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Abstract: The over-dispersion and the excess zeros are two main problems that are related to the Poisson regression 
model. To handle these problems, different models like zero inflated negative binomial and zero inflated generalized 
Poisson were proposed. Lately Conway-Maxwell Poisson (COM-Poisson) had proposed to handle the over-dispersion for 
count data in cross-sectional case. However, there is no application of the COM-Poisson model in longitudinal case. In 
this paper, the zero inflated COM-Poisson model was proposed and developed to deal with longitudinal count data. Under 
two different working correlation structures, exchangeable and autoregressive of order 1, AR(1). The zero-inflated COM-
Poisson (ZICP) regression model is considered as modification of the COM-Poisson regression model that allows for an 
excess of zero counts in the data and over-dispersion problem. this model was compared with the Zero Inflated Poisson 
regression model and zero inflated negative binomial model. The results show that the COM-Poisson model is very 
suitable to longitudinal count data, even in presence of dispersion. It gives the smallest AIC values. Also, it is insensitive 
to the choice of the working structure. 

Keywords: COM-Poisson regression model, Count data, Excess of zeros problem, Longitudinal count data, Zero Inflated 
COM Poisson model, Over-dispersion problem. 
 

 

1 Introduction  

The use of statistical models for the analysis of correlated count data has grown in public health research. Analysis of this 
data affected by one or more explanatory variables that requires adequate modeling of the correlations underlying the 
responses repeatedly collected over time. Poisson regression model is often applied for analysis of count data by assuming 
that the marginal mean and variance of the data are equal but this assumption in most cases is not valid so the Poisson 
regression might be too obstructive due to this assumption. When the over-dispersion exists in data, the Poisson model 
might obstruct the estimation efficiency in practice, negative binomial regressions will be the alternative model to handle 
this problem. 

Analysis of longitudinal count data depends on one or more explanatory variables that require adequate modeling of the 
correlations underlying the responses repeatedly collected over time. Many authors have suggested likelihood-based 
models for longitudinal count data with over-dispersion. The over-dispersion parameter is modeled using a random mean 
approach [1],[2],[3]. However, these approaches require the specification of full likelihood function. On the other hand, 
non-likelihood approaches have been proposed for longitudinal count data such as the generalized estimating equations 
(GEE). The GEE has been introduced [4] and extended [5],[6][7]. The GEE and its extensions are commonly used under a 
marginal mean regression framework. The generalized estimating equations require the first two moments and estimation 
of a few nuisance parameters associated with a working correlation structure. This yields an asymptotically consistent 
estimator regardless of the working correlation structure. However, it can be inefficient under mis-specified working 
correlation structure.  

To overcome the problem of miss–specified the working correlation structure, quadratic inference functions was 
developed by extending the inverse of the working correlation structure to a set of predetermined matrices, which avoids 
additional estimation of the nuisance parameters. The quadratic inference functions results in more efficient estimators 
than the one ignoring the within-subject correlation, even if the assumed working correlation structure is incorrect. 
Moreover, quadratic inference functions provide an inference function for model diagnostic tests and goodness of fit 
tests[8]. This method can handle two different types of working correlation structures: the exchangeable structure and the 
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autoregressive AR(1) structure. The exchangeable structure means that correlations between different observations on the 
same subject are identical, no matter how close they are in a time sequence. On the other hand, the autoregressive AR(1) 
structure means that correlations between observations closer together, in a time sequence, are more correlated than 
observations further apart. 

According to the definition of over-dispersion [9] is the phenomenon that a rise when the empirical variance for the data 
exceeds the nominal variance under some presumed model. If the over-dispersion is present for count data, the Poisson 
regression model is not valid for estimation. This problem arises usually through the omission from the regression models 
of important explanatory variables, existence of outliers, and using inappropriate link function. This violation of the 
standard model assumptions inflates the residual deviance, produces large residuals, underestimates standard deviations of 
the estimated parameters, and may lead to biases in the estimates themselves if the omitted variables are correlated with 
those in the model. 

Definition of excess zero in data is exist when often a greater number of zero observations than expected from the Poisson 
model display in the data, this problem is known as excess zeros [10]. In health research, count outcomes are common and 
often these counts have a large number of zeros. For such counts, the Poisson regression model is commonly used to 
explain the relationship between the outcome variable and a set of explanatory variables. However, it is often the case that 
there are a higher proportion of zero counts than would be predicted by the Poisson distribution, possibly due to a distinct 
sub- population of subjects whose only response is zero counts.  

In this paper, a zero inflated COM-Poisson model was proposed and developed to handle the two main problems (the 
over-dispersion and the excess zeros) in the longitudinal case using two different working correlation (exchangeable and 
autoregressive ar(1)). Up to now there is no application of this model, in literature, to longitudinal count data. This model 
enables us to deal with the two main problems of count responses: Second, to suggest using the quadratic inference 
function under the two different types of working correlation structure; the exchangeable structure and the AR(1) 
structure. The proposed methods are applied to a real dataset, the epileptic data. The obtained results will be compared 
with the most common models; zero inflated Poisson regression model and zero negative binomial regression model. 

2 COM-Poisson Regression Model for Longitudinal data 

Due to the convincing properties of the COM Poisson regression model, it has been widely used to describe under- or 
over- dispersed count data in cross-sectional set up. However, there exists no application of COM-Poisson model in 
longitudinal case. The challenge lies in modeling the correlation structure of repeated COM-Poisson counts. The 
framework was provided [11]for developing and analyzing a COM-Poisson model with AR (1)-type correlation structure 
under the longitudinal set-up. An extension of the cross-sectional Conway-Maxwell Poisson was presented [12] (COM-
Poisson) regression model established [13] a generalized regression model for count data in light of inherent data 
dispersion – to incorporate random affects for analysis of longitudinal count data.  In this paper, we will extend the Com 
Poisson model for the marginal model.  Let 𝑌!" be the count response of the i th individual at time t (i= 1, 2, . . . , n ; t= 1, 2, 
. . . , T). Let 𝑋!" be the p dimensional vector of covariates corresponding to	𝑌!". Let β is the p dimensional vector of 
regression parameters. The COM-Poisson regression model can be formulated to use for longitudinal data by replacing yt 
with yit and λt by λit in equation (1) where: 
 

λit=𝑒𝑥𝑝(𝑥!"# 𝛽)	
and  

 
          𝑓(𝑦!") =

$!"
#!"

(&!"!)$)($!",+)
         ,  𝑦!" = 0,1,2, ……                                          (1) 
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parameter 𝑣 is the dispersion parameter such that 𝑣 = 1, 𝑣 < 1	and 𝑣 > 1  correspond to equi, over and under-dispersion 
respectively. The variance and the rth moments can be extracted depend on the above approximation of 𝑍(𝜆!" , 𝑣)	so they 
can take the following formula as follow: 

																E(Y<=) ≃ λ<=
'
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and  

          E(Y<=B) ≃ λ<=
C
CA
E(Y<=B?@) + E(Y<=)E(Y<=B?@)                                              (3) 
 

Since longitudinal count data are correlated, it makes difficult to specify the full likelihood function. The numerical 
methods are more efficient to find the estimate for this model. 

3 The New Proposed Model   

 
In this part, idea to find the estimate of the new model[14]will be extended in this paper. The overall probability of zero 
counts is the combined probability of zeros from the two processes; these two parts of a zero-inflated model are regarded 
as a binary model (usually a logit model) and a count model, where the probability of the COM-Poisson can be described 
as follow to get the new model “Zero Inflated-COM Poisson (ZICP) Model”:  

  	Y<=∗ ∼ C
0							with	probability		π<=																																						

COM − Poisson													with	probability	(1 −	π<=)																		
       (4) 

where	𝑌!"∗ is the outcome of the zero inflated Poisson distribution and	𝜋!" is the probability of zero (structural) counts 
from the binary process; in any dataset, whenever 𝜋!" > 0. This formulation incorporates more zeros than permitted 
under the COM-Poisson model.  Depending on the probability of probability density function of COM Poisson model, 
the probability density function of the longitudinal Zero Inflated-COM Poisson Model (ZICP) model can be written 
[15]: 

Pr	(Y<=∗ = y<=∗ ) = U
π<= +

(@?E,-)
F(A,-,>)

																							if				y<=∗ = 0																							

			(1 −π<=)
A,-

.,-
∗

GH,-
∗ !I

+
F(A,-,>)

															if		y<=∗ > 0														
                 (5) 

3.1 Assumptions of Zero Inflated-COM Poisson Model (ZICP)  

-  The model assumes that counts are rather generated by two processes. The first process generates zero counts 
with probability 𝜋!" while the non-zero counts follow the COM-Poisson distribution with parameter λ and are 
realized with probability (1- 𝜋!"). 

- Zero counts are generated from two sources based on the probabilities of the two processes. These two parts of a 
zero-inflated model are regarded as a binary model (usually a logit model) and a count model (in this case 
COM-Poisson distribution). 

Depending on equation (5), the expected value and the variance for the zero inflated COM Poisson model (ZICP) are 
expressed as: 

E(Y<=∗) ≃	(1 − π<=)	W
A,-

'
+

>
	−	>?@

4>
	X	,			Var(Y<=∗)		≃		

E,-(J(K,-)).(

(	 @?E,-)
		+	(1 −π<=)	.	

A,-
'
+

>
          (6) 

 

3.2 Estimates The New Proposed Model Using Quadratic Inference Functions: 

A method of quadratic inference functions (QIF)was introduced [6] that does not involve direct estimation of the 
correlation parameter and remains optimal even if the working correlation structure is misspecified. The idea is to 
represent the inverse of the working correlation matrix by the linear combination of basis matrices; a representation that is 
valid for the most commonly used working correlations. To find the joint estimation of β and	𝑣, we develop the joint 
estimating equations by employing the first two moments of the response variable as: 

                   ∑ LM!
%

L£
O
!P@ 𝐴!

?'(𝑅(𝛼)!?@𝐴!
?'((𝑓! − µ!) = 0,                                                      (7) 

where	µ! = {𝐸(𝑌!@), … , 𝐸(𝑌!Q), 𝐸(𝑌!@4), … , 𝐸(𝑌!Q4 )}#	are 2t −dimensional vectors and  
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which can be obtained as in the following lemma , Ai is a (2t) × (2t)	diagonal variance matrix of 𝑓! with 
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Lemma:  
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To obtain the estimators of 𝛽 and 𝑣, specification of the working correlation structure and estimation of α in R(α) are 
required prior to solving Equation (7). To handle this problem, a class of basis matrices was employed to represent the 
inverse of	R(α)<?@. The QIF is derived by observing that the inverse of the working correlation matrix can be 
approximated by a linear combination of several basis matrices. 

              𝑅?@ ≈ ∑ 𝑎`𝑀`
a
`P\ ,                                                                (8) 

where 𝑀\	is the identity matrix	𝑀@	,…,	𝑀a	are known basis matrices with 0 or 1 as components and 𝑎\	,…,𝑎a	are unknown 
coefficients. 

3.3 The Basis for The Inverse of The Correlation Matrix 

The choice of basis matrices was discussed, if the working correlation structure is exchangeable, then 𝑅?@=𝛼\𝑀\ + 𝛼@𝑀@ 
where 𝑀@is 0 on the diagonal and 1 elsewhere. If the working correlation structure is an AR(1) working correlation 
𝑅?@=𝛼\𝑀\

∗ + 𝛼@𝑀@
∗ + 𝛼4𝑀4

∗ where	𝑀\
∗ = 𝐼,	 the identity matrix , 𝑀@

∗ has 1 on the sub-diagonal and 0 elsewhere and 𝑀4
∗ 

has 1 on the two corner components of the diagonal. The advantage of this approach is that it does not require estimation 
of linear coefficients 𝑎c#𝑠 which can be viewed as nuisance parameters, since the generalized estimating equation is a 
linear combination of elements of the estimating functions. Depending on the above linear combination of the elements of 
the following extended score vector: to find the estimate of 𝛽 and 𝑣 we depend on minimizing the function  

 
													𝑄O(𝛽, 𝑣) =n		𝑔wO(𝛽,v)𝐶O?@(𝛽, 𝑣)	𝑔̅O(𝛽,	𝑣),                                       (9) 
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and  
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The QIF estimator (𝛽�, 𝑣�)=𝑎𝑟𝑔𝑚𝑖𝑛	𝑄O(𝛽, 𝑣) and the asymptotic covariance matrix of the estimates (𝛽 , 𝑣) can be 
obtained using equation: 
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4 Applications  

The proposed methods are applied to the epileptic data. These data arising from a clinical trial carried. These data consist 
of 59 epileptics of them 31 patients receive the anti-epileptic drug progabide (treatment group) and the remaining 28 
patients receive a placebo (placebo group).  The number of epileptic seizures, for each patient, were recorded during the 
baseline of a period of 8 weeks. Patients were then randomized to one of the two treatments: the anti-epileptic drug 
progabide or the placebo, in addition to a standard chemotherapy. The number of seizures were then recorded at 4 
consecutive two-weeks intervals. Many characteristics of each patient were recorded. These include Yit  the number of 
seizures of patient i at the time point t,  “Treatment” where 0 for the  placebo and 1 for progabide, “Period” denotes the 
measurement period (1,2, …, 8), “Base” represents the baseline measurement for each patient, and “Age” represents the 
age of the patient in years.  

These data were originally analyzed [16] [17]as a complete data. The data often used as an example for longitudinal data 
of discrete outcomes, e.g. PROC GENMOD in SAS/STAT User’s Guide [18]. Also, these data used as incomplete data. 
Descriptive statistics of the data including the mean, the standard deviation, the minimum and maximum values and the 
skewness are presented in Table 1. The results show positive skew in the number of seizures at baseline and during the 
treatment period. Hence, we need to employ models for count data that take into consideration this feature. The results 
show that the mean of the number of seizures (8.26) is less than its standard deviation (12.36). This means that over-
dispersion is more likely in these data.  

Table 1: Descriptive Statistics for the Study Variables. 

 
 

 
 

 
 

 
 

Figure1 and figure 2 present the profiles plots of the number of seizures Yit for placebo group and treatment group 
respectively. From Figure 1 that the placebo group has greater variability between patients.  Also, from figure 2 we can 
see there is an outlier subject in the treatment group (progabide). Also, it can be seen that there are some outliers in the 
treatment group more than the placebo group, also it can be noted that the change in the group that take placebo are 
restively stable over the course of the trail while for the progabide group there is a decline in the number of observed 
seizures. Finding outliers in this data will make the two main problems (over-dispersion and excess zero) exist. 

4.1 Over-dispersion Test  

Over-dispersion can be checked using a formal test for the epileptic data which include number of explanatory variables 
(treatment, period, base and age). The null and alternative hypotheses are: 
H\: Poisson	regression	is	suitable 
Hg: Com − Poisson	model	is	suitable. 
a tests statistic to conduct this test based on the quantity	𝑄O(𝛽�, 𝑣�). The test statistic 𝑇O	is defined as 
𝑇O=𝑛{	𝑄O�𝛽��𝑣 = 0� − 	𝑄O�𝛽�, 𝑣��}. 
It is known that the Poisson regression is recommended when the over-dispersion parameter  𝑣 is zero. The test statistic 
𝑇O has asymptoticly chi–square distribution with 1 degrees of freedom, i.e.  

Variable Mean Std. Dev. Skewness Min Max 

Yij 8.26 12.36 4.2 0 102 

Treatment 0.53 - - 0 1 

Base 31.22 26.70 2.2 6 151 

Age 28.34 6.26 0.3 18 42 
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Fig.1: Boxplot of Seizures for Placebo.                           Fig.2: Boxplot of Seizures for Treatment. 
 

The test has been conducted and the calculated test statistics 𝑇O is 9.147. The calculated test is large enough that the 
tabulated chi-square values at any reasonable level of significance. Hence, we reject the null hypothesis. This means there 
is significant evidence of over-dispersion. This conclusion suggests that the COM-Poisson model is a suitable than 
Poisson model to fit the data. This model could be more plausible to these data. 

 
The data are fitted using three models: zero inflated COM-Poisson model, zero inflated negative binomial model and zero 
inflated Poisson model. The Poisson model is fitted for the sake of comparison with the other two models. The three 
models are used with two different types of the working correlation structure; the exchangeable structure and the AR(1) 
structure. The Akaike Information Criteria (AIC)[19] as a goodness of fit statistic. The AIC penalized a model with larger 
number of parameters and is defined as  

    AIC= -2 ln(L)+ 2p,                                                (12) 
 

where ln(L) is the fitted log-likelihood value and p is the number of predictors (parameters) including the intercept. A 
relatively small value of AIC is favorable for the fitted model.  

The results of the fitted three models under exchangeable structure and AR(1) structure are presented in Table (a.1) and Table 
(a.2) (see appendix). Table (a.2) show the results of the fitted three models under exchangeable structure.  The results in 
Table (a.2) show that the AIC value of the COM-Poisson model is the smallest. This means that the COM-Poisson model is 
more appropriate to fit these data. Also, the COM-Poisson model has the smallest stander errors and narrower confidence 
intervals for all parameters. This means that this model is more efficient than the others. The estimates of the dispersion 
parameter 𝑣 is 𝜈̂=0.4615 and 𝜈̂=0.4938 for the negative binomial and COM-Poisson model, respectively This is evidence of 
over-dispersion. Both the negative binomial and the COM-Poisson models can account for dispersion beyond that induced by 
within-subject correlation. 
The results in Table (a.2) show higher AIC values comparable to the exchangeable working structure which means that 
the exchangeable working correlation is more suitable. The AIC value of zero inflated COM-Poisson model still the 
smallest. This means that the zero inflated COM-Poisson model still the most appropriate model. Over-dispersion still 
obvious as we have positive dispersion parameter 𝑣. The results of the zero inflated COM-Poisson model under the AR(1) 
structure are similar to those of the exchangeable structure. Hence, the zero inflated COM-Poisson model is not sensitive 
to the choice of the working structure.   
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5 Conclusions  

There are some considerations that should be considered when we want to analysis of count data. These considerations 
should be based on several factors including the features of the available data. One of these features is over-dispersion. 
The most common model that used to handle over-dispersed data is negative binomial model. The COM-Poisson model 
emerged in the recent years as a candidate to handle the problem of dispersion also the zero inflated Com Poisson is 
emerged to handle the problem of extra zeros. It is known that the zero inflated COM-Poisson model is a flexible model 
for count data in light of data dispersion and extra zeros. In this article, the cross-sectional zero inflated COM-Poisson 
model was proposed to the case of longitudinal count data context using the method of quadratic inference function.  This 
model was applied, in addition to the zero inflated Poisson model and the zero inflated negative binomial model, to the 
epileptic data. The results show that the quadratic inference functions can obtain a more efficient estimator than the one 
that ignores the within-subject correlation, so this method was preferred to use in fitting the COM-Poisson model. The 
proposed approach yields more efficient results, under the two different working correlation structures, comparable to the 
two common models for longitudinal count data: the zero inflated Poisson regression model and the zero inflated negative 
binomial. This is according to AIC values.  The results are more similar for the data when we apply the COM-Poisson 
under the exchangeable working correlation structure and auto regressive AR (1) working correlation structure so the 
proposed approach even not sensitive to the choice of the working structure. 
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Appendix (a) 
 
Table (a.1): Estimates of zero Inflated Poisson Model, Zero Inflated Negative Binomial Model and Zero Inflated COM-
Poisson Model under Exchangeable Working structure. 

 

Quadratic inference function under exchangeable working structure 
Zero inflated Poisson model 

 Intercept Period Trt Base Age 𝑣 
Estimate 0.724 -0.0225 -0.142 0.0214 0.016 - 

Standard error 0.428 0.011 0.185 0.0023 0.0177 - 
CI (-0.115, 

1.562) 
(-0.044, -
.00094) 

(-0.505,  
0.2206) 

(0.017, 
0.0259) 

(-
0.0186,0.0

506) 

- 

AIC 1541.33 

Zero inflated negative binomial model 

 Intercept Period Trt Base Age 𝑣 

Estimate 0.574 -0.056 -0.041 0.0364 0.024 0.45 
Standard error 0.1886 0.047 0.154 0.0045 0.037 0.25 

CI (0.204, 
0.944) 

(-0.148, 
0.036) 

(-0..342, 
0.261) 

(0.027,0.0
452) 

(-0.0485, 
0.0965) 

(-
0.04,
0.94) 

AIC 1323.1 
Zero inflated COM-Poisson model 

 Intercept Period Trt Base Age 𝑣 
Estimate 0.647 -0.162 -0.0652 0.012 0.001 0.49 

Standard error 3.358e-02 2.201e-02 1.415e-03 3.51e-04 1.025e-
02 

0.001 

CI (0.581, 
0.713) 

(-0.201, -
0.1226) 

(-0.0679, -
.062) 

(0.0113, 
0.0126) 

(-0.019, 
0.0211) 

(0.48
8, 

0.491
) 

AIC 1124.52 
Abbreviation: CI is 95% confidence interval  

 
Table (a.2): Estimates of zero Inflated Poisson Model, Zero Inflated Negative Binomial Model and Zero Inflated COM-
Poisson Model under under AR(1) Working Structure. 

Quadratic inference function under AR(1) working structure 
Zero Inflated Poisson model 

 Intercept Period Trt Base Age 𝑣 

Estimate 0.841 -0.0513 -0.233 0.021 0.019 - 
Standard 

error 
0.584 0.0287 0.0184 0.024 0.0115 - 
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CI (-0.304, 
1.985) 

(-0.1075, 
0.0049) 

(-0.269, - 
0.196) 

(0.026, 
0.068) 

(-
0.003,0.0415) 

- 

AIC 1635.04 

Zero Inflated negative binomial model 

 Intercept Period Trt Base Age 𝑣 

Estimate 0.5986 -0.0821 -0.287 0.0254 0.023 0.31 
Standard 

error 
0.3702 0.0319 0.01793 0.0016 0.011 0.0896 

CI (-0.127, 
1.324) 

(-0.145, -
0.019) 

(-0.322, -
0.2518) 

(0.022,0.02
85) 

(0.001, 
0.044) 

(0.134,
0.485) 

AIC 1503.2 

Zero inflated COM-Poisson model 
 Intercept Period Trt Base Age 𝑣 

Estimate 0.051 - 0.125 - 0.074 0.011 0.025 0.458 
Standard 

error 
0.0215 0.0014 0.0512 0.0047 0.0145 0.0258 

CI (0.0088, 
0.0931) 

(-0.127, -
0.122) 

(-0.174, 
0.0263) 

(0.0017, 
0.0202) 

(-0.003, 
0.053) 

(0.407, 
0.5085) 

AIC 1357.88 

Abbreviation: CI is 95% confidence interval 
 
Appendix (b) 
 
The derivative for the lemma (Zero inflated COM-Poisson regression model) 
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