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Abstract: In this paper, the topic of step-stress partially accelerated life tests with progressive Type-II censoring scheme is investigated

when the lifetimes of test units follow the two-parameter inverted exponential distribution. The maximum likelihood estimation method

is used to estimate the unknown parameters and acceleration factor. Under the normal use condition, the maximum likelihood estimators

of the reliability and hazard rate functions are also calculated. In addition, the observed Fisher information matrix is produced and

employed to determine the approximate confidence intervals of the unknown parameters. Furthermore, for the reliability and hazard

rate functions, the delta method is used to construct the approximate confidence interval. To compare and examine the effectiveness

of the suggested estimation methods, a Monte Carlo simulation study is conducted with various sample sizes and different censoring

schemes. Finally, a numerical example is provided to show how the paper’s findings can be applied.

Keywords: Partially accelerated life tests, Progressive Type-II censoring scheme, Two-parameter inverted exponential distribution,

Maximum likelihood estimation, Approximate confidence interval

1 Introduction

Nowadays, reliability prediction is commonly employed. Accelerated life testing (ALT) or partially accelerated life
testing (PALT) is one of its methods for obtaining rapid failures of any system. To ensure rapid failure and hence
minimize the testing duration, stress conditions that are more severe than normal ones are imposed on all or some of the
test units. Temperature levels, voltage, pressure, load, and other circumstances might be applied to the test units in order
to achieve the accelerated life test. The proposed life-stress model is used to explain the observed results under the
design stress. Two methods might be used in such tests to quickly obtain failures. One method is to compress time, in
which a device is used more frequently than usual while keeping the loads and stresses constant, and the other method is
to increase the device’s load capacity. The results of the test in an accelerated environment are then used to predict actual
product performance in a normal environment. In ALT, however, the test units are conducted under accelerated settings
exclusively, whereas in PALT, the units are tested under both accelerated and normal conditions. For more details see [1].
There are numerous ways to apply the stress. Step-stress and constant-stress are two common methods mentioned by
Nelson [2]. For step-stress PALT (SSPALT), the product is operated for a specific amount of time under real-world
conditions until it fails. If the product does not fail, it is run under accelerated conditions (stress) until it fails or the
observation is censored. In the second method, the product is tested under normal or accelerated conditions. In other
words, the product is subjected to a constant level of stress until the test is completed. Several authors have discussed the
PALT using the step-stress model, including [3,4,5,6,7,8,9,10].
Due to cost and time constraints, life testing experiments are frequently stopped before all units on test have failed.
Failure times are only known for a portion of the sample in such cases, and the data is referred to as censored data. The
most commonly used censoring schemes are Type-I (time) and Type-II (failure). The life testing experiment will be
terminated using the Type-II censoring scheme when the rth failure is observed. Progressive Type-II censoring is a
generalization of Type-II censoring in which n units are placed on the life testing experiment, and only m failures are
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observed. When the first failure occurs, R1 of the remaining units is chosen at random and removed. When the second
failure occurs, R2 of the remaining units are chosen at random and removed. When the mth failure is observed, the
experiment will be terminated, and all remaining Rm = n−R1 −R2 − ...−Rm−1 −m surviving units will be removed. A
progressively Type-II censored sample is denoted by X1:m:n < X2:m:n < ... < Xm:m:n. Readers might refer to [11,12,13] for
comprehensive surveys of the literature on progressive censorship.
Because of its simplicity and mathematical viability, the exponential distribution is the most widely employed lifetime
model in reliability theory. If X has an exponential distribution, Y = 1/X will have an inverted exponential distribution
(IED). Lin et al. [14] used complete samples to calculate the maximum likelihood estimators (MLEs), uniformly
minimum variance unbiased estimators and confidence intervals for the unknown parameter and the reliability function
for the IED. On the basis of the maintenance data set, they also compared the IED with the inverted Gaussian and
log-normal distributions, finding that it gives a better fit than these two distributions.
Abouammoh and Alshingiti [15] added a shape parameter in the IED to generate the generalized two-parameter inverted
exponential distributions (GIED). They discussed many distributional properties and reliability characteristics of the
GIED. They also calculated the MLEs and least square estimators as well as the confidence intervals of the two
parameters. On the basis of a progressively type II censored sample, Krishna and Kumar [16] investigated the GIED’s
distributional properties and reliability characteristics. They also calculated the MLEs and least square estimators of the
two parameters as well as the reliability and failure rate functions. Bakoban [17] investigated the problem of estimating
the parameters of the GIED using Type-I censored samples under step-stress PALT. Soliman et al. [18] calculated the
MLEs and Bayesain estimators of the GIED parameters, as well as the reliability and hazard rate functions, using an
adaptive progressively Type-II censored sample. In this paper, we study the model of step-stress partially accelerated life
tests under progressive Type-II censoring scheme when the lifetimes of test units follow the GIED.
The rest of this paper is organized as follows: The model of step-stress partially accelerated life tests under progressive
Type-II censoring is provided in Section 2. At the normal use condition, the MLEs of the distribution parameters and
acceleration factor, as well as the corresponding reliability and hazard rate functions, are computed in Section 3. In
Section 4, approximate confidence intervals for the unknown parameters are constructed using the observed Fisher
information matrix. The approximate confidence intervals for the reliability and hazard rate functions are then calculated
using the delta method. Finally, some computational results are provided in Section 5 to demonstrate all of the inferential
methods discussed in this paper.

2 The model description

The probability density function (PDF) and cumulative distribution function (CDF) of the GIED are given, respectively,
by

F(x) = 1−

[
1− exp

(
−

λ

x

)]α

(1)

and

f (x) =
αλ

x2
exp

(
−

λ

x

)[
1− exp

(
−

λ

x

)]α−1

, x > 0, (2)

where λ > 0 is the scale parameter and α > 0 is the shape parameter.
The corresponding reliability and hazard rate functions are given, respectively, by

R(t) =

[
1− exp

(
−

λ

t

)]α

, t > 0, (3)

and

h(t) =
αλ

t2
exp

(
−

λ

t

)[
1− exp

(
−

λ

t

)]−1

, t > 0. (4)

In step-stress PALT, the normal condition is employed from the start of the test until the time τ arrives. If the component
does not fail or is removed from the test before τ , the test is shifted to a higher level of stress and the component is run in an
accelerated manner. This switch has an effect that may be calculated by multiplying the component’s remaining lifetime
by the inverse of the acceleration factor β . This effect may be described as the ratio of the hazard rate in the accelerated
condition to the hazard rate in the normal use condition, which reduces the component’s lifetime. Furthermore, under the
tampered random variable model proposed by DeGroot and Goel [19], the total lifetime of the component in step-stress
PALT is given by:

Y =

{
T, T ≤ τ;

τ +β−1(T − τ), T > τ,
(5)
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where T is the lifetime of the unit at use condition, τ is the stress change time and β > 1 is the acceleration factor.
Assume that the lifetime of the test unit follows GIED. Then, the PDF of the total lifetime Y is given by

f (y) =





0, y < 0;
f1(y), 0 < y < τ;
f2(y), y > τ,

(6)

where

f1(y) =

(
αλ

y2

)
exp

(
−

λ

y

)[
1− exp

(
−

λ

y

)]α−1

(7)

and

f2(y) =

(
αλ β

(τ +β (y− τ))2

)
exp

(
−λ

τ +β (y− τ)

)[
1− exp

(
−λ

τ +β (y− τ)

)]α−1

. (8)

3 The maximum likelihood estimation

Assume that n identical and independent units are tested under the normal use condition. If n1 indicates the number
of units that fail up to the time τ under the normal use condition, and m− n1 represents the number of units that fail
after τ under the accelerated condition. The total lifetimes using the progressive Type-II censoring with censored scheme
R = (R1,R2, ...,Rm), are then

Y R
1:m:n < ... < Y R

n1:m:n < τ < Y R
n1+1:m:n < ... < Y R

m:m:n

Let yi = yR
i:m:n, i = 1,2, ...,m, be the observed values of the total lifetimes. Then, the joint density function of

Y R
1:m:n, ...,Y

R
n1:m:n,Y

R
n1+1:m:n, ...,Y

R
m:m:n is given by

f1,2,··· ,m:m:n(y1,y2, · · · ,ym) =C

{
n1

∏
i=1

f1(yi) [1−F1(yi)]
Ri

}
×

{
m

∏
i=n1+1

f2(yi) [1−F2(yi)]
Ri

}
, (9)

where C = n(n− 1−R1)(n− 2−R1−R2)...(n−m+ 1−∑m−1
i=1 Ri).

Upon using (1) and (2) in (9), the likelihood function of α , λ and β is given by

L(α,λ ,β ) = Cαmλ mβ m−n1

{
n1

∏
i=1

1

y2
i

exp

(
−

λ

yi

)[
1− exp

(
−

λ

yi

)](Ri+1)α−1
}

×

{
m

∏
i=n1+1

1

(τ +β (yi − τ))2
exp

(
−

λ

τ +β (yi − τ)

)[
1− exp

(
−

λ

τ +β (yi− τ)

)](Ri+1)α−1
}
. (10)

The natural logarithm of the likelihood function may then be calculated as

lnL = lnC+m lnα +m lnλ +(m− n1) lnβ − 2
n1

∑
i=1

lnyi −λ
n1

∑
i=1

1

yi

+
n1

∑
i=1

((Ri + 1)α − 1) ln

(
1− exp

(
−

λ

yi

))
− 2

m

∑
i=n1+1

ln(τ +β (yi− τ))

−λ
m

∑
i=n1+1

1

τ +β (yi − τ)
+

m

∑
i=n1+1

((Ri + 1)α − 1) ln

(
1− exp

(
−

λ

τ +β (yi − τ)

))
. (11)

By differentiating (11) with respect to α , λ and β and equating to zero, the likelihood equations are obtained as

∂ lnL

∂α
=

m

α
+

n1

∑
i=1

(Ri + 1) ln

(
1− exp

(
−

λ

yi

))
+

m

∑
i=n1+1

(Ri + 1) ln

(
1− exp

(
−

λ

τ +β (yi − τ)

))
= 0, (12)

∂ lnL

∂λ
=

m

λ
−

n1

∑
i=1

1

yi

−

m

∑
i=n1+1

1

τ +β (yi− τ)
+

n1

∑
i=1

(Ri + 1)α − 1

yi

exp

(
−

λ

yi

)(
1− exp

(
−

λ

yi

))−1

+
m

∑
i=n1+1

(Ri + 1)α − 1

τ +β (yi− τ)
exp

(
−

λ

τ +β (yi − τ)

)(
1− exp

(
−

λ

τ +β (yi − τ)

))−1

= 0, (13)
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∂ lnL

∂β
=

m− n1

β
− 2

m

∑
i=n1+1

yi − τ

τ +β (yi − τ)
+λ

m

∑
i=n1+1

yi − τ

(τ +β (yi − τ))2

−λ
m

∑
i=n1+1

((Ri + 1)α − 1)(yi − τ)

(τ +β (yi − τ))2
exp

(
−

λ

τ +β (yi− τ)

)(
1− exp

(
−

λ

τ +β (yi− τ)

))−1

= 0. (14)

From (12), the ML estimator α̂ of the unknown parameter α can be obtained as

α̂ =−
m

∑
n1
i=1(Ri + 1) ln

(
1− exp

(
− λ̂

yi

))
+∑m

i=n1+1(Ri + 1) ln
(

1− exp
(
− λ̂

τ+β̂(yi−τ)

)) , (15)

where λ̂ and β̂ are the ML estimators of the unknown parameters λ and β , respectively, which can be calculated by
substituting the value of α̂ in the two equations (13) and (14) and then solving the two nonlinear equations using an
iterative numerical method such as Newton-Raphson.

Under the normal use condition, the ML estimators of the corresponding reliability function R̂(t) and hazard rate

function ĥ(t) may be computed using the invariance property of the ML estimator as follows:

R̂(t) =

[
1− exp

(
−

λ̂

t

)]α̂

(16)

and

ĥ(t) =
α̂λ̂

t2
exp

(
−

λ̂

t

)[
1− exp

(
−

λ̂

t

)]−1

. (17)

4 The asymptotic confidence intervals

The elements of the inverse of the following Fisher information matrix provide the asymptotic variances and covariances
of the ML estimates of the parameters (α,λ ,β )

I(α̂, λ̂ , β̂ ) =




E
[
−∂ 2 lnL/∂α2

]
E
[
−∂ 2 lnL/∂α∂λ

]
E
[
−∂ 2 lnL/∂α∂β

]

E
[
−∂ 2 lnL/∂λ ∂α

]
E
[
−∂ 2 lnL/∂λ 2

]
E
[
−∂ 2 lnL/∂λ ∂β

]

E
[
−∂ 2 lnL/∂β ∂α

]
E
[
−∂ 2 lnL/∂β ∂λ

]
E
[
−∂ 2 lnL/∂β 2

]


 (18)

Unfortunately, deriving these expectations is quite difficult, thus the asymptotic distribution of (α̂, λ̂ , β̂ ), under some

regularity criteria, is the normal distribution with mean (α,λ ,β ) and variance-covariance matrix I−1
0 (α̂, λ̂ , β̂ )

(
α̂, λ̂ , β̂

)
∼ N

(
(α,λ ,β ), I−1

0 (α̂, λ̂ , β̂ )
)
.

The approximate asymptotic variance-covariance matrix I−1
0 (α̂, λ̂ , β̂ ) for the ML estimates of the parameters (α,λ ,β )

can be obtained as the inverse of the observed Fisher information matrix

I−1
0 (α̂ , λ̂ , β̂ ) =




− ∂ 2 lnL
∂α2 − ∂ 2 lnL

∂α∂λ − ∂ 2 lnL
∂α∂β

− ∂ 2 lnL
∂λ ∂α − ∂ 2 lnL

∂λ 2 − ∂ 2 lnL
∂λ ∂β

− ∂ 2 lnL
∂β ∂α − ∂ 2 lnL

∂β ∂λ − ∂ 2 lnL
∂β 2




−1

(α̂,λ̂ ,β̂ )

=




Var(α̂) Cov(α̂, λ̂ ) Cov(α̂, β̂ )

Cov(λ̂ , α̂) Var(λ̂ ) Cov(λ̂ , β̂ )

Cov(β̂ , α̂) Cov(β̂ , λ̂ ) Var(β̂ )


 (19)

where

∂ 2 lnL

∂α2
=−

m

α2
, (20)

∂ 2 lnL

∂λ 2
= −

m

λ 2
−

n1

∑
i=1

(Ri + 1)α − 1

y2
i

exp

(
−

λ

yi

)(
1− exp

(
−

λ

yi

))−2

−

m

∑
i=n1+1

(Ri + 1)α − 1

(τ +β (yi− τ))2
exp

(
−

λ

τ +β (yi − τ)

)(
1− exp

(
−

λ

τ +β (yi − τ)

))−2

, (21)
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∂ 2 lnL

∂β 2
= −

m− n1

β 2
+ 2

m

∑
i=n1+1

(yi − τ)2

τ +β (yi− τ)
− 2λ

m

∑
i=n1+1

(yi − τ)2

(τ +β (yi − τ))3

+2λ
m

∑
i=n1+1

((Ri + 1)α − 1)(yi− τ)2

(τ +β (yi− τ))3
exp

(
−

λ

τ +β (yi − τ)

)(
1− exp

(
−

λ

τ +β (yi − τ)

))−1

−λ 2
m

∑
i=n1+1

((Ri + 1)α − 1)(yi − τ)2

(τ +β (yi − τ))4
exp

(
−

λ

τ +β (yi − τ)

)(
1− exp

(
−

λ

τ +β (yi − τ)

))−2

, (22)

∂ 2 lnL

∂α∂λ
=

n1

∑
i=1

Ri + 1

yi

exp

(
−

λ

yi

)(
1− exp

(
−

λ

yi

))−1

+
m

∑
i=n1+1

Ri + 1

τ +β (yi− τ)
exp

(
−

λ

τ +β (yi − τ)

)(
1− exp

(
−

λ

τ +β (yi − τ)

))−1

, (23)

∂ 2 lnL

∂α∂β
= −λ

m

∑
i=n1+1

(Ri + 1)(yi− τ)

(τ +β (yi− τ))2
exp

(
−

λ

τ +β (yi − τ)

)(
1− exp

(
−

λ

τ +β (yi − τ)

))−1

, (24)

∂ 2 lnL

∂λ ∂β
=

m

∑
i=n1+1

yi − τ

(τ +β (yi − τ))2

−

m

∑
i=n1+1

((Ri + 1)α − 1)(yi − τ)

(τ +β (yi − τ))2
exp

(
−

λ

τ +β (yi− τ)

)(
1− exp

(
−

λ

τ +β (yi− τ)

))−1

+λ
m

∑
i=n1+1

((Ri + 1)α − 1)(yi − τ)

(τ +β (yi− τ))3
exp

(
−

λ

τ +β (yi − τ)

)(
1− exp

(
−

λ

τ +β (yi− τ)

))−2

. (25)

Thus, the 100(1− γ)% approximate confidence intervals for α , λ and β are , respectively, given by

α̂ ± z γ
2

√
Var(α̂), λ̂ ± z γ

2

√
Var(λ̂ ) and β̂ ± z γ

2

√
Var(β̂) (26)

where Var(α̂), Var(λ̂ ) and Var(β̂ ) are the first, second and third elements on the main diagonal of the approximate

asymptotic variance-covariance matrix I−1
0 (α̂ , λ̂ , β̂ ) and z γ

2
is the percentile of the standard normal distribution with

right-tail probability
γ
2
.

4.1 The asymptotic approach using the delta method

In this subsection, at the normal use condition, the approximate confidence intervals for R(t) and h(t) are generated using
the delta method proposed by Greene [20]. Let

V1 =

[
∂R(t)

∂α

∂R(t)

∂λ

∂R(t)

∂β

]
and V2 =

[
∂h(t)

∂α

∂h(t)

∂λ

∂h(t)

∂β

]
,

where

∂R(t)

∂α
=

[
1− exp

(
−λ

t

)]α

ln

[
1− exp

(
−λ

t

)]
,

∂R(t)

∂λ
=

α

x
exp

(
−λ

x

)[
1− exp

(
−λ

x

)]α−1

,

∂R(t)

∂β
= 0,
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∂h(t)

∂α
=

λ

t2
exp

(
−

λ

t

)[
1− exp

(
−

λ

t

)]−1

,

∂h(t)

∂λ
=

α

t2
exp

(
−

λ

t

)[
1− exp

(
−

λ

t

)]−1

−
αλ

t3
exp

(
−

λ

t

)[
1− exp

(
−

λ

t

)]−2

,

∂h(t)

∂β
= 0.

Then, the approximate estimates of Var(R̂(t)) and Var(ĥ(t)) are given, respectively, by

Var(R̂(t))≃ [V T
1 I−1

0 V1](α̂ ,λ̂ ) and Var(ĥ(t))≃ [V T
2 I−1

0 V2](α̂,λ̂ )

where V T
i is the transpose of the vector Vi , i = 1,2. These results yield the approximate confidence intervals for R(t) and

h(t) as (
R̂(t)± z γ

2

√
Var (R̂(t))

)
and

(
ĥ(t)± z γ

2

√
Var(ĥ(t))

)
. (27)

5 Computational Results

Some computational results are reported in this section. A Monte Carlo simulation study is carried out to evaluate the
performance of the inferential procedures presented in the paper. Finally, a numerical example is provided to demonstrate
all of the inferential results.

5.1 Monte Carlo simulation study

In this section, Monte Carlo simulation is used to illustrate the theoretical results discussed in the previous sections. In
this simulation study, we used different choices of the sample size n, effective sample size m, and censoring scheme R as
shown in Table 1.

Table 1: The different censoring schemes with different choices of n, m and R.

Censoring Scheme n m R

CS1 40 10 (4,2,4,3,2,4,2,4,3,2)
CS2 40 15 (1,2,1,3,2,1,2,1,3,2,1,2,1,1,2)
CS3 40 20 (1,2,1,0,2,0,0,0,0,2,1,2,1,0,2,1,2,1,0,2)
CS4 50 10 (4,3,4,3,5,4,5,4,3,5)
CS5 50 15 (4,2,4,3,2,1,2,1,3,2,1,2,3,3,2)
CS6 50 20 (4,2,0,3,2,0,2,0,3,2,0,2,0,3,2,0,0,0,3,2)
CS7 60 20 (4,2,4,3,2,4,2,0,3,2,0,2,0,3,2,0,2,0,3,2)
CS8 60 30 (1,2,1,0,0,1,0,1,0,2,1,0,1,0,2,1,2,1,0,2,1,2,1,0,2,1,2,1,0,2)

By using the algorithm described in [21], we generate 1000 progressively Type-II censored samples from the
generalized inverted exponential distribution, with parameters α = 0.4 and λ = 2, under the step-stress partially
accelerated life test model with acceleration factor β = 2 and stress change time τ = 0.7 or 1. The following algorithm is
used to generate a progressive Type-II censored sample from the generalised inverted exponential distribution under the
step-stress partially accelerated life test model

1.Specify the values of n, m, Ri, i = 1,2, ...,m, τ and the values of the parameters α , λ and β .
2.Compute the actual values of the reliability and hazard rate functions with t = 1.
3.Generate progressive Type-II censored sample from the generalized inverted exponential distribution by setting Y =

− λ

ln

(
1−(1−u)

1
α

) if Y ≤ τ , and Y =
−λ/ ln

(
1−(1−u)

1
α

)
−τ

β + τ if Y > τ , where U represents a uniform (0,1) random

variable.
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4.Use the progressive Type-II censored sample obtained in Step 3 to compute the ML estimates of the parameters α , λ
and β and then construct the corresponding approximate confidence intervals with confidence level 1− γ = 0.95.

5.Use the values of α̂ and λ̂ obtained in Step 3 to compute the ML estimates of the reliability and hazard rate functions
with t = 1 and then construct the corresponding approximate confidence intervals with confidence level 1− γ = 0.95.

6.Repeat Steps 3-5 N = 1000 times.

7.Compute the expected value (EV) and mean square error (MSE) of α̂ , λ̂ , β̂ , R̂(t = 1) and ĥ(t = 1).
8.Compute the expected values of the lower bound, upper bound and the width of the corresponding approximate

confidence intervals.

Tables 2-6 present the EV and MSE of α̂ , λ̂ , β̂ , R̂(t = 1) and ĥ(t = 1), respectively, and the lower bound and upper bound
and the width of the corresponding approximate confidence interval based on different choices of n, m, R and τ .

Table 2: The EV and MSE of α̂ , and the lower bound and upper bound and the width of the corresponding approximate confidence

interval.

τ = 0.7 τ = 1

n m Scheme EV MSE lower upper width EV MSE lower upper width

40 10 CS1 0.7963 0.4500 -0.7831 2.3756 3.1587 0.7559 0.3735 -0.5302 2.0420 2.5722

40 15 CS2 0.6212 0.1291 -0.0471 1.2896 1.3367 0.5822 0.1400 0.0417 1.1226 1.0809

40 20 CS3 0.5500 0.0776 0.1146 0.9855 0.8709 0.5491 0.0726 0.1766 0.9215 0.7449

50 10 CS4 0.7486 0.3483 0.8896 2.3867 3.2763 0.9443 0.6647 -0.9164 2.8050 3.7214

50 15 CS5 0.5573 0.0986 -0.0894 1.2040 1.2935 0.6262 0.1860 -0.0252 1.2777 1.3029

50 20 CS6 0.5479 0.0779 0.1127 0.9830 0.8703 0.5708 0.0942 0.1800 0.9615 0.7815

60 20 CS7 0.5565 0.0818 0.1064 1.0065 0.9001 0.5315 0.0762 0.1953 0.8677 0.6723

60 30 CS8 0.4824 0.0310 0.2200 0.7449 0.5249 0.5096 0.0387 0.2889 0.7303 0.4415

Table 3: The EV and MSE of λ̂ , and the lower bound and upper bound and the width of the corresponding approximate confidence

interval.

τ = 0.7 τ = 1

n m Scheme EV MSE lower upper width EV MSE lower upper width

40 10 CS1 2.2381 0.2314 0.8226 3.6536 2.8309 2.8977 1.1421 1.2347 4.5607 3.3260

40 15 CS2 2.1780 0.1351 0.9950 3.3610 2.3660 2.8520 0.9630 1.5232 4.1808 2.6576

40 20 CS3 2.1384 0.1218 0.9789 3.2980 2.3191 2.8213 0.8454 1.5860 4.0566 2.4706

50 10 CS4 2.3214 0.2803 0.8631 3.7797 2.9165 3.3069 2.0864 1.5046 5.1091 3.6045

50 15 CS5 2.2078 0.1575 1.0415 3.3741 2.3326 2.9945 1.2594 1.6905 4.2985 2.6080

50 20 CS6 2.2227 0.1417 1.1252 3.3203 2.1952 3.0010 1.1837 1.8096 4.1924 2.3828

60 20 CS7 2.3362 0.2157 1.2830 3.3895 2.1065 3.0368 1.2509 1.9690 4.1046 2.1356

60 30 CS8 2.2966 0.1694 1.2907 3.3025 2.0118 3.1262 1.4055 2.1306 4.1219 2.1356

From the results shown in Tables 2-6, it is observed that:

1.For fixed τ , the MSEs of the ML estimates and the widths of the corresponding approximate confidence intervals
decrease in all cases as sample size n increases. As a result, the estimators that depend on large samples perform better
than those that depend on small samples.

2.For fixed n and τ , in most cases, the MSEs of the ML estimates and the widths of the corresponding approximate
confidence intervals decrease as the effective sample size m increases. As a result, the estimators that depend on large
effective samples perform better than those that depend on small samples.

3.For fixed n and m, in most cases, the small value of stress change time τ gives a better result in the sense of having
smaller MSE.

4.The approximate confidence intervals always include the ML estimate of the unknown parameter in all cases.
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Table 4: The EV and MSE of β̂ , and the lower bound and upper bound and the width of the corresponding approximate confidence

interval.

τ = 0.7 τ = 1

n m Scheme EV MSE lower upper width EV MSE lower upper width

40 10 CS1 1.4177 0.7854 -0.8918 3.7273 4.6191 1.8138 0.8995 -0.7984 4.4261 5.2245

40 15 CS2 1.4343 0.6700 -0.4362 3.3047 3.7408 2.3809 2.7804 -0.3165 5.0783 5.3948

40 20 CS3 1.6847 0.6578 -0.2986 3.6680 3.9666 2.0255 0.8522 0.0406 4.0045 3.9639

50 10 CS4 1.5937 0.6878 -0.9956 4.1831 5.1787 1.7285 0.7220 -0.6703 4.1273 4.7976

50 15 CS5 1.7749 0.5550 -0.5387 4.0885 4.6272 2.2106 1.3602 -0.2105 4.6316 4.8421

50 20 CS6 1.7178 0.5678 -0.2090 3.6446 3.8537 2.0286 0.6469 0.1502 3.9071 3.7569

60 20 CS7 1.7786 0.4398 -0.1109 3.6682 3.7791 2.4231 1.3258 0.3860 4.4602 4.0741

60 30 CS8 1.9462 0.4265 0.2023 3.6900 3.4877 2.2566 0.6455 0.6986 3.8145 3.1159

Table 5: The EV and MSE of R̂(t = 1), and the lower bound and upper bound and the width of the corresponding approximate

confidence interval.

τ = 0.7 τ = 1

n m Scheme EV MSE lower upper width EV MSE lower upper width

40 10 CS1 0.9251 0.0276 0.8231 1.0270 0.2038 0.9633 0.0220 0.9196 1.0070 0.0874

40 15 CS2 0.9319 0.0202 0.8494 1.0143 0.1649 0.9684 0.0263 0.9309 1.0059 0.0750

40 20 CS3 0.9359 0.0179 0.8592 1.0126 0.1535 0.9676 0.0258 0.9304 1.0049 0.0745

50 10 CS4 0.9348 0.0186 0.8474 1.0223 0.1750 0.9699 0.0275 0.9370 1.0029 0.0659

50 15 CS5 0.9409 0.0150 0.8699 1.0119 0.1420 0.9712 0.0288 0.9393 1.0031 0.0638

50 20 CS6 0.9415 0.0145 0.8752 1.0077 0.1325 0.9723 0.0298 0.9418 1.0028 0.0610

60 20 CS7 0.9472 0.0137 0.8898 1.0046 0.1148 0.9754 0.0325 0.9511 0.9997 0.0486

60 30 CS8 0.9507 0.0142 0.8994 1.0020 0.1026 0.9775 0.0345 0.9559 0.9991 0.0432

Table 6: The EV and MSE of ĥ(t = 1), and the lower bound and upper bound and the width of the corresponding 95% approximate

confidence interval.

τ = 0.7 τ = 1

n m Scheme EV MSE lower upper width EV MSE lower upper width

40 10 CS1 0.1882 0.0959 -0.0797 0.4561 0.5358 0.1104 0.0346 -0.0084 0.2291 0.2375

40 15 CS2 0.1637 0.0609 0.0065 0.3338 0.3404 0.0930 0.0402 0.0052 0.1807 0.1755

40 20 CS3 0.1503 0.0484 0.0093 0.2914 0.2821 0.0939 0.0385 0.0109 0.1770 0.1661

50 10 CS4 0.1677 0.0734 -0.0809 0.4164 0.4972 0.1017 0.0355 -0.0062 0.2095 0.2157

50 15 CS5 0.1430 0.0464 -0.0087 0.2947 0.3034 0.0886 0.0437 0.0076 0.1697 0.1622

50 20 CS6 0.1418 0.0434 0.0136 0.2700 0.2565 0.0849 0.0453 0.0119 0.1580 0.1461

60 20 CS7 0.1330 0.0373 0.0147 0.2513 0.2366 0.0766 0.0520 0.0175 0.1357 0.1182

60 30 CS8 0.1214 0.0290 0.0265 0.2163 0.1898 0.0715 0.0560 0.0192 0.1238 0.1047

5.2 Numerical example

To illustrate the inferential procedures discussed in this paper, we chose n = 40, m = 10 and R = (4,2,4,3,2,4,2,4,3,2)
and generated the following progressively Type-II censored sample from the generalized inverted exponential distribution,
with parameters α = 0.4 and λ = 2, under the step-stress partially accelerated life test model with acceleration factor β = 2
and stress change time τ = 0.7.

0.3980 0.5722 0.7582 0.8235 0.8763 1.7621 1.9303 2.4606 4.6408 8.9036

Based on this generated progressively Type-II censored sample, we calculated the ML estimates α̂ , λ̂ , β̂ , R̂(1) and ĥ(1).
Also, we obtained the 95% approximate confidence intervals of α , λ , β , R(1) and h(1). The obtained results are presented
in Table 7.
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Table 7: The ML estimates of α , λ , β , R(1) and h(1), and the lower bounds, upper bounds and widths of the corresponding 95%

approximate confidence intervals.

Parameter ML Estimate Lower Bound Upper Bound Width

α 1.5634 0.6116 2.5151 1.9035

λ 0.3180 -0.1067 0.7428 0.8495

β 1.7828 -1.7126 5.2781 6.9907

R(1) 0.9280 0.8527 1.0033 0.1506

h(1) 0.1317 -0.0104 0.2738 0.2842

6 Conclusions

In this paper, when the lifetimes of test units follow the generalized inverted exponential distribution, the problem of
step-stress partially accelerated life tests with progressive Type-II censoring is discussed. The ML estimators of the
unknown parameters α , λ , and the acceleration factor β , as well as the ML estimators of the reliability and hazard rate
functions, have been developed. In addition, we obtained the observed Fisher information matrix and used it to construct
the approximate confidence intervals of the unknown parameters. In addition, for the reliability and hazard rate
functions, we employed the delta method to generate an approximate confidence interval. We use a simulation study with
varied sample sizes and different censoring schemes to compare and examine the effectiveness of the suggested estimate
methods.

From the obtained numerical results, we note that the estimators that depend on large samples perform better than
those that depend on small samples. Also, the estimators that depend on large effective samples perform better than those
that depend on small samples. Moreover, the small value of stress change time τ gives a better result in the sense of having
smaller MSE.
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