ) = exp
[
1− (1+λ t)α

]
; t > 0, α,λ > 0, (3)

and

H(t;α,λ ) = αλ (1+λ t)α−1
; t > 0, α,λ > 0, (4)

where α and λ are the shape and scale parameters, respectively.
Recently, many studies on estimating the unknown parameters of extended exponential distribution based on different
life-testing experiments have been carried out by many authors. [3] obtained the maximum likelihood estimation (MLE)
and Bayes estimators of the extended exponential distribution under Type-II progressive censoring scheme (PCS). [4]
discussed the MLEs and Bayes estimators of the unknown parameters and reliability characteristics of the extended
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exponential distribution based on complete sampling. [5] introduced a comparisons between several methods for
estimating the unknown parameters of extended exponential distribution. [6] discussed MLE and Bayes estimation of the
two unknown parameters of extended exponential distribution based on record values. [7] obtained The MLE and Bayes
inferential approaches for estimating the unknown two parameters and some lifetime parameters such as reliability and
hazard rate functions of extended exponential distribution in presence of progressive first-failure censored sampling. [8]
obtained MLE and Bayes estimators of the parameters and acceleration factor for extended exponential distribution
based on constant-stress partially accelerated life tests using progressive Type-II censoring. [9] discussed the estimation
and prediction problems for the extended exponential distribution using progressive type-II censored samples.
In conventional Type-I and Type-II censoring, a life test is terminated at a prescribed time span or at a predefined number
of failures. The main drawback of these censoring schemes is, the units cannot be removed from the test at any time
point except the final closure point. However, the Type-II PCS gives the flexibility of eliminating the test units before the
final termination. On other hand, the major drawback of the Type-II PCS is that, it can take a lot of time to reach the final
termination point. [10] discussed Type-I progressive hybrid censoring scheme (PHCS) which is the result of the mixture
of Type-II PCS and conventional Type-I (time censoring) schemes. In Type-I PHCS, the life tests stops when a
predefined number of failures occurred or when a prescribed time on the test has reached. Numerous authors have
investigated several lifetime models using the hybrid censoring scheme. Due to the importance of Type-I PHCS, many
authors have studied estimation of the parameters of various lifetime distributions based on this scheme. [11] obtained
some useful classical estimates of the unknown parameters of Weibull distribution under Type-I PHCS. They obtained
MLEs and approximate MLEs of the unknown parameters, and then compared the performance of proposed estimates
using numerical simulations. [12] obtained various estimates for log-normal distribution under Type-I PHCS. [13]
discussed some inferences for Burr Type-XII distribution under Type-I PHCS. [14] studied estimation of parameters of
the generalized half-normal distribution under Type-I PHCS. They obtained MLE and Bayes estimates. Further, they
computed Bayes estimates based on different approximation techniques. One may refer to [15,16,17,18,19] and the
references therein for some more references in this topic.
Let us suppose Type-I PHCS, n identical items are put on a test and the life time distributions of the n items are denotes
by x1,x2, ...xn. The integer r < n is fixed at the beginning of the experiment, and (R1,R2, ...,Rr) are r per-fixed integers
satisfying R1 +R2 + · · ·+Rr + r = n, let time point T is also fixed beforehand. At the time of the first failure x(1), R1 of
the remaining (n− 1) surviving units are randomly removed. Similarly, at the time of the second failure x(2), R2 of the

n − R1 − R2 − 2 surviving units are removed, and so on. Finally at the time of the rth failure all
Rr = n−R1 − ·· ·−Rr−1 − r surviving units are removed from the life-test. In progressive hybrid type I, the experiment
would terminate at the random time T ∗ = min(x(r),T ). In case-I, the rth failure x(r)occurs before the time T , the

experiment stops at the time point x(r). In case-II, the rth failure x(r) doesn’t occurs before the time T and only D failures
occurs before the time T , then, at the time point T all remaining R∗

D units are removed and the experiment stops. The
likelihood function of the observed data (without constant term) is given by

L(θ ) ∝





[
r

∏
i=1

f (x(i))(1−F(x(i)))
Ri

]
, for case-I;

[
D

∏
i=1

f (x(i))
[
1−F(x(i))

]Ri [1−F(T )]R
∗
D

]
, for case-II.

(5)

At the present time, the reliability tests should be performed with severe time limitations because of the short product
development times, which make the usual progressive type-II censoring scheme no longer appropriate in many field
products. Therefore, here, PHCS has been proposed by [10] to overcome the drawback of Type-II progressively
censoring scheme is that the experimental time can be very long if the units are highly reliable. So, the main advantage of
PHCS is that guarantee terminates the life-test rapidly and guarantee that the experimental time cannot exceed T .
The aim of this paper is the estimation of the unknown parameters, hazard rate and reliability functions of extended
exponential distribution under Type-I PHCS .In section 2, The MLEs and the information matrix will be discussed to
obtain asymptotic confidence intervals for the parameters and estimate reliability and hazard rate functions. Further,
Bayesian estimation under the assumption of independent gamma priors using squared error (SE) and LINEX loss
functions will be discussed in section 3. Numerically proposed methods using Monte Carlo simulations and a real data
set is compared in Section 4. Finally a conclusion is given in Section 5.

2 Maximum likelihood estimation

Suppose n units whose lifetimes are independent and identically distributed extended exponential distribution random
variables with the probability density function (1) are placed on a life test without replacement.
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Substituting equations (1) and (2) into (5), the likelihood function based on Type-I PHCS from extended exponential
distribution can be written as

L(x;α,λ ) =





r

∏
i=1

αλ (1+λ xi)
α−1

e[1−(1+λ xi)
α ]
[
1− (1− e(1−(1+λ xi)

α ))
]Ri

, for case-I;

D

∏
i=1

αλ (1+λ xi)
α−1

e[1−(1+λ xi)
α ]
[
1− (1− e(1−(1+λ xi)

α ))
]Ri

[
1− (1− e(1−(1+λ T)α ))

]R∗
D
, for case-II.

(6)
Taking the natural logarithm for (6), we get the following equation

lnL(x;α,λ ) =





r lnα + r lnλ +(α − 1)
r

∑
i=1

ln(1+λ xi)+
r

∑
i=1

[
1− (1+λ xi)

α]

+Ri

[
1− (1+λ xi)

α] , for case-I;

D lnα +D lnλ +(α − 1)
D

∑
i=1

ln(1+λ xi)+
D

∑
i=1

[1− (1+λ xi)]
α

+Ri

[
1− (1+λ xi)

α]+R∗
D

[
1− (1+λ T)α] , for case-II.

(7)

The first-partial derivatives of (7) with respect to α and λ are given, respectively, by

∂

∂α
lnL(x;α,λ ) =





r

α
+

r

∑
i=1

ln(1+λ xi)−
r

∑
i=1

(1+λ xi)
α

ln(1+λ xi)(1+Ri), for case-I;

D

α
+

D

∑
i=1

ln(1+λ xi)−
D

∑
i=1

(1+λ xi)
α

ln(1+λ xi)(1+Ri)

−R∗
D(1+λ T)α

ln(1+λ T), for case-II.

and

∂

∂λ
lnL(x;α,λ ) =





r

λ
+(α − 1)

r

∑
i=1

xi

1+λ xi

−α
r

∑
i=1

xi(1+λ xi)
α−1(1+Ri), for case-I;

D

λ
+(α − 1)

D

∑
i=1

xi

1+λ xi

−α
D

∑
i=1

xi(1+λ xi)
α−1(1+Ri)−R∗

DαT (1+λ T)α−1, for case-II.

Since these equations after equating them to zero are clearly transcendental equations in α̂ and λ̂ that is, no closed form

solutions are known they must be solved by iterative numerical techniques to provide parameter estimates, α̂ and λ̂ , in
the desired degree of accuracy. The MLEs of reliability function and hazard rate function can be obtained after replacing

α and λ by their MLEs α̂ and λ̂ as

ŜML(t) = e(1−(1+λ̂t)
α̂
), t > 0, and ĤML(t) = α̂λ̂ (1+ λ̂t)

α̂−1
t > 0,

respectively.

To study the variation of the MLEs α̂ and λ̂ , the asymptotic variance of these estimators are obtained. The asymptotic

variance covariance matrix of α̂ and λ̂ is obtained by inverting the information matrix with elements that are negative
expected values of the second order derivatives of natural logarithms of the likelihood function, for sufficiently large
samples, a reasonable approximation to the asymptotic variance covariance matrix of the estimators can be obtained as

I−1(α̂ , λ̂ )∼=

[
L11 L12

L21 L22

]−1

(α=α̂,λ=λ̂ )

=

[
Var(α̂) Cov(α̂ , λ̂ )

Cov(λ̂ , α̂) Var(λ̂ )

]
. (8)

From (7), the Fisher’s elements of (8) are obtained and reported in Appendix. The matrix can be inverted to obtain
the estimate of the asymptotic variance-covariance matrix of the maximum likelihood estimators. The diagonal elements

of I−1(α̂, λ̂ ) provide the asymptotic variance of α̂ and λ̂ respectively. Then by using large sample theory a two-sided
100(1−β )% approximate confidence intervals (ACIs) for α and λ can be constructed, respectively, as

α̂ ± z1−β/2

√
V̂ar(α̂) and λ̂ ± z1−β/2

√
V̂ar(λ̂ ).
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To construct the ACIs of S(t) and H(t), The variances of them is needed Therefore, the delta method is considered

to obtain the approximate estimates of the variance of Ŝ(t) and Ĥ(t). Delta method is a general approach for computing

ACIs for any function of the MLEs α̂ and λ̂ , (see [20]). According to this method, the variance of Ŝ(t) and Ĥ(t), can be
approximated, by

σ̂2
Ŝ(t)

= [∇Ŝ(t)]
T

I−1(α̂, λ̂ )[∇Ŝ(t)] and σ̂2
Ĥ(t)

= [∇Ĥ(t)]
T

I−1(α̂, λ̂ )[∇Ĥ(t)],

where ∇Ŝ(t) and ∇Ĥ(t) are respectively, the gradient (vector of first partial derivatives) of S(t) and H(t) with respect to

α and λ obtained at α̂ and λ̂ .

[∇Ŝ(t)]
T
=

[
∂∇Ŝ(t)

∂α
,

∂∇Ŝ(t)

∂λ

]

(α̂ ,λ̂ )

and [∇Ĥ(t)]
T
=

[
∂∇Ĥ(t)

∂α
,

∂∇Ĥ(t)

∂λ

]

(α̂,λ̂ )

.

Hence, the 100(1−β )% ACIs of S(t) and H(t), are given, respectively, by

Ŝ(t)± z1−β/2

√
σ̂2

Ŝ(t)
and Ĥ(t)± z1−β/2

√
σ̂2

Ĥ(t)
.

3 Bayesian estimation

In this section, the Bayesian method is used to obtain the estimators for unknown parameters of extended exponential
distribution using SE loss function and LINEX loss functions. We consider independent gamma priors for the parameters

α and λ , respectively, as π (α) ∝ αa−1e−bα , α > 0, a,b > 0, and π (λ ) ∝ λ c−1e−dλ , λ > 0, c,d > 0. Hence, the joint
prior density function of α and λ becomes

π(α,λ ) ∝ αa−1λ c−1 e−(bα+dλ ), λ ,α > 0, a,b,c,d > 0, (9)

where the hyper-parameters a, b, c and d are assumed to be known and non-negative. Combining equation (9) with (6)
and using Bayes theorem, the joint posterior distribution can be obtained as

π(α,λ |x) =





1

ψ1

αr+a−1λ r+c−1 e−(bα+dλ )
r

∏
i=1

(1+λ xi)
α−1

e[1−(1+λ xi)
α ]
{

1− (1− e[1−(1+λ xi)
α ])

}Ri

, for case-I;

1

ψ2

αD+a−1λ D+c−1 e−(bα+dλ )
D

∏
i=1

(1+λ xi)
α−1

e[1−(1+λ xi)
α ]
{

1− (1− e[1−(1+λ xi)
α ])

}Ri

×
{

1− (1− e[1−(1+λ T)α ])
}R∗

i
, for case-II.

(10)
where

ψ1 =

∫

α

∫

λ
αr+a−1λ r+c−1 e−(bα+dλ )

r

∏
i=1

(1+λ xi)
α−1

e[1−(1+λ xi)
α ]
{

1− (1− e[1−(1+λ xi)
α ])

}Ri

dλ dα,

and

ψ2 =

∫

α

∫

λ
αD+a−1λ D+c−1 e−(bα+dλ )

D

∏
i=1

(1+λ xi)
α−1

e[1−(1+λ xi)
α ]
{

1− (1− e[1−(1+λ xi)
α ])

}Ri
{

1− (1− e[1−(1+λ T)α ])
}R∗

i
dλ dα.

Bayes estimators α̃ and λ̃ of α and λ , respectively, of the extended exponential distribution under the SE loss function
are given by the mean of the marginal posterior density function (10) as

α̃SE =

∫

α
α ·π(α,λ |x), and λ̃SE =

∫

λ
λ ·π(α,λ |x)dλ ,
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respectively. These estimators α̃ and λ̃ can be also expressed as

α̃SE =





∫

α
α

1

ψ1

αa−1λ c−1e−(bα+dλ )∏
r

i=1
αλ (1+λ xi)

α−1
e[1−(1+λ xi)

α ]
{

1− (1− e[1−(1+λ xi)
α ])

}Ri

dα, for case-I;

∫

α
α

1

ψ2

αa−1λ c−1e−(bα+dλ )∏
D

i=1
αλ (1+λ xi)

α−1
e[1−(1+λ xi)

α ]
{

1− (1− e[1−(1+λ xi)
α ])

}Ri

×
{

1− (1− e[1−(1+λ T)α ])
}R∗

i
dα, for case-II,

,

(11)
and

λ̃SE =





∫

λ
λ

1

ψ1

αa−1λ c−1e−(bα+dλ )∏
r

i=1
αλ (1+λ xi)

α−1
e[1−(1+λ xi)

α ]
{

1− (1− e[1−(1+λ xi)
α ])

}Ri

dλ , for case-I;

∫

λ
λ

1

ψ2

αa−1λ c−1 e−(bα+dλ )∏
D

i=1
αλ (1+λ xi)

α−1
e[1−(1+λ xi)

α ]
{

1− (1− e[1−(1+λ xi)
α ])

}Ri

×
{

1− (1− e[1−(1+λ T)α ])
}R∗

i
dλ , for case-II,

(12)
respectively. Also, the Bayes estimates S̃(t) and H̃(t) of the reliability and hazard functions are given, respectively, by

S̃SE(t) =





∫

α

∫

λ
e[1−(1+λ x)α ]π(α,λ |x) dλ dα, for case-I;

∫

α

∫

λ
e[1−(1+λ x)α ]π(α,λ |x) dλ dα, for case-II,

(13)

and

H̃SE(t) =





∫

α

∫

λ
αλ (1+λ x)α−1π(α,λ |x) dλ dα, for case-I;

∫

α

∫

λ
αλ (1+λ x)α−1π(α,λ |x) dλ dα, for case-II.

(14)

Following [21], the Bayes estimators of α and λ under LINEX loss function are given, respectively, by

α̃LINEX =
1

c∗
ln(E (exp(−c∗α))) and λ̃LINEX =

1

c∗
ln(E (exp(−c∗λ ))) ,

respectively, where E(·) denotes the posterior expectation.

Thus, the Bayes estimates α̃LINEX and λ̃LINEX of α and λ under LINEX loss function can be obtained, respectively,
as

α̃LINEX =





1

c∗
ln

∫

α
e−c∗α 1

ψ1

αa−1λ c−1e−(bα+dλ )
r

∏
i=1

αλ (1+λ xi)
α−1

e[1−(1+λ xi)
α ]

× (1− (1− e(1−(1+λxi)
α )))

Ri
dα, for case-I;

1

c∗
ln

∫

α
e−c∗α 1

ψ2

αa−1λ c−1e−(bα+dλ )
D

∏
i=1

αλ (1+λ xi)
α−1

e[1−(1+λ xi)
α ]

×
{

1− (1− e[1−(1+λ xi)
α ])

}Ri
{

1− (1− e[1−(1+λ T)α ])
}R∗

i
dα, for case-II.

(15)

and

λ̃LINEX =





1

c∗
ln

∫

λ
e−c∗λ 1

ψ1

αa−1λ c−1 e−(bα+dλ )
r

∏
i=1

αλ (1+λ xi)
α−1

e[1−(1+λ xi)
α ]

×
{

1− (1− e[1−(1+λ xi)
α ])

}Ri

dλ , for case-I;

1

c∗
ln

∫

λ
e−c∗λ 1

ψ2

αa−1λ c−1 e−(bα+dλ )
D

∏
i=1

αλ (1+λ xi)
α−1

e[1−(1+λ xi)
α ]

×
{

1− (1− e[1−(1+λ xi)
α ])

}Ri
{

1− (1− e[1−(1+λ T)α ])
}R∗

i
dλ , for case-II,

(16)
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respectively, and the Bayes estimators of the reliability and hazard functions are also given by

S̃LINEX (t) =





1

c∗
ln

∫

α

∫

λ
e−c∗e[1−(1+λx)α ]

π(α,λ |x) dλ dα, for case-I;

1

c∗
ln

∫

α

∫

λ
e−c∗e[1−(1+λx)α ]

π(α,λ |x)dλ dα, for case-II,

(17)

and

H̃LINEX (t) =





1

c∗
ln

∫

α

∫

λ
e−c∗αλ (1+λ x)α−1

π(α,λ |x)dλ dα, for case-I;

1

c∗
ln

∫

α

∫

λ
e−c∗αλ (1+λ x)α−1

π(α,λ |x)dλ dα, for case-II,

(18)

respectively.
It is clear that the proposed estimators formulated in Equations (11-18) cannot be obtained in a closed form, so the

approximate methods is employed. Markov Chain Monte Carlo (MCMC) using Metropolis-Hastings (MH) algorithm has
been used to carry out the Bayes estimates and also to construct the associate HPD credible intervals.

4 Simulated study and Real data analysis

The aim of this section is to compare the performance of the different methods of estimation discussed in the previous
sections. A Monte Carlo study is employed to check the behavior of the proposed methods as well as to assess the
statistical performances of the estimators under Type-I progressive hybrid. Also, a real data set is analyzed for illustrative
purpose. R-statistical programming language will be used for calculation.

4.1 Simulated study

In this section, we perform a Monte Carlo simulated study (1000 times) to compare the performance of different
estimators of unknown parameters of the extended exponential distribution. We also assess the behavior of predictors of
censored observations under the considered censoring scheme. The performance of different estimators is compared in
terms of corresponding average estimates and mean square error (MSE) values. For this purpose, we generate Type-I
progressive hybrid censored samples using various sampling schemes by considering different combinations of (n,r) and
assuming that T is either (0.63, 1.79). We used the R-statistical software for all computations. The MLEs of α and λ are
computed and the information matrix will be discussed to obtain asymptotic confidence intervals for the parameters and
estimate reliability and hazard rate functions. Bayes estimates of parameters are computed with respect to a gamma prior
distribution under symmetric SE and asymmetric LINEX loss functions. Both MLEs and Bayes estimates of parameters
are obtained for arbitrarily taken unknown parameters α = 1.5 and λ = 0.5.

For the MLEs, one may generate 1000 data from the extended exponential distribution with the following assumptions:
Step 1: Assume the following selected cases of parameters of the extended exponential distribution: (α,λ ) = (1.5,0.5) .

Step 2: Sample sizes, are n = 50,100,200 and number of observed failures r = 20,40,80, respectively.

Step 3: Censoring times Type-I PHCS are assumed Tq corresponding to the selected q − th quantiles, where
q = (40,80%). The q− th quantiles of lifetimes distribution is given by P(X ≤ Tq) = q ⇒ Tq = Q(q), where Q(·) is the
inverse of the cdf (quantile) of the given distribution.

Step 4: Removed items Ri, i = 1,2, ...,r, are assumed to as follows:
Scheme I: R1 = n− r and R2 = · · ·= Rr = 0.
Scheme II: R1 = · · ·= R r

2
= 1 and R r

2+1 = · · ·= Rr = 2.

Scheme III: R1 = · · ·= Rr−1 = 0 and Rr = n− r.

The values of hyper-parameters are chosen to satisfy the prior mean become the expected value of the corresponding
parameter. These values, hyper parameters, are then plugged-in to calculate the desired estimates. While utilizing MH

algorithm, the MLEs are taken into account as initial guess values, and the associated variance-covariance matrix (θ (0)) =

(ln(α̂), ln(λ̂ )). At the end, 2000 burn-in samples are discarded among the overall 10000 samples generated from the
posterior density, and subsequently obtained Bayes estimates and HPD interval estimates.

Further, we have also obtained the MLEs and Bayesian estimates of the reliability function and hazard function
where the true values of Ŝ(t) and Ĥ(t) are taken form the specified time censoring, termination point of the test T ∗ =
min(T,xr)), of Type-I progressive hybrid scheme. The true values of hazard function are h(t = 0.63,α,λ ) = 0.8606 and
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Table 1: Average estimated values (first-line) and MSEs (second-line) of α and λ based on Type-I progressive hybrid censoring

schemes at different time censoring and different values of (n,r) for (α,λ ) = (1.5,0.5).

(n,r) Method qi = 40% qi = 80%

I II III I II III

(50,20) MLEα 1.8701 0.9812 2.3246 0.3153 2.1020 2.3129

19.797 7.9061 16.768 3.8529 13.502 15.153

MLEλ 1.8565 2.2510 1.3418 1.9124 1.5140 1.3501

5.8899 7.5381 3.3664 4.7880 4.2194 2.9253

Bayes-SEα 0.4618 0.3708 0.9756 0.1534 1.3546 1.3571

1.4665 1.7550 1.2348 1.9387 1.7292 0.7334

Bayes-SEλ 1.1972 1.6984 1.0123 1.2456 1.1852 0.9769

1.3426 2.9776 1.2685 1.1979 1.6298 1.0696

Bayes-LINEXα 0.4205 0.3132 0.9239 0.1367 1.2001 1.3272

1.5288 1.7554 1.3719 1.9505 1.1051 1.0557

Bayes-LINEXλ 0.9305 1.3754 0.8507 1.0384 0.9647 0.8201

0.6531 1.6701 0.7659 0.6711 0.8978 0.6419

(100,40) MLEα 1.7768 0.3800 1.8935 0.2879 2.2504 2.5576

13.021 2.4797 9.7939 1.7922 13.787 14.919

MLEλ 1.4151 2.3569 1.0457 1.4405 1.3741 1.0770

3.9575 7.3426 2.0825 2.7538 4.7931 1.6173

Bayes-SEα 0.6378 0.2540 1.0690 0.2060 1.3407 1.6491

1.6674 1.8236 1.2818 1.8271 1.8035 1.9933

Bayes-SEλ 1.1573 1.9598 0.8868 1.1588 1.5541 0.8314

1.7300 4.1772 1.2027 1.2554 3.9712 0.6658

Bayes-LINEXα 0.5568 0.2302 1.0200 0.1859 1.3183 1.6094

1.5873 1.8388 1.3126 1.8540 1.8250 1.8682

Bayes-LINEXλ 0.9586 1.6865 0.7863 1.0240 1.2838 0.7365

1.0120 2.7636 0.8624 0.8536 2.4275 0.4745

(200,80) MLEα 1.3040 0.4590 1.8679 1.1737 2.0121 2.4964

6.2076 1.4828 8.4083 0.4340 8.9683 12.345

MLEλ 1.1673 2.0616 0.5836 0.2898 0.9604 0.8316

2.8800 6.8371 0.7150 0.5457 4.0482 0.6982

Bayes-SEα 0.6388 0.3728 1.2274 0.4355 1.1729 1.8803

1.4678 1.5443 1.3973 1.3264 2.6708 2.6449

Bayes-SEλ 1.0127 1.7671 0.5434 0.4602 1.6200 0.7234

1.6752 4.2872 0.5074 0.3130 3.5280 0.4520

Bayes-LINEXα 0.5642 0.3421 1.1847 0.2979 1.1584 1.8480

1.4795 1.5835 1.6415 1.5320 2.6386 2.6909

Bayes-LINEXλ 0.8957 1.5891 0.5031 0.3731 1.0812 0.6619

1.1703 3.2711 0.4311 0.2618 1.5361 0.3554

h(t = 1.79,α,λ ) = 1.0325 and the true values of reliability function are S(t = 0.63,α,λ ) = 0.6 and h(t = 1.79,α,λ ) =
0.2. It should be noted that, when q = (40,80)%, one gets T40% = Q(40%,α = 1.5,λ = 0.5) = 0.6334 and T80% =
Q(80%,α = 1.5,λ = 0.5) = 1.7908. Further, the corresponding true value of hazard function H(t) at q = (40,80)%
becomes H(t = 0.6334,α = 1.5,λ = 0.5)= 0.8606 and H(t = 1.7908,α = 1.5,λ = 0.5)= 1.0325, respectively. Similarly,
the corresponding true value of reliability function S(t) at q = (40,80)% becomes S(t = 0.6334,α = 1.5,λ = 0.5) =
0.6000 and S(t = 1.7908,α = 1.5,λ = 0.5) = 0.2000, respectively. All the average estimates and associated MSEs for
both methods of all unknown parameters α , λ , H(t) and S(t) are reported in Tables 1 and 2. Further, the corresponding
average interval lengths (AILs) and coverage probabilities (CPs) for 95% asymptotic/HPD credible intervals are listed in
Tables 3 and 4.

4.2 Real data analysis

A real data set is analyzed for illustrative purpose as well as to assess the statistical performances of the MLEs and Bayes
estimators for the extended exponential distribution under Type-I progressive hybrid censoring schemes. The following
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Table 2: Average estimated values (first-line) and MSEs (second-line) of H(t) and S(t) based on Type-I progressive hybrid censoring

schemes at different time censoring and different values of (n,r) for (α,λ ) = (1.5,0.5).

(n,r) Method qi = 40% qi = 80%

I II III I II III

(50,20) MLEH(t) 0.1124 0.0658 0.4584 0.0258 0.9559 1.0673

0.5613 0.6355 0.3933 1.0300 0.6746 0.8393

MLES(t) 0.9072 0.9435 0.7714 0.9402 0.3642 0.2401

0.0945 0.1183 0.0702 0.5496 0.1406 0.0140

Bayes-SEH(t) 0.1256 0.1405 0.6332 0.0272 1.1100 1.1091

0.5500 5.0160 14.335 1.0268 0.9101 0.4845

Bayes-SES(t) 0.9161 0.9464 0.7732 0.9445 0.3553 0.2240

0.1022 0.1220 0.0756 0.5565 0.1570 0.0202

Bayes-LINEXH(t) 0.0861 0.0558 0.3224 0.0229 0.6089 0.6058

0.6015 0.6491 0.3959 1.0272 0.3689 0.2685

Bayes-LINEXS(t) 0.9403 0.9584 0.8269 0.9510 0.4588 0.3713

0.1162 0.1288 0.0761 0.5656 0.1643 0.0517

(100,40) MLEH(t) 0.0695 0.0342 0.4117 0.0114 0.8585 1.0638

0.6262 0.6830 0.4066 1.0428 0.6603 0.4743

MLES(t) 0.9464 0.9699 0.7983 0.9699 0.4645 0.2285

0.1200 0.1368 0.0811 0.5928 0.2250 0.0103

Bayes-SEH(t) 0.0811 0.0360 0.4477 0.0140 0.8801 1.1456

0.6207 0.6806 0.4578 1.0378 0.6717 0.4000

Bayes-SES(t) 0.9452 0.9713 0.7937 0.9669 0.4705 0.2010

0.1203 0.1380 0.0862 0.5889 0.2413 0.0113

Bayes-LINEXH(t) 0.0604 0.0316 0.3190 0.0116 0.5884 0.7218

0.6408 0.6873 0.4184 1.0424 0.4656 0.1991

Bayes-LINEXS(t) 0.9572 0.9747 0.8350 0.9716 0.5304 0.3213

0.1277 0.1404 0.0844 0.5954 0.2406 0.0325

(200,80) MLEH(t) 0.0388 0.0191 0.4084 0.0081 0.6130 1.0526

0.6755 0.7082 0.4143 1.0496 0.7278 0.2877

MLES(t) 0.9712 0.9843 0.8084 0.9846 0.6245 0.2179

0.1378 0.1477 0.0859 0.6156 0.3505 0.0061

Bayes-SEH(t) 0.0468 0.0237 0.4484 0.0302 0.6633 1.1974

0.6631 0.7010 0.4445 1.0063 1.7224 0.4356

Bayes-SES(t) 0.9672 0.9820 0.7991 0.9425 0.5840 0.1867

0.1351 0.1461 0.0880 0.5556 0.3049 0.0068

Bayes-LINEXH(t) 0.0379 0.0195 0.3493 0.0145 0.4871 0.8578

0.6770 0.7074 0.4149 1.0364 0.6355 0.1435

Bayes-LINEXS(t) 0.9730 0.9849 0.8290 0.9707 0.6447 0.2691

0.1392 0.1481 0.0864 0.5943 0.3422 0.0133

original data set which an uncensored data set corresponding to remission times (in months) of a random sample of 128
bladder cancer patients is considered. These data were previously studied by [22] [23] and [2]. The remission times of the
bladder cancer are as follows: 0.08, 0.20, 0.40, 0.50, 0.51, 0.81, 0.90, 1.05, 1.19, 1.26, 1.35, 1.40, 1.46, 1.76, 2.02, 2.02,
2.07, 2.09, 2.23, 2.26, 2.46, 2.54, 2.62, 2.64, 2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 3.25, 3.31, 3.36, 3.36, 3.48, 3.52, 3.57,
3.64, 3.70, 3.82, 3.88, 4.18, 4.23, 4.26, 4.33, 4.34, 4.40, 4.50, 4.51, 4.87, 4.98, 5.06, 5.09, 5.17, 5.32, 5.32, 5.34, 5.41,
5.41, 5.49, 5.62, 5.71, 5.85, 6.25, 6.54, 6.76, 6.93, 6.94, 6.97, 7.09, 7.26, 7.28, 7.32, 7.39, 7.59, 7.62, 7.63, 7.66, 7.87,
7.93, 8.26, 8.37, 8.53, 8.65, 8.66, 9.02, 9.22, 9.47, 9.74, 10.06, 10.34, 10.66, 10.75, 11.25, 11.64, 11.79, 11.98, 12.02,
12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 14.76, 14.77, 14.83, 15.96, 16.62, 17.12, 17.14, 17.36, 18.10, 19.13,
20.28, 21.73, 22.69, 23.63, 25.74, 25.82, 26.31, 32.15, 34.26, 36.66, 43.01, 46.12, 79.05.

We first check whether the extended exponential distribution is suitable for analyzing this data set or not. The value
of Kolmogorov–Smirnov (K–S) test statistic is calculated to judge the goodness of fit. The calculated
Kolmogorov-Smirnov (K-S) distance between the empirical and the fitted extended exponential distribution is 0.0935
and its p-value is 0.2131. Which indicate that this distribution can be considered as an adequate model for the given data
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Table 3: The AILs (first-line) and CPs% (second-line) of S(t) and H(t) based on hybrid progressive Type-I censoring schemes at

different time censoring and different values of (n,r) for (α,λ ) = (1.5,0.5).

(n,r) Method qi = 40% qi = 80%

I II III I II III

(50,20) MLEH(t) 10.5658 6.4004 10.1919 3.3843 9.2125 9.7817

93.0 94.9 93.7 98.2 93.8 94.2

MLES(t) 5.8036 6.3984 4.5395 5.1898 5.0185 4.2616

93.7 94.5 92.6 94.0 91.6 93.4

Bayes-SEH(t) 1.5110 1.5971 2.7170 0.7729 3.1116 2.5530

95.1 95.0 95.1 95.2 95.0 95.1

Bayes-SES(t) 2.7739 3.7096 3.0927 2.6173 3.4539 2.9560

95.0 95.0 95.1 95.2 95.1 95.1

Bayes-LINEXH(t) 1.7279 1.4182 2.8872 0.6177 3.0849 3.0551

95.1 95.0 95.0 95.1 95.1 95.1

Bayes-LINEXS(t) 2.0595 2.8091 2.4190 2.0281 2.6694 2.4160

95.0 95.0 95.1 95.1 95.6 95.1

(100,40) MLEH(t) 8.8324 2.5507 7.9825 1.4024 9.3831 9.8450

93.8 97.5 94.6 91.2 94.2 93.8

MLES(t) 4.8791 6.2269 3.6658 4.1216 5.3115 3.3000

93.3 95.9 94.2 95.5 90.9 94.8

Bayes-SEH(t) 2.8590 1.3305 2.8847 1.1419 3.7048 3.5673

95.1 95.1 95.0 95.1 95.1 95.1

Bayes-SES(t) 3.3174 4.4264 3.0509 2.7325 4.8497 2.4660

95.2 95.1 95.0 95.1 95.2 95.3

Bayes-LINEXH(t) 2.6606 1.2604 3.1927 1.0507 3.9142 3.8401

95.1 95.1 95.1 95.1 95.1 95.1

Bayes-LINEXS(t) 2.5890 3.5871 2.6622 2.3056 3.8490 2.1228

95.2 95.2 95.0 95.1 95.0 95.3

(200,80) MLEH(t) 6.1746 1.6980 7.5087 2.2444 7.7986 9.1048

95.7 99.7 95.1 99.0 95.4 94.5

MLES(t) 4.2271 6.1745 2.2338 1.6785 4.8018 2.3358

94.4 95.2 94.2 92.8 89.0 94.8

Bayes-SEH(t) 2.5447 1.5721 2.7880 1.2888 4.0728 4.3208

95.2 95.1 95.0 95.1 95.0 95.2

Bayes-SES(t) 3.3952 4.5673 2.0841 1.6710 4.2202 2.0585

95.1 95.1 95.0 95.1 95.1 95.2

Bayes-LINEXH(t) 2.3801 1.5310 3.1424 0.8781 4.2040 4.7707

95.1 95.1 95.0 95.1 95.0 95.2

Bayes-LINEXS(t) 2.8657 3.9892 1.9713 1.5576 3.1120 1.8937

95.1 95.1 95.0 95.1 95.1 95.0

set. The MLEs of the parameters are obtained where α̂ = 0.7539 and λ̂ = 1.6622. From the original data, one can
generate four Type-I progressive hybrid censoring samples with number of stages r = 40 at time censoring T = 5 and
removed items Ri are assumed to as follows:
Scheme I: R1 = n− r and R2 = · · ·= Rr = 0.
Scheme II: R1 = · · ·= R r

2
= 1 and R r

2+1 = · · ·= Rr = 2.

Scheme III: R1 = · · ·= Rr−1 = 0 and Rr = n− r.
Scheme IV: T = 80 and R1 = n− r and R2 = · · ·= Rr = 0.

Note that: Scheme IV can be considered as a Type-II progressive censoring scheme, a special case of Type-I
progressive hybrid censoring. Tables 5 and 6 give the MLEs of the parameters α , λ , H(t) and S(t) as well as their
associated asymptotic confidence interval at proposed schemes for Type-I progressive hybrid censoring samples in the
given real data set. Also, Bayes estimates under two loss functions; namely: SE loss function and LINEX loss function,
were computed by utilizing the MH algorithm under the non-informative prior, i.e., a = b = c = d = 0. It is indicated
that, while generating samples from the posterior distribution utilizing the MH algorithm, initial values of (α,λ ) are
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Table 4: The AILs (first-line) and CPs% (second-line) of S(t) and H(t) based on hybrid progressive Type-I censoring schemes at

different time censoring and different values of (n,r) for (α,λ ) = (1.5,0.5).

(n,r) Method qi = 40% qi = 80%

I II III I II III

(50,20) MLEH(t) 0.8602 0.3060 1.9251 0.0877 4.8897 7.4175

99.0 99.9 99.7 99.8 99.8 99.8

MLES(t) 0.4933 0.1829 0.5239 0.1307 0.3257 0.9468

99.0 99.0 99.0 99.0 85.9 99.0

Bayes-SEH(t) 0.2883 0.1652 1.6131 0.0346 2.7145 2.3434

95.2 95.0 95.1 95.2 95.0 95.1

Bayes-SES(t) 0.1561 0.0899 0.5768 0.0492 0.9446 0.4657

99.6 99.8 99.8 99.0 99.5 95.5

Bayes-LINEXH(t) 0.1282 0.0832 0.8398 0.0291 1.2846 1.0312

95.9 95.3 95.6 95.5 95.1 96.3

Bayes-LINEXS(t) 0.0723 0.0440 0.3848 0.0400 0.8243 0.6106

99.1 99.8 99.7 99.4 99.8 95.5

(100,40) MLEH(t) 0.4278 0.0718 1.1036 0.0359 3.5805 5.7294

99.0 99.0 97.7 99.0 99.4 99.0

MLES(t) 0.2707 0.0544 0.3070 0.0990 0.2710 0.6674

99.0 99.0 99.0 99.0 83.0 99.0

Bayes-SEH(t) 0.1674 0.0593 1.3809 0.0248 2.1196 1.9885

95.1 95.2 95.0 95.1 95.1 95.1

Bayes-SES(t) 0.0883 0.0294 0.5302 0.0338 0.9269 0.3908

99.8 99.9 99.9 99.9 99.0 97.1

Bayes-LINEXH(t) 0.0779 0.0392 0.8769 0.0177 1.4066 1.2388

96.7 95.4 95.1 95.2 95.1 95.1

Bayes-LINEXS(t) 0.0405 0.0184 0.4022 0.0226 0.8328 0.5019

98.3 99.8 99.0 99.0 99.0 95.1

(200,80) MLEH(t) 0.1983 0.0439 0.7497 0.1995 1.9412 3.9325

99.0 99.0 85.7 99.0 96.2 99.9

MLES(t) 0.1627 0.0459 0.2127 0.6875 0.4736 0.4816

99.0 99.0 83.0 99.0 43.7 99.0

Bayes-SEH(t) 0.0928 0.0501 1.3061 0.0985 1.8689 1.7371

95.4 95.1 95.0 95.1 95.0 95.2

Bayes-SES(t) 0.0504 0.0261 0.5221 0.1841 0.9039 0.3052

99.8 99.9 99.0 99.0 99.0 97.4

Bayes-LINEXH(t) 0.0444 0.0255 0.9443 0.0305 1.4610 1.2089

96.8 95.1 95.0 95.1 95.0 96.1

Bayes-LINEXS(t) 0.0217 0.0119 0.4106 0.0547 0.8446 0.3066

98.5 99.0 99.9 99.0 99.0 97.1

considered as (α(0),λ (0)) = (α̂ , λ̂ ) where α̂, λ̂ are the MLEs of the parameters (α,λ ), respectively. Finally, discarded
2000 burn-in samples among the total 10000 samples created from the posterior density, and subsequently obtained
Bayes estimates and HPD interval. Further, the estimates of α , λ , H(t) and S(t) are obtained in case of MLEs and
Bayesian estimates with their standard errors (St.Es) at a specified time censoring T = 5. The convergence of MCMC
estimation in case of scheme I of hybrid progressive Type-I censoring can be showed for α and λ in Figure 1.

5 Concluding remarks

In this article, the estimation of the unknown parameters and reliability and hazard functions of an extended exponential
distribution under Type-I PHCS is considered. Different estimates for the unknown parameters using ML and Bayesian
approaches are computed. The asymptotic confidence intervals are also constructed. Bayes estimates of unknown
parameters are developed using MH algorithm with respect to gamma prior distributions under SE and LINEX loss
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Table 5: The ML and Bayesian estimates of α , λ , H(t) and S(t) with their St.Es for real data set based on Type-I progressive hybrid

censoring under various censoring schemes.

Scheme Parameter MLE Bayes-SE Bayes-LINEX

Estimate St.E Estimate St.E Estimate St.E

I α 0.4170 8.90×10−1 0.3716 9.01×10−3 0.3629 9.11×10−3

λ 0.1288 2.83×10−1 0.1486 2.02×10−4 0.1483 3.02×10−4

H(t) 0.0157 — 0.0528 — 0.0514 —

S(t) 0.9919 — 0.9733 — 0.9740 —

II α 0.0765 1.17×10−1 0.0802 8.28×10−6 0.0802 8.28×10−6

λ 0.7525 0.13×10+1 0.6867 2.21×10−3 0.6656 2.50×10−3

H(t) 0.5233 — 0.0420 — 0.0410 —

S(t) 0.7620 — 0.9763 — 0.9769 —

III α 3.0887 1.25×10−5 2.8309 8.58×10−8 2.8127 8.60×10−2

λ 0.0155 2.47×10−3 0.0154 9.13×10−8 0.0153 9.01×10−5

H(t) 0.0002 — 0.0443 — 0.0438 —

S(t) 0.9998 — 0.9782 — 0.9784 —

IV α 5.8029 1.46×10−6 5.7834 9.20×10−2 5.7012 9.88×10−2

λ 0.0073 1.14×10−3 0.0074 1.49×10−6 0.0074 1.50×10−6

H(t) 0.0001 — 0.0563 — 0.0552 —

S(t) 0.9995 — 0.6738 — 0.6783 —

Table 6: The 95% two-sided asymptotic/HPD credible intervals of α , λ , H(t) and S(t) for real data set based on Type-I progressive

hybrid censoring under various censoring schemes .

Scheme Parameter ACI HPD

Bayes SE Bayes LINEX

I α (0.0000, 0.1604) (0.1935, 0.5523) (0.1925, 0.5503)

λ (0.0000, 2.6842) (0.1183, 0.1835) (0.1171, 0.1840)

H(t) (0.0006, 0.0307) (0.0460, 0.0596) (0.0443, 0.0586)

S(t) (0.9844, 0.9994) (0.9703, 0.9763) (0.9708, 0.9772)

II α (0.0000, 0.3052) (0.1935, 0.5523) (0.1925, 0.5503)

λ (0.0000, 3.3651) (0.1183, 0.1835) (0.1171, 0.1840)

H(t) (0.3735, 0.6730) (0.0407, 0.0433) (0.0396, 0.0424)

S(t) (0.6998, 0.8242) (0.9750, 0.9776) (0.9754, 0.9784)

III α (0.0000, 7.6866) (2.5820, 3.0510) (2.5824, 3.0509)

λ (0.0001, 0.1005) (0.0103, 0.0260) (0.0101, 0.0265)

H(t) (0.0000, 0.0045) (0.0000, 0.6149) (0.0000, 0.6105)

S(t) (0.9977, 1.0020) (0.7029, 1.2534) (0.7049, 1.2519)

IV α (0.0010, 7.5080) (5.3270, 6.3320) (5.3289, 6.3305)

λ (0.0000, 0.0812) (0.0054, 0.0095) (0.0052, 0.0099)

H(t) (0.0000, 0.0019) (0.0000, 1.9481) (0.0000, 1.9044)

S(t) (0.9838, 1.0153) (0.0000, 8.7201) (0.7049, 8.6253)

functions. Also considered HPD intervals based on MH procedure are considered. A real data set and simulation study
was conducted to examine and compare the performance of the proposed methods for different; sample sizes, censoring
times and censoring schemes. From the results we reported some comments observed from numerical results.

–Depended on MSEs, higher values of n lead to better estimates.
–The decreasing in T the estimate is better.
–The performance of Bayes estimates for the parameters α and λ obtained under LINEX loss function is better than
the performance of Bayes estimates obtained under SE loss function and the MLEs.
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Fig. 1: Convergence of MCMC estimators for α and λ using MH algorithm.

–The Bayes estimates under LINEX loss function average interval lengths (AILs) and associated coverage probabilities
(CPs) of HPD intervals are better than those of SE loss function and the MLEs.

–It is notice that the MLEs of S(t) and H(t) are better than the Bayes estimates under both loss functions.
–Furthermore, the performance of the estimates in scheme III is better than other two schemes (I and II).
–The performance of the estimates in censoring times q = 80% is better than q = 40%.

As a future work, the inferential results discussed in this paper can be performed for some lifetime censoring
schemes as the joint progressive Type-I censoring scheme introduced by [24], joint Type-I progressive hybrid censoring
scheme proposed by [25] and generalized Type-II hybrid censoring scheme introduced by [26]. Another future work is to
investigate the progressive hybrid censored schemes based on maximum product spacing with application to extended
exponential distribution as [27].
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Appendix

From (7), the elements of the Fisher information matrix given in (8) will be

L11 =





−
r

α̂2
−

r

∑
i=1

(ln(1+ λ̂ xi))
2
(1+ λ̂ xi)

α̂
[1+Ri], for case-I;

−
D

α̂2
−

D

∑
i=1

(ln(1+ λ̂ xi))
2
(1+ λ̂ xi)

α̂
[1+Ri]−R∗

D(1+ λ̂ T )
α̂
[ln(1+ λ̂ T )]

2
, for case-II,
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L22 =





−
r

λ̂ 2
− (α̂ −1)

r

∑
i=1

x2
i

(1+ λ̂ xi)
2
− α̂(α̂ −1)

r

∑
i=1

x2
i (1+ λ̂ xi)

α̂−2
[1+Ri], for case-I;

−
D

λ̂ 2
− (α̂ −1)

D

∑
i=1

x2
i

(1+ λ̂ xi)
2
− α̂(α̂ −1)

D

∑
i=1

(x2
i (1+ λ̂ xi)

α̂−2
)[1+Ri]−R∗

D[α̂(α̂ −1)T 2(1+ λ̂ T )
α̂−2

], for case-II,

and

L12 =





r

∑
i=1

xi

(1+ λ̂ xi)
−

r

∑
i=1

xi(1+ λ̂ xi)
α̂−1

(α̂ ln(1+ λ̂ xi)+1)[1+Ri], for case-I;

D

∑
i=1

xi

(1+ λ̂ xi)
−

D

∑
i=1

(xi(1+ λ̂ xi)
α̂−1

)(α̂ ln(1+ λ̂ xi)+1)[1+Ri]−R∗
D(T (1+ λ̂ T )

α̂−1
)[α̂ ln(1+ λ̂ T )+1], for case-II.
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