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Abstract: In this paper, we attempt to introduce a new lifetime model as a discrete version of the continuous exponentiated

exponential distribution which is called discrete exponentiated exponential distribution (DEE). The introduced model contains

geometric distribution as a special case. Some basic distributional properties, moments, reliability indices, probability function,

characteristic function, and order statistics of the new model are discussed. Estimation of the parameters is illustrated using the

maximum likelihood method and moment method. The model with three real data set is also examined.
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1 Introduction

In the field of reliability analysis, continuous distribution is more widely used for modelling the lifetime of a component
or system. However, the discrete distributions would be better choices for modelling the lifetime of an on/off switch or
lifetime of a device that is exposed to shocks, etc. There are many new models that have been widely used in reliability
analysis and other related applications to see Meeker and Escobar [1]. The common way to construct discrete distribution
has been recognized by Roy and Gupta [2].

One of the simplest ways to implement discretization is briefly explained here. We assume a continuous random
variable X has the survival function (SF) SX (x)= P(X ≥ x), and a random variableY is defined as Y = [X ]. The probability
mass function (PMF) of Y is then given by [3]

P(Y=y)=P(y≤X<y+1)=P(X≥y)−P(X≥y+1)

= SX (y)−SX (y+1) , for y= 0,1,2, . . . (1)

Indeed, this method has been widely applied to generate new discrete distribution. See for example Roy [3] and
[4], Krishna and Pundir [5], Jazi et al. [6], Para and Jan [7,8], Gomez-Deniz and Caderio-Ojeda [9], Nekoukhou et al.
[10], Bakouch et al. [11], Abebe [12], Munindra, et al.[13], Nooghabi et al. [14], Gomez-Deniz and Caderio-Ojeda [15],
El-Morshedey et al. [16], Chakroborty and Chakroborty [17], and references cited therein.

Gupta [18] introduced exponentiated exponential distribution (denoted by EE(α,λ ) with the following probability
density function (PDF) and SF:

fE (x,α,λ ) = αλ
(

1− e−λ x
)α−1

e−λ x, λ ,x>0, SE (x,α,λ )= 1−
(

1−e−λ x
)α−1

, (2)

Respectively. Where α is the shape parameter and λ is the scale parameter. It should be noted that the exponential
family can be derived from EE (α,λ ) by setting α = 1.

In this paper, a new two-parameter lifetime distribution is introduced, so-called discrete exponentiated exponential
distribution, from exponentiated exponential distribution presented in Equation (2).

This new distribution also contains the geometric distribution as a special case.
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The paper is organized as follows: Section 2 introduces the DEE (α,θ ) distribution and discusses some of its
important features and properties, including the cumulative and failure function, moments, moment generating function,
quantile, survival function, entropy, stress-strength, mean residual lifetime and order statistics. In section 3, we provide
the maximum likelihood estimation of unknown parameters. We analyse three real data set using the DEED in section 4.
Finally, some concluding remarks are given in section 5.

2 Discrete Exponentiated Exponential distribution

Definition. A random variable X is said to have a discrete exponentiated exponential distribution with parameter α(α> 0)
and

θ=e−λ , 0 <θ< 1, if its pmf has the form:

P(X=x)=
(

1−θ (x+1)
)α

−(1−θ x)α
; x ∈N0 (3)

We denote this distribution as DEE(α,θ ).
It is observed that at α = 1, we have the geometric distribution as a special case.
Figure 1 illustrates several examples of the probability mass function of DEE (α,θ ) distribution for different values

of α and θ .

2.1 Cumulative distribution function

The cumulative distribution function CDF of DEE(α,θ ) is given by

F (x,α,θ )= 1−S (x,α,θ )+P(X=x)

=
(

1−θ (x+1)
)α

(4)

Where α(α>0) and θ=e−λ , 0<θ< 1.

Monotonic property

It is easy to verify that

fX (x+1; α, θ )

fX (x; α, θ )
=

(

1−θ (x+2)
)α

−
(

1−θ (x+1)
)α

(

1−θ (x+1)
)α

−(1−θ x)α ; x∈N0 , α(α>0)and θ=e−λ , , 0<θ< 1

.
Is a decreasing function of X . this implies that

{ fX (x; α, θ )}2> fX (x+1; α, θ ) fX (x−1; α, θ ) ; x∈N0 α(α>0) and θ=e−λ , 0<θ< 1.
Hence the distribution is log-concave. As a direct consequence of log concavity, the proposed DEE(α,θ ) distribution

is strongly unimodal; it has an increasing failure rate distribution, and it all its moments.
Furthermore, the quantile function of DEE(α,θ ) distribution, say Q(p) , from F (xp)=p, is given by

xp=

⌈

1

lnθ

(

1−
p

α

)

−1

⌉

(5)

Where α(α>0), θ=e−λ , 0<θ< 1 and 0<p<1.
Where ⌈n⌉ denotes the greatest integer function.

Hence the median can be obtained by putting p= 1
2

in (5)

Med(X)=

⌈

1

lnθ

(

1−
1

2α

)

−1

⌉

Survival function: The survival function of DEE(α,θ ) distribution is given by the following

S (x,α,θ )=P(X ≥ x)= 1−(1−θ x)α
; x ∈N0 (6)
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Fig. 1: The PMF of the DEE distribution

Hazard rate, r(x) is given by

h(x,α,θ )=
p(x)

s(x)
=

(

1−θ (x+1)
)α

−(1−θ x)α

1−(1−θ x)α ; x ∈N0 (7)

Figure 2 shows the HRF plots of DEE(α,θ ) distribution for different values of α and θ .
Also, the reversed hazard rate function (RHRF) of the DEE(α,θ ) distribution can be expressed as follows

r (x,α,θ )=1−(1−θ x)α
; x ∈N0 (8)

Figure 3 shows the RHRF plots of DEE(α,θ ) distribution for various values of α and θ .

3 Different Properties

3.1 Moments and index of dispersion

The rth moment µ´
r of a discrete exponetiated exponential distribution DEE(α,θ ) about the origin is obtained as follows

µ´
r=E [X r]=

∞

∑
x=0

xrP(X=x)
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µ´
r=

∞

∑
x=0

xr[
(

1−θ (x+1)
)α

−(1−θ x)α ] (9)

The moment generating function (MGF) MX (t)of DEE(α,θ ) distribution is computed as follows

MX (t)=E
[

etx
]

=
∞

∑
x=0

etxP(X=x)

=
∞

∑
x=0

etx[
(

1−θ (x+1)
)α

−(1−θ x)α ] (10)

The rth moment about the origin can also be obtained from the moment generating function. The corresponding
moments, means, variance, skewness, and the kurtosis can also be obtained using (10)

The mean (µ) of DEE(α,θ ) distribution is as follows

µ´
1=µ=E [X ]=

∞

∑
x=0

x[
(

1−θ (x+1)
)α

−(1−θ x)α ]

µ´
2=µ=E

[

X2
]

=
∞

∑
x=0

x2[
(

1−θ (x+1)
)α

−(1−θ x)α ]

Subsequently, the variance(σ2) is obtained, as follows

var(X)=
∞

∑
x=0

x2[
(

1−θ (x+1)
)α

−(1−θ x)α ]−

(

∞

∑
x=0

x[
(

1−θ (x+1)
)α

−(1−θ x)α ]

)2

(11)

The 3rd and 4th moments are, respectively are obtained as

µ´
3=E

[

X3
]

=
∞

∑
x=0

x3[
(

1−θ (x+1)
)α

−(1−θ x)α ]

µ´
4=E

[

X4
]

=
∞

∑
x=0

x4[
(

1−θ (x+1)
)α

−(1−θ x)α ]

The measure of skewness α3 of DEE(α,θ ) distribution is obtained as follows

α3=
µ´

3−2µ´
2µ+µ3

σ3

=
1

σ3
{

[

∞

∑
x=0

x3[
(

1−θ (x+1)
)α

−(1−θ x)α

]

−2µ
∞

∑
x=0

x2[
(

1−θ (x+1)
)α

−(1−θ x)α ]}+
µ3

σ3
(12)

The measure of kurtosis α4 of DEE(α,θ ) distribution is obtained as follows

α4=
µ´

4−4µ´
3µ+6µ´

2µ2−3µ4

σ4

α4=
1

σ4
{

∞

∑
x=0

x4[
(

1−θ (x+1)
)α

−(1−θ x)α ]

−4µ
∞

∑
x=0

x3[
(

1−θ (x+1)
)α

−(1−θ x)α ]+ 6µ2
∞

∑
x=0

x2[
(

1−θ (x+1)
)α

−(1−θ x)α ]−3µ4} (13)

The probability generating function (PGF), G(t) , of DEE(α,θ ) distribution is obtained as follows

G(t)=E [tx]=
∞

∑
x=0

txP(X=x)
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Table 1: The mean of the DDE distribution

α/θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

2 0.212 0.458 0.758 1.142 1.666 2.4375 3.705 6.222

3 0.304 0.633 1.016 1.496 2.142 3.088 4.639 7.715

4 0.387 0.78 1.223 1.771 2.504 3.578 5.34 8.836

5 0.464 0.906 1.392 1.991 2.794 3.969 5.901 9.732

Table 2: The variance of the DDE distribution

α/θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

2 0.231 0.608 1.287 2.544 4.973 10.076 22.473 61.856

3 0.316 0.821 1.748 3.464 6.774 13.714 30.54 83.886

4 0.387 1.004 2.15 4.266 8.335 16.856 37.482 102.777

5 0.447 1.166 2.51 4.979 9.72 19.636 43.608 119.408

=
∞

∑
x=0

tx[
(

1−θ (x+1)
)α

−(1−θ x)α ] (14)

It is difficult to obtain a closed-form expression for PGF; however, we can compute it numerically. In general, the rth

the factorial moment is given by the following

µ[r]=Gr (1)=
α

α−1

∞

∑
x=0

x(x−1) . . . . . . . . ...(x−r+ 1)[
(

1−θ (x+1)
)α

−(1−θ x)α ]

The mean µ (also the first factorial moment of DEE(α,θ ) distribution can be obtained by calculating the first derivative
of probability generating function at t=1 as follows

µ=µ[1]=G`(1)=
α

α−1

∞

∑
x=0

x[
(

1−θ (x+1)
)α

−(1−θ x)α ]

The second factorial moment can be calculated by taking the second derivative of the probability moment generating
function at t=1 as follows

µ[2]=G[?] (1)=
α

α−1

∞

∑
x=0

x(x−1)
[(

1−θ (x+1)
)α

−(1−θ x)α
]

The variance, the variance (σ2) of DEE(α,θ )distribution is given by the following

var (X)=σ2=G
′′
(1)+G

′
(1)−

(

G

`
′′
(1)

)2

var=
α

α−1

∞

∑
x=0

x2
[(

1−θ (x+1)
)α

−(1−θ x)α
]

−

(

α

α−1

∞

∑
x=0

x
[(

1−θ (x+1)
)α

−(1−θ x)α
]

)2

(15)

Characteristic function: The characteristic function (CF), φX (w) of DEE(α,θ ) distribution is of the form

φX (w)= E

[

eiwx
]

=
∞

∑
x=0

eiwxP(X = x)=
α

α−1

∞

∑
x=0

eiwx
[(

1−θ (x+1)
)α

−(1−θ x)α
]
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Fig. 2: The HRF of the DDE distribution.

3.2 Stress-Strength (S-S∗) Analysis

In the context of reliability, the stress-strength has an essential importance in the technical system. A component fails at the
instant when the stress applied to it exceeds the strength, and the component will function effectively if Xs∗>Xs. Therefore,
R∗= p [Xs≤Xs∗ ] is considered to be a measure for component reliability. In this case, the expected reliability(R∗

) can be
calculated by

R∗= p [Xs≤Xs∗ ]=
∞

∑
x=0

fXs (x)RXs∗
(16)

If Xs∼ DEE(α1, θ1 )and Xs∗∼ DEE (α2, θ2)then R∗ can be expressed as follows

R∗=
∞

∑
x=0

1−(1−θ2)
α2 [
(

1−θ1
(x+1)

)α1

−(1−θ x
1 )

α1 ] (17)
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Fig. 3: The RHRF of the EED distribution.

3.3 Mean residual lifetime (MRL) and mean past lifetime (MPL)

Several measures in reliability and survival analysis are presented to study the aging behavior of the components. One of
these measures is MPL, say ς (i) which is a helpful tool to model and analyze the burn-in and maintenance policies. In
the discrete setting, the MRL is defined as follows

ς (i)= E

[

X−
i

X
≥i

]

=
1

R( j)

l

∑
j=i+1

R( j) , i∈N0 (18)

Where 0<l<∞. if the RV X ∼DEE(α,θ ), then the MPL can be expressed as follows

ς (i)=
1

(1−θ i)α

l

∑
j=i+1

1−
(

1−θ j
)α

(19)

3.4 Order statistics

Order statistics play an important role in the theoretical and practical aspects of statistics. This importance is shown in
statistical inference and non-parametric statistics. let X1,X2,. . ...,Xn be a random sample from A DEE(α,θ ) distribution,
and let X1:n,X2:n,. . ...,Xn:n be their corresponding order statistics (OS). Then, the CDF of the ith OS for an integer value of
x can be expressed as follows:
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Fi:n (x,α, θ )=
n

∑
k=i

(n

k

)

[Fi (x,α, θ )]k [Fi (x,α, θ )]n−k

=
n

∑
k=i

αk

∑
m=0

(−1)m
(n

k

)

(

αk

m

)

θ m(x+1)[
(

1−θ (x+1)
)α

]
n+m−k

(20)

Furthermore, the PMF of the kth Os can be expressed as follows

fk:n (x,α, θ ,β )=
k−1

∑
m=0

Θ
(n,α(k−1))
m θ m(x+1)[

(

1−θ (x+1)
)α

]
n+m−k

[(

1−θ (x+1)
)α

−(1−θ x)α
]

(21)

Where Θ
(n,k−1)
m =(−1)m

(

αk
m

)

n!
(k−1)!(n−k)! .

So, the qth moments of Xi:n can be written as follows

E
[

X
q
i:n

]

=
∞

∑
x=0

k−1

∑
m=0

Θ
(n,α(k−1))
m θ m(x+1)xq[

(

1−θ (x+1)
)α

]
n+m−k

[(

1−θ (x+1)
)α

−(1−θ x)α
]

(22)

Where Θ
(n,k−1)
m =(−1)m

(

αk
m

)

n!
(k−1)!(n−k)! .

3.5 Renyi entropy

The entropy of a random variable X is a measure of uncertainty variation. Renyi entropy plays a vital role in information
theory. The Renyi entropy is defined as:

IR (γ)=
1

1−γ
log∑

x

(P(X=x))γ
(23)

Where γ > 0 and γ 6=1 [19]. For the DEE distribution and when γ is an integer number, we can write

∞

∑
x=0

(P(X=x))γ =
γ

∑
j=0

[(

1−θ ( j+1)
)α

−
(

1−θ j
)α
]γ

IR (γ)=
1

1−γ
log

γ

∑
j=0

[(

1−θ ( j+1)
)α

−
(

1−θ j
)α
]γ

(24)

4 Estimation of unknown parameters

In this section, we derive estimates of unknown parameters of DAPW (x,α, θ ,β ) distribution using

4.1 Maximum likelihood method

Let X1,X2, ...,Xn denote lifetimes of n independent test units following DEE(x;α,θ ) distribution. Then, the corresponding
log-likelihood function is given by the following;

p(x) =
(

1−θ (x+1)
)α

−(1−θ x)α

L [P(X = x)]=
n

∏
i=1

p(xi)=
n

∏
i=1

(

1−θ (xi+1)
)α

−(1−θ xi)α
(25)
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l(x,α, θ ) =
n

∑
i=1

ln
((

1−θ (xi+1)
)α

−(1−θ xi)α
)

(26)

Likelihood equations are then obtained as follows:

δ l

δα
=

n

∑
i=1

(

1−θ (xi+1)
)α

ln
(

1−θ (xi+1)
)

−(1−θ xi)α
ln(1−θ xi)

(

1−θ (xi+1)
)α

−(1−θ xi)α (27)

δ l

δθ
=

n

∑
i=0

−α(xi+1)θ xi

(

1−θ (xi+1)
)α−1

+αxiθ
xi−1 (1−θ xi)α−1

(

1−θ (xi+1)
)α

−(1−θ xi)α = 0; (28)

The solution of the above normal equations cannot obtain in closed form, and then it can be solved using a numerical
solution. We can compute the second partial derivatives, which are useful to obtain the Fisher’s information matrix as
follows

Ix (α,θ )=





−E
[

∂ 2l
∂α2

]

−E
[

∂ 2l
∂α∂θ

]

−E
[

∂ 2l
∂θ∂α

]

−E
[

∂ 2l
∂θ 2

]



 (29)

One can show that the DEE(x;α,θ ) distribution satisfies the regularity conditions (see, e.g., Ferguson, [20]). Hence,

the MLE vector
(

α̂,θ̂
)T

is consistent and asymptotically normal. That is I
1
2
x (α,θ )(

(

α̂,θ̂
)T

−(α,θ )T ) converges in
distribution to a bivariate normal distribution with (vector) mean zero and the identity covariance matrix. The Fisher’s
information matrix given in Equation (29) can be approximate as follows

Ix (α,θ )=







− ∂ 2l
∂α2

∣

∣

∣

(α̂ ,θ̂)
− ∂ 2l

∂α∂θ

∣

∣

∣

(α̂ ,θ̂)

− ∂ 2l
∂θ∂α

∣

∣

∣

(α̂ ,θ̂)
− ∂ 2l

∂θ 2

∣

∣

∣

(α̂ ,θ̂)






(30)

Where α̂ and θ̂ are the MLEs of α and θ , respectively (see Gomez-Deniz, [21]).

4.2 Method of Moments Estimation

The moments’ estimates (MMEs) of (α, θ )are obtained by solving the following equations

∞

∑
i=1

xi

[(

1−θ (xi+1)
)α

−(1−θ xi)α
]

=µ1
[1],

And

∞

∑
i=1

x2
i

[(

1−θ (xi+1)
)α

−(1−θ xi)α
]

=µ2
[2],

Where µ1
[1] and µ2

[2] denote the first, the second, and the third sample moments, respectively

5 A simulation study

In this section, we assess the performance of the maximum-likelihood estimate with respect to sample size n. The
assessment is based on a simulation study:

I.. Generate 10000 samples of size n from Equation (3). The inversion method is used to generate samples; that is,
varites of the discrete exponentiated exponential distribution are generated using
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X=







ln
(

1−u
1
α

)

lnθ
−1







; 0 <u<1

Where U∼U(0,1) is a uniform variable on the unit interval;

II. Compute the maximum-likelihood estimates for 10000 samples, say θ̂i for i= 1,2,. . ..,10000,
III. Compute the biases and mean-squared errors given by

bias(n)=
1

10000

10000

∑
i=1

(θ̂ i−θi)

And

MSE(n)=
1

10000

10000

∑
i=1

(θ̂ i−θi)
2

Table 3: The averages bias and averages MSE for simulated results of ML estimates

sample Size

α = 2.73

θ =0.93 θ =0.95 θ =0.99

Bias MSE Bias MSE Bias MSE

10 5.762∗10−5 3.32∗10−9 −1.285∗10−4 1.651∗10−8 −8.95∗10−5 −8.01∗10−9

70 −8.37∗10−4 7.005∗10−7 −8.287∗10−4 6.867∗10−7 −2.588∗10−4 6.698∗10−8

130 −4.019∗10−3 1.615∗10−5 −3.129∗10−3 9.788∗10−6 −7.456∗10−4 5.559∗10−7

210 −4.245∗10−3 1.802∗10−5 −3.313∗10−3 1.098∗10−5 −7.815∗10−4 6.108∗10−7

sample Size

θ =0.93

α = 2.69 α = 2.70 α = 2.73

Bias MSE Bias MSE Bias MSE

10 -0.39 0.152 -0.378 0.143 5.762∗10−5 3.32∗10−9

70 0.078 6.011∗10−3 0.055 3∗10−3 −8.37∗10−4 7.005∗10−7

130 0.279 0.078 0.234 0.055 −4.019∗10−3 1.615∗10−5

210 0.015 2.258∗10−4 −6.695∗10−3 4.851∗10−5 −4.245∗10−3 1.802∗10−5

IV.. The empirical results are given in Table 3.
From Table 3, the following observations can be noted:

–The magnitude of the bias always decreases to zero as n −→ ∞.
–The MSEs always decrease to zero as n −→ ∞. This shows the consistency of the estimators.

6 Data application

Here, we illustrate the superiority of a discrete exponentiated exponential distribution over traditional distributions
(Poisson and Geometric) beside new models (discrete Gamma, discrete Weibull, Discrete Logistic, and Discrete
Lindley).

We use three real data sets. The first data are given in Table4 consists of survival times in days of 72 guinea pigs.
These data are taken from table 6 in [30]. The data have been analyzed by Alshunnar et al. [22] and Ghitany et al. [23].
The data are discrete by definition.

The MLE of (α,θ ) values in all these cases has been computed. The Kolmogorov-Smirnov (K-S) distance between
the empirical cumulative distribution function and the fitted distribution function in each case and the associated P-value
are computed. The result is reported in table 5.

The data set given in table 6 consists of the 2003 final examination marks of 48 slow space students in mathematics in
the Indian Institute of Technology at Kanpur. The data set is taken from Gupta and Kundu [24].

The MLE of (α,θ ) values in all these cases have been computed. The Kolmogorov-Smirnov (K-S) distance between
the empirical cumulative distribution function and the fitted distribution function in each case and the associated P-value
are computed. The result is reported in table 7.
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Table 4: Data set 1.

12 15 22 24 24 32 32 33 34 38 38 43 44 48

52 53 54 54 55 56 57 58 58 59 60 60 60 60

61 62 63 65 65 67 68 70 70 72 73 75 76 76

81 83 84 85 87 91 95 96 98 99 109 110 121 127

129 131 143 146 146 175 175 211 233 258 258 263 297 341

341 376

Table 5: Fitted estimates for data set 1.

Distribution p(x) Parameter Estimates p value K-S statistics

Discrete Exponentiated Exponential Distribution (3) α = 2.739,θ =.983 0.0524 0.1567

Poisson λ xe−λ x λ = 99.8194 9.5313x10(−22) 0.5755

Geometric p(1− p)x p=.0099 0.002 0.216

Discrete Weibull qxβ
−q(x+1)β

q = .9532,β = .9020 1.0821x10(−24) 0.614

Discrete Gamma
γ(α ,β (x+1))

Γ (α)
-

γ(α ,β (x))
Γ (α)

α = .9853,β = .0125 4.1283x10(−6) 0.2966

Table 6: Data set 2

29 25 50 15 13 27

15 18 7 7 8 19

12 18 5 21 15 86

21 15 14 39 15 14

70 44 6 23 58 19

50 23 11 6 34 18

28 34 12 37 4 60

20 23 40 65 19 31

Table 7: Fitted estimates for data set 2.

Distribution p(x) Parameter Estimates p value K-S statistics

Discrete Exponentiated Exponential Distribution (3) α = 2.63,θ =.963 0.3353 0.1338

Poisson λ xe−λ/x! λ = 25.8958 2.4013x10(−7) 0.3998

Geometric p(1− p)x p=.0372 0.0145 0.2223

Discrete Weibull qxβ
−q(x+1)β

q = .6488,β = .6758 2.9221x10(−24) 0.7419

Discrete Gamma
γ(α ,β (x+1))

Γ (α) -
γ(α ,β (x))

Γ (α) α = .8098,β = .0350 2.6082x10(−4) 0.2993

The third data set given in table 8 consists of remission times in weeks for 20 leukemia patients randomly assigned
to a certain treatment. It is taken from pages 346 of Lawless [25]. The data have been analyzed recently by Damien and
Walker [26] and Kottas [27].

Table 8: Data set 3

1 3 3 6 7 7 10 12 14 15

18 19 22 26 28 29 34 40 48 49

The MLE of (α,θ ) values in all these cases have been computed. The Kolmogorov-Smirnov (K-S) distance between
the empirical cumulative distribution function and the fitted distribution function in each case and the associated P-value
are computed. The result is reported in table 9.

For the first, second and the third data sets, the discrete exponentiated exponential distribution provides the only
acceptable p-values. The distribution plots suggest that the discrete exponentiated exponential distribution produces the
best fit among the competitor distributions.

On the basis of the tabulated results, we conclude that the discrete exponentiated exponential distribution distribution
provides the best fit as compared to its sub models.
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Table 9: Fitted estimates for data set 3.

Distribution p(x) Parameter Estimates p value K-S statistics

Discrete Exponentiated Exponential Distribution [3] α=2.107,θ =.93 0.4888 0.1812

Poisson λ xe−λ /x λ =19.5500 0.01 0.3523

Geometric p(1− p)x p=.0487 0.7436 0.1447

Discrete Weibull qxβ
−q(x+1)β

q=.3682,β = .3603 3.5869x10(−10) 0.7233

Discrete Gamma
γ(α ,β (x+1))

Γ (α) -
γ(α ,β (x))

Γ (α) α = .5623,β = .0310 0.0541 0.2909

Table 10: Some statistical measures for data sets
Data set Mean Median Std. Deviation Variance Skewness Std. Error of

Skewness

Kurtosis Std.

Error of

Kurtosis

Minimum Maximum

I 99.82 70 81.118 6580.12 1.835 0.283 2.894 0.559 12 376

II 25.9 19.5 18.605 346.138 1.375 0.343 1.608 0.674 4 86

III 19.55 16.5 14.699 216.05 0.707 0.512 -0.436 0.992 1 49

7 Concluding remarks

In this, paper, a new two-parameter for lifetime modeling which is organized from continuous exponentiated exponential
distribution is introduced, so-called discrete exponentiated exponential distribution DEE (α,θ ) distribution. The
proposed distribution contains the geometric distribution as a special case. The failure rate of the new model is
decreasing. Some important probabilistic properties of this distribution are studied in detail. The unknown parameters of
the DEE distribution are estimated using two methods, namely, the moments method and the maximum likelihood
method. The flexibility of the DEE distribution has been empirically proven by using three real-life data sets. The DEE
distribution has proven to show efficiency in fitting data better than some existing distributions. Finally, we believe that
the presented distribution will benefit a wide range of applications including reliability, physics and so on.
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