

Journal of Statistics Applications & Probability An International Journal

http://dx.doi.org/10.18576/jsap/110323

Estimation of the Scale Parameter of Quasi Lindley Distribution in the Presence of Outliers

Tahani A. Aloafi

Department of Mathematics and Statistics, Faculty of Science, Taif University, Taif, Saudi Arabia

Received: 15 Jul. 2021, Revised: 2 Sep. 2021, Accepted: 10 Oct. 2021 Published online: 1 Sep. 2022

Abstract: In this paper, we estimate the scale parameter of quasi Lindley distribution in the presence of a single outlier based on order statistics by using the maximum likelihood and Bayes estimation methods. We derive the exact expressions for the single and product moments of order statistics from quasi Lindley distribution in the presence of multiple outliers and use these moments to study the robustness of the best linear unbiased estimator and some other linear estimators of the scale parameter. We compute some numerical results and use real data to show the effect of outliers on the estimators.

Keywords: Outliers, Slippage model, Order statistics, Estimator, Moments

1 Introduction

Lindley distribution is one of the important lifetime distributions, which has received a large share of researchers' attention during the past years, for example: [1], [2] and [3]. [4] suggested the two-parameter Lindley distribution or Quasi Lindley distribution (*QLD*), and they studied some properties of it. The probability density distribution (*pdf*) of *QLD* with shape parameter α and scale parameter θ is

$$f(x;\alpha,\theta) = \frac{1}{\theta(1+\alpha)} (\alpha + \frac{x}{\theta}) e^{-\frac{x}{\theta}}, x > 0, \ \theta > 0, \ \alpha > 0.$$
(1)

The cumulative distribution function (cdf) of QLD is

$$F(x;\alpha,\theta) = 1 - \left[1 + \frac{x}{\theta(1+\alpha)}\right]e^{-\frac{x}{\theta}}, x > 0, \ \theta > 0, \ \alpha > 0.$$

$$\tag{2}$$

The one parameter Lindley distribution $(\frac{1}{\theta})$ is a special case from *QLD* when $\alpha = \frac{1}{\theta}$. Also, gamma distribution $(2, \frac{1}{\theta})$ is a special case from *QLD* When $\alpha = 0$. For more details see [4]. Over the past few years, researchers have published a number of studies of this distribution, for example: [5], [6], [7], [8], [9] and [10].

Outlier is the observation that is not consistent with the rest of the observations. There are several models for outliers, one of them and most commonly studied is a contamination model called the slippage model. Under this model, we consider the observations $X_1, X_2, ..., X_{n-p}$ are independent random variables (r.v.s) with pdf $f_1(x)$ and cdf $F_1(x)$ while the other observations (outliers) $X_{n-p+1}, ..., X_n$ are independent (and independent $X_1, X_2, ..., X_{n-p}$) with pdf $f_2(x)$ and cdf $F_2(x)$, where f_2 and F_2 are differs of f_1 and F_1 respectively, in the values of location and/or scale parameters.

Let $X_{1:n}$, $X_{2:n}$,..., $X_{n:n}$ denote the order statistics obtained by arranging the X_i^{js} in increasing order of magnitude. The

^{*} Corresponding author e-mail: t.aloafi@hotmail.com

marginal pdf of the r^{th} order statistic under the multiple outliers model is

$$f_{r:n}[p](x) = \sum_{s=max(0,r-p-1)}^{min(n-p-1,r-1)} C_1 f_1(x) \{F_1(x)\}^s \{F_2(x)\}^{r-s-1} \\ \times \{1 - F_1(x)\}^{n-p-s-1} \{1 - F_2(x)\}^{p-r+s+1} \\ + \sum_{s=max(0,r-p)}^{min(n-p,r-1)} C_2 f_2(x) \{F_1(x)\}^s \{F_2(x)\}^{r-s-1} \\ \times \{1 - F_1(x)\}^{n-p-s} \{1 - F_2(x)\}^{p-r+s}, \qquad -\infty < x < \infty,$$
(3)

where

$$C_{1} = \frac{(n-p)!p!}{s!(r-s-1)!(n-p-s-1)!(p-r+s+1)!}$$

and

 $C_2 = \frac{(n-p)!p!}{s!(r-s-1)!(n-p-s)!(p-r+s)!}.$ The joint pdf of the *r*th and *s*th order statistics $(1 \le r < s \le n)$ is

$$f_{r,s:n}[p](x,y) = \sum_{j=0}^{s-r-1} \sum_{i=max(0,s-p-j-2)}^{s-r-1-j} A_1 f_1(x) f_1(y) F_1(x)^i F_2(x)^{r-1-i} \{F_1(y) - F_1(x)\}^j \times \{F_2(y) - F_2(x)\}^{s-r-1-j} \{1 - F_1(y)\}^{n-p-i-j-2} \{1 - F_2(y)\}^{p-s+i+j+2} + \sum_{j=0}^{s-r-1} \sum_{i=max(0,s-p-j-1)}^{s-r-1-j} A_2 f_1(x) f_2(y) F_1(x)^i F_2(x)^{r-1-i} \{F_1(y) - F_1(x)\}^j \times \{F_2(y) - F_2(x)\}^{s-r-1-j} \{1 - F_1(y)\}^{n-p-i-j-1} \{1 - F_2(y)\}^{p-s+i+j+1} + \sum_{j=0}^{s-r-1} \sum_{i=max(0,s-p-j-1)}^{s-r-1-j} A_2 f_2(x) f_1(y) F_1(x)^i F_2(x)^{r-1-i} \{F_1(y) - F_1(x)\}^j \times \{F_2(y) - F_2(x)\}^{s-r-1-j} \{1 - F_1(y)\}^{n-p-i-j-1} \{1 - F_2(y)\}^{p-s+i+j+1} + \sum_{j=0}^{s-r-1} \sum_{i=max(0,s-p-j)}^{s-r-1-j} A_3 f_2(x) f_2(y) F_1(x)^i F_2(x)^{r-1-i} \{F_1(y) - F_1(x)\}^j \times \{F_2(y) - F_2(x)\}^{s-r-1-j} \{1 - F_1(y)\}^{n-p-i-j-1} \{1 - F_2(y)\}^{p-s+i+j+1} + \sum_{j=0}^{s-r-1} \sum_{i=max(0,s-p-j)}^{s-r-1-j} A_3 f_2(x) f_2(y) F_1(x)^i F_2(x)^{r-1-i} \{F_1(y) - F_1(x)\}^j \times \{F_2(y) - F_2(x)\}^{s-r-1-j} \{1 - F_1(y)\}^{n-p-i-j-1} \{1 - F_2(y)\}^{p-s+i+j}, -\infty < x < y < \infty,$$

where

$$A_{1} = \frac{(n-p)!p!}{i!(r-i-1)!j!(s-r-1-j)!(n-p-i-j-2)!(p-s+i+j+2)!},$$

$$A_{2} = \frac{(n-p)!p!}{i!(r-i-1)!j!(s-r-1-j)!(n-p-i-j-1)!(p-s+i+j+1)!},$$
and $A_{3} = \frac{(n-p)!p!}{i!(r-i-1)!j!(s-r-1-j)!(n-p-i-j)!(p-s+i+j)!},$

see [11]

The joint pdf of all *n* order statistics when p = 1 is

$$f_{1, 2, \dots, n:n}[\mathbf{1}](x_1, x_2, \dots, x_n) = (n-1)! \prod_{i=1}^n f_1(x_i) \sum_{i=1}^n \frac{f_2(x_i)}{f_1(x_i)}, \quad -\infty < x_1 < x_2 < \dots < x_n < \infty,$$
(5)

see [12].

In this paper, we study the effect of outliers on some estimators. We first find the maximum likelihood and Bayes estimators of the scale parameter of (QLD) based on order statistics in the presence of a single outlier, we derive the single and product moments of order statistics from QLD and study the robustness of some linear estimators of the scale parameter in the presence of multiple outliers.

2 Estimation in the Presence of Single Outlier

Let $X_1, X_2, ..., X_{n-1}$ be independent observations from $QLD(\alpha, \theta)$ with pdf (1) and cdf (2), and let X_n be an observation from $QLD(\beta, \gamma)$ with pdf

$$f_2(x;\beta,\gamma) = \frac{1}{\gamma(1+\beta)} (\beta + \frac{x}{\gamma}) e^{-\frac{x}{\gamma}}, x > 0, \ \gamma > 0, \ \beta > 0,$$
(6)

and cdf

$$F_2(x;\beta,\gamma) = 1 - [1 + \frac{x}{\gamma(1+\beta)}]e^{-\frac{x}{\gamma}}, x > 0, \ \gamma > 0, \ \beta > 0.$$
⁽⁷⁾

Suppose that $\alpha = \beta$ and $\gamma = \theta/g$, where 0 < g < 1, (this model is known as a single-scale outlier model). The joint pdf of all *n* order statistics $X_{1:n}$, $X_{2:n}$, ..., $X_{n:n}$ from *QLD* in the presence of a single outlier is given by replacing (1) and (6) in (5) as

$$f_{(1, 2, ..., n:n)}[\mathbf{1}](x_1, x_2, ..., x_n) \propto (\frac{1}{\theta})^n \Pi_{i=1}^n t_i(\theta) e^{-\frac{\sum_{i=1}^n x_i}{\theta}} B_1(\theta),$$

$$x_i > 0, \ \theta > 0, \ \alpha > 0,$$
(8)

where

$$t_i(\theta) = \alpha + \frac{x_i}{\theta}, \text{and } B_1(\theta) = \sum_{i=1}^n g e^{-(g-1)\frac{x_i}{\theta}} \frac{t_i(\theta/g)}{t_i(\theta)}.$$
(9)

2.1 Maximum likelihood estimator

The maximum likelihood estimator (MLE) of the scale parameter θ of *QLD* in the presence of a single outlier can be obtained by solving the following nonlinear equation

$$\sum_{i=1}^{n} x_i - n\theta - \sum_{i=1}^{n} \frac{x_i}{t_i(\theta)} + \theta^2 \frac{\frac{\partial B_1(\theta)}{\partial \theta}}{B_1(\theta)} = 0,$$
(10)

where

$$\frac{\partial B_1(\theta)}{\partial \theta} = \sum_{i=1}^n g(1-g)e^{-\frac{(g-1)x_i}{\theta}} \hat{t}_i(\theta)T_i(\theta),$$

$$\hat{t}_i(\theta) = -\frac{x_i}{\theta^2}, \text{ and } T_i(\theta) = \frac{t_i(\theta/g)t_i(\theta) - \alpha}{(t_i(\theta))^2}.$$
(11)

2.2 Bayes estimator

To obtain Bayes estimator of the scale parameter θ of *QLD* -when the parameter α is known- in the presence of a single outlier, we consider the inverse gamma conjugate prior density for the parameter θ as follows

$$\pi(\theta) = \frac{a^b}{\Gamma(b)} (\frac{1}{\theta})^{b+1} e^{-\frac{a}{\theta}}, \quad \theta > 0, \, a > 0, \, b > 0.$$
(12)

It follows from (8) and (12) that the posterior distribution of θ is given by

$$\pi^{*}(\theta|x_{1}, x_{2}, ..., x_{n}, \alpha) \propto (\frac{1}{\theta})^{n+b+1} \Pi_{i=1}^{n} t_{i}(\theta) e^{-\frac{\sum_{i=1}^{n} x_{i}+a}{\theta}} B_{1}(\theta),$$

$$x_{i} > 0, \ \theta > 0, \ \alpha > 0, \ a > 0, \ b > 0.$$
(13)

Under the squared error loss function (SEL), Bayes estimator of the scale parameter θ of QLD in the presence of a single outlier is

$$\hat{\theta}_{B} \simeq \tilde{\theta} + \frac{1}{2} \left(\frac{n+b+1}{\tilde{\theta}^{2}} - 2 \frac{\sum_{i=1}^{n} x_{i} + a}{\tilde{\theta}^{3}} + \sum_{i=1}^{n} \chi(t_{i}(\tilde{\theta})) + \chi(B_{1}(\tilde{\theta})) \right)^{-4} \times \left(-\frac{n+b+1}{\tilde{\theta}^{3}} + 6 \frac{\sum_{i=1}^{n} x_{i} + a}{\tilde{\theta}^{4}} + \sum_{i=1}^{n} \varphi(t_{i}(\tilde{\theta})) + \varphi(B_{1}(\tilde{\theta})) \right),$$
(14)

where

$$\chi(w) = \frac{w\frac{\partial^2 w}{\partial \theta^2} - (\frac{\partial w}{\partial \theta})^2}{w^2}, \ \varphi(w) = \frac{w^2 \frac{\partial^3 w}{\partial \theta^3} - 3w \frac{\partial w}{\partial \theta} \frac{\partial^2 w}{\partial \theta^2} + 2(\frac{\partial w}{\partial \theta})^2}{w^3},$$

 $B_1(\theta)$ and $t_i(\theta)$ are as in (9), $\frac{\partial B_1(\theta)}{\partial \theta}, \tilde{t}_i(\theta)$ and $T_i(\theta)$ are as in (11),

$$\begin{split} \frac{\partial^2 B_1(\theta)}{\partial \theta^2} &= \sum_{i=1}^n g(1-g) e^{-\frac{(g-1)x_i}{\theta}} (((1-g)(\hat{t}_i(\theta))^2(\theta) + t_i^{(2)}(\theta))T_i(\theta) + \hat{t}_i(\theta)\tilde{T}_i(\theta)), \\ \frac{\partial^3 B_1(\theta)}{\partial \theta^3} &= \sum_{i=1}^n g(1-g) e^{-\frac{(g-1)x_i}{\theta}} \\ &\times ((((1-g)^2(\hat{t}_i(\theta))^3 + 2(1-g)\hat{t}_i(\theta))t_i^{(2)}(\theta) + t_i^{(2)}(\theta) + t_i^{(3)}(\theta))T_i(\theta) \\ &+ ((\hat{t}_i(\theta))^2 + 2t_i^{(2)}(\theta) + \hat{t}_i(\theta))\tilde{T}_i(\theta) + \hat{t}_i(\theta)T_i^{(2)}(\theta)), \\ \tilde{T}_i(\theta) &= \hat{t}_i(\theta) (\frac{gt_i(\theta) + t_i(\theta/g)}{(t_i(\theta))^2} - 2\frac{T_i(\theta)}{t_i(\theta)}), \\ T_i^{(2)}(\theta) &= \frac{2g(\hat{t}_i(\theta))^2 t_i(\theta) + (gt_i(\theta) + t_i(\theta/g))(t_i(\theta)t_i^{(2)}(\theta) - 2\hat{t}_i(\theta))}{(t_i(\theta))^3} \\ &- 2\frac{(t_i^{(2)}(\theta)t_i(\theta) - 2(\hat{t}_i(\theta))^2)T_i(\theta) + t_i(\theta)\hat{t}_i(\theta)\tilde{T}_i(\theta)}{(t_i(\theta))^2}, \\ t_i^{(2)}(\theta) &= 2\frac{x_i}{\theta^3}, t_i^{(3)}(\theta) = -6\frac{x_i}{\theta^4}, \end{split}$$

and $\tilde{\theta}$ is the posterior mode.

Proof. As we know, Bayes estimator of any function U in the parameter θ under the SEL is the posterior mean in the form

$$E[U(\theta) \mid x_1, x_2, ..., x_n)] = \int_0^\infty U(\theta) \pi^*(\theta) d\theta$$

=
$$\frac{\int_0^\infty U(\theta) L(\theta \mid x_1, x_2, ..., x_n) \pi(\theta) d\theta}{\int_0^\infty L(\theta \mid x_1, x_2, ..., x_n) \pi(\theta) d\theta}.$$
(15)

By using Lindley approximation, see [13].

$$E(U(\theta) \mid x_1, x_2, ..., x_n) \simeq \left\{ \left\{ U(\theta) + \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m U_{ij} \varepsilon_{ij} + \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m \sum_{k=1}^m \sum_{l=1}^m h_{ijk} U_l \varepsilon_{ij} \varepsilon_{kl} \right\} \right\}_{\tilde{\theta}},$$
(16)

we first find the logarithm of the posterior distribution (13) denoted by $S(\theta)$ as

$$S(\theta) = -(n+b+1)Log(\theta) + \frac{\sum_{i=1}^{n} x_i + a}{\theta} + \sum_{i=1}^{n} Log(t_i(\theta)) + Log(B_1(\theta)).$$
(17)

By differentiating $S(\theta)$ with respect to θ , we get

$$\frac{\partial S(\theta)}{\partial \theta} = \frac{-(n+b+1)}{\theta} - \frac{\sum_{i=1}^{n} x_i + a}{\theta^2} + \frac{1}{\theta^2} \sum_{i=1}^{n} \frac{x_i(\theta)}{t_i(\theta)} + \frac{B_1(\theta)}{B_1(\theta)}$$
(18)

The posterior mode $(\tilde{\theta})$ can be obtained by equating (18) to zero and solving it in θ . Second, we differentiate (18) with respect to θ to get ε_{11} , as follow

$$\varepsilon_{11} = \frac{n+b+1}{\theta^2} - 2\frac{\sum_{i=1}^n x_i + a}{\theta^3} + \sum_{i=1}^n \chi(t_i(\theta)) + \chi(B_1(\theta))$$
(19)

The second derivative of (18) with respect to θ gives $h_{111}(\theta)$ as

$$h_{111}(\theta) = -\frac{n+b+1}{\theta^3} + 6\frac{\sum_{i=1}^n x_i + a}{\theta^4} + \sum_{i=1}^n \varphi(t_i(\theta)) + \varphi(B_1(\theta)).$$
(20)

By choosing $U(\theta) = \theta$; then, substituting of (19) and (20) in (16), we get (14).

2.3 Numerical results

In this subsection, we calculate the MLE using (10) and Bayes estimator in (14) and their corresponding mean squared errors (MSE) when $\alpha = 2$ by using Monte Carlo simulation study for n = 5, 6, 7, 10, 20, 30, p = 0, 1, and g = 0.1, 0.2, 0.3, 0.4, 0.5. We use the following algorithm:

- 1. For given values of a, b (a = 1, b = 1), we generate a random value θ from inverse gamma distribution (12).
- 2. For the chosen value of α and the generated value of θ in step (1), we generate random sample of size n-1 from $QLD(\alpha, \theta)$ and generate random sample of size 1 from $QLD(\alpha, \theta/g)$.
- Union and arrangement the values of the tow samples give an order statistics random sample of size n with a single outlier.
- 3. We compute the MLE $(\hat{\theta}_{ML})$ using (10) and compute Bayes estimator $(\hat{\theta}_B)$ in (14).
- 4. We compute the SEL $(\hat{\theta} \theta)^2$ where $\hat{\theta}$ stands for an estimator (maximum likelihood or Bayes).
- 5. We repeat The above steps (2-4) 1000 times, then compute the mean of estimators and the MSE.

Table 1 show the numerical results.

From Table1, we can observe the following:

- 1. The MSE of Bayes estimator are less than MSE of maximum likelihood estimator when there is no outlier.
- 2. If there is an outlier, the MSE of Bayes estimator are less than MSE of maximum likelihood estimator in the following cases: (n = 6, 7, g = 0.5), (n = 10, g = 0.4, 0.5) and (n = 20, 30, g = 0.2, 0.3, 0.4, 0.5), that means the presence of outlier affects strongly on Bayes estimator in the small samples, this effect decreases when the size of sample increases.
- 3. At g = 0.1 the maximum likelihood estimator is better than Bayes estimator for all values of n.

 g^* means any value of g. $\hat{\theta}_{ML}$ $\hat{\theta}_{ML}$ $MSE(\hat{\theta}_{ML})$ $\hat{\theta}_B$ $MSE(\hat{\theta}_{B})$ $MSE(\hat{\theta}_{ML})$ $\hat{\theta}_{R}$ $MSE(\hat{\theta}_{B})$ п п 5 .2750 1.343 .3199 1.159 10 1.364 .1746 1.243 .1515 g 0.1 1.350 .3593 22.86 31812 1.354 .1723 3.037 148.4 0.2 1.359 .3615 2.376 26.34 1.383 .1910 1.446 1.700 0.3 1.381 .3536 1.551 10.18 1.412 .1857 1.306 .1896 0.4 1.396 .3847 1.311 1.671 1.396 .1846 1.269 .1596 0.5 1.358 .3461 1.188 .3903 1.367 .1777 1.242 .1568 0 1.366 .2569 1.193 .2167 20 1.365 .0785 1.297 .0732 g^* 6 .2991 9.993 1 0.1 1.351 1785 1.384 .0909 1.420 .2568 1.378 .2942 1.849 13.70 1.378 .0802 1.315 0.2 .0776 0.3 1.345 .3064 1.356 1.351 1.368 .0844 1.297 .0790 0.4 1.385 .3310 1.269 .4910 1.367 .0889 1.296 .0819 0.5 1.392 .2910 1.221 .2708 1.358 .0838 1.288 .0787 0 7 1.377 g^* 1.348 .2038 1.193 .1778 30 .0492 1.329 .0464 1.365 1.349 0.1 .2400 5.874 333.0 1.381 .0593 .0613 1 1.375 .2616 1.717 4.839 1.386 1.338 0.2.0576 .0537 0.3 1.341 .2479 1.284 1.178 1.379 .0555 1.329 .0518 0.4 1.379 .2571 1.240 .2636 1.385 .0542 1.335 .0500 .0569 0.5 1.382 .2362 1.222 .2081 1.370 1.321 .0538

Table 1: The MLE and Bayes estimator and their corresponding *MSE* of the scale parameter θ of $QLD(\alpha = 2, \theta = 1.3775)$ in the presence of a single outlier.

3 Estimation in the Presence of Multiple Outliers

Let $X_1, X_2, ..., X_{n-1}$ be independent observations from $QLD(\alpha, \theta)$ with pdf (1) and cdf (2), and let $X_{n-p+1}, ..., X_n$ be independent observations from $QLD(\beta, \gamma)$ with pdf (6) and cdf (7), and independent of $(X_1, X_2, ..., X_{n-1})$. In this section we derive the explicit formulas for the single and product moments of order statistics from QLD under the slippage multiple-outlier model.

3.1 Single moments

By using (3), writing $[F_1(x)]^s = [1 - [1 - F_1(x)]]^s$ and $[F_2(x)]^{r-s-1} = [1 - [1 - F_2(x)]]^{r-s-1}$ then expanding, we have

$$\begin{split} \mu_{r:n}^{(k)}[p] &= \sum_{s=max(0,r-p-1)}^{min(n-p-1,r-1)} C_1 \sum_{a=0}^{s} \binom{s}{a} \sum_{b=0}^{r-s-1} \binom{r-s-1}{b} (-1)^{a+b} \\ &\int_{0}^{\infty} x^k f_1(x) \times \{1-F_1(x)\}^{n-p-s+a-1} \{1-F_2(x)\}^{p-r+s+b+1} dx \\ &+ \sum_{s=max(0,r-p)}^{min(n-p,r-1)} C_2 \sum_{a=0}^{s} \binom{s}{a} \sum_{b=0}^{r-s-1} \binom{r-s-1}{b} (-1)^{a+b} \\ &\int_{0}^{\infty} x^k f_2(x) \times \{1-F_1(x)\}^{n-p-s+a} \{1-F_2(x)\}^{p-r+s+b} dx \end{split}$$

By using (1), (2), (6) and (7), then expanding binomial in *x* and making some algebraic simplifications, we get the single moment of the r^{th} order statistic $\mu_{r,n}^{(k)}[p]$, in the presence of multiple outliers as the following:

$$\mu_{r:n}^{(k)}[p] = \Sigma_1 \phi_{c,d} + \Sigma_2 \phi_{c,d}^*, \quad 1 \leqslant r \leqslant n, \ k = 0, 1, ...,$$
(21)

where

$$\begin{split} \Sigma_{1} &= \sum_{s=max(0,r-p-1)}^{\min(n-p-1,r-1)} C_{1} \sum_{a=0}^{s} \binom{s}{a} \sum_{b=0}^{r-s-1} \binom{r-s-1}{b} \sum_{c=0}^{n-p-s+a-1} \binom{n-p-s+a-1}{c} \\ &\times \sum_{d=0}^{p-r+s+b+1} \binom{p-r+s+b+1}{d} (-1)^{a+b}, \\ \Sigma_{2} &= \sum_{s=max(0,r-p)}^{\min(n-p,r-1)} C_{2} \sum_{a=0}^{s} \binom{s}{a} \sum_{b=0}^{r-s-1} \binom{r-s-1}{b} \sum_{c=0}^{n-p-s+a} \binom{n-p-s+a}{c} \\ &\times \sum_{d=0}^{p-r+s+b} \binom{p-r+s+b}{d} (-1)^{a+b}, \\ \phi_{c,d} &= \frac{1}{(\theta(\alpha+1))^{c+1}} \frac{1}{(\gamma(\beta+1))^{d}} (\alpha + \frac{k+c+d+2}{\theta z}) \frac{\Gamma(k+c+d+1)}{z^{k+c+d+1}}, \\ \phi_{c,d}^{*} &= \frac{1}{(\theta(\alpha+1))^{c}} \frac{1}{(\gamma(\beta+1))^{d+1}} (\beta + \frac{k+c+d+2}{\gamma z}) \frac{\Gamma(k+c+d+1)}{z^{k+c+d+1}}, \\ and \\ &z &= \frac{n-p-s+a}{\theta} + \frac{p-r+s+b+1}{\gamma}. \end{split}$$

© 2022 NSP Natural Sciences Publishing Cor.

3.2 Product moments

By using (1), (2), (6) and (7), expanding binomial in x and in y then integral for x then for y using the following relation:

$$\int_0^u x^n e^{-\mu x} dx = \frac{n!}{\mu^{n+1}} - e^{-\mu u} \sum_{k=0}^n \frac{n!}{k!} \frac{u^k}{\mu^{n-k+1}},$$

u > 0, Real $\mu > 0$, n = 0, 1, 2... [14], we get the product moments of the r^{th} and s^{th} order statistics $\mu_{r,s:n}^{(k,m)}[p]$ under the slippage multiple-outlier as the following:

$$\mu_{r,s;n}^{(k,m)}[p] = \Sigma_1 \frac{1}{(\theta(\alpha+1))^{q+u+2}} \frac{1}{(\gamma(\beta+1))^{t+\nu}} \psi_1 + \Sigma_3 \frac{1}{(\theta(\alpha+1))^{q+u}} \frac{1}{(\gamma(\beta+1))^{t+\nu+2}} \psi_4 + \Sigma_2 \frac{1}{(\theta(\alpha+1))^{q+u+1}} \frac{1}{(\gamma(\beta+1))^{t+\nu+1}} (\psi_2 + \psi_3), \quad 1 \le r < s \le n, \quad k, m = 0, 1, \dots,$$
(22)

where

$$\begin{split} \Sigma_{1} &= \sum_{j=0}^{s-r-1} \sum_{i=max(0,s-p-j-2)}^{min(n-p-j-2,r-1)} A_{1} \sum_{a=0}^{i} {i \choose a} \sum_{b=0}^{r-1-i} {r-1-i \choose b} \sum_{c=0}^{j} {j \choose c} \\ &\times \sum_{d=0}^{s-r-1-j} {s-r-1-j \choose d} \sum_{q=0}^{a+j-c} {a+j-c \choose q} \sum_{t=0}^{b+s-r-j-d-1} {b+s-r-j-d-1 \choose t} \\ &\times \sum_{u=0}^{n-p-i-j+c-2} {n-p-i-j+c-2 \choose u} \sum_{v=0}^{p-s+i+j+d+2} {p-s+i+j+d+2 \choose v} (-1)^{a+b+c+d} \end{split}$$

1036

$$\begin{split} & \Sigma_{2} = \sum_{j=0}^{s-r-1} \lim_{i=max(0,s-p-j-1)} A_{2} \sum_{a=0}^{i} {i \choose a} \sum_{b=0}^{r-1-i} {r-1-i \choose b} \sum_{c=0}^{j} {j \choose c} \\ & \times \sum_{d=0}^{s-r-1-j} {s-r-1-j \choose d} \sum_{a=1}^{a+j-c} {a+j-c \choose q} \sum_{v=0}^{b+s-r-j-d-1} {b+s-r-j-d-1 \choose t} \\ & \times \sum_{a=0}^{n-p-i-j+c-1} {n-p-i-j+c-1 \choose a} \sum_{u=0}^{p-i+i-j+c-1} {n-p-i-j+c-1 \choose u} \sum_{v=0}^{p-s+i+j+d+1} {p-s+i+j+d+1 \choose v} (p-s+i+j+d+1) \\ & \Sigma_{3} = \sum_{j=0}^{s-r-1} \lim_{i=max(0,s-p-j)} A_{3} \sum_{a=0}^{i} {i \choose a} \sum_{b=0}^{r-1-i} {r-1-i \choose b} \sum_{c=0}^{j} {j \choose c} \\ & \times \sum_{d=0}^{s-r-1-j} {s-r-1-j \choose d} \sum_{a=0}^{a+j-c} {a+j-c \choose q} \sum_{v=0}^{b+s-r-j-d-1} {b+s-r-j-d-1 \choose t} \\ & \times \sum_{a=0}^{n-p-i-j+c} {n-p-i-j+c \choose d} \sum_{q=0}^{a+j-c} {a+j-c \choose q} \sum_{v=0}^{b+s-r-j-d-1} {b+s-r-j-d-1 \choose t} \\ & \times \sum_{a=0}^{n-p-i-j+c} {n-p-i-j+c \choose d} \sum_{u=0}^{a+j-c} {a+j-c \choose q} \sum_{v=0}^{p-s+i+j+d} {p-s+i+j+d \choose v} (-1)^{a+b+c+d} \\ & \psi_{1} = a^{2}h(\kappa_{1},\kappa_{2}) + \frac{a}{\theta}h(\kappa_{1}+1,\kappa_{2}) + \frac{a}{\theta}h(\kappa_{1},\kappa_{2}+1) + \frac{1}{\theta\gamma}h(\kappa_{1}+1,\kappa_{2}+1), \\ & \psi_{2} = a\beta h(\kappa_{1},\kappa_{2}) + \frac{a}{\theta}h(\kappa_{1}+1,\kappa_{2}) + \frac{a}{\gamma}h(\kappa_{1},\kappa_{2}+1) + \frac{1}{\theta\gamma}h(\kappa_{1}+1,\kappa_{2}+1), \\ & \psi_{3} = a\beta h^{*}(\kappa_{1},\kappa_{2}) + \frac{\beta}{\theta}h^{*}(\kappa_{1}+1,\kappa_{2}) + \frac{a}{\gamma}h^{*}(\kappa_{1},\kappa_{2}+1) + \frac{1}{\theta\gamma}h^{*}(\kappa_{1}+1,\kappa_{2}+1), \\ & h(\kappa_{1},\kappa_{2}) = \frac{(\kappa_{1}-1)!\Gamma(\kappa_{2})}{c_{2}^{N_{1}}\kappa_{2}}} - \frac{(\kappa_{1}-1)!}{c_{2}^{N_{1}}}} \sum_{i=0}^{N_{1}-1} \frac{z_{2}!\Gamma(\kappa_{2}+i)}{i!(z_{2}+z_{2})^{\kappa_{2}+i}}, \\ & \kappa_{1} = k+q+t+1, \quad \kappa_{2} = m+u+v+1. \\ & z_{21} = \frac{a+j-c+1}{\theta} + \frac{b+s-r-j-d-1}{\gamma}, \\ & z_{22} = \frac{a+j-c+1}{\theta} + \frac{b+s-r-j-d-1}{\gamma}, \\ & z_{23} = \frac{a+j-c-1}{\theta} + \frac{b-s+i+j+d+1}{\gamma}. \end{split}$$

3.3 Robust linear estimators

Suppose $X_1, X_2, ..., X_{n-1}$ are independent observations from $QLD(\alpha, \theta)$, and $X_{n-p+1}, ..., X_n$ are *p* independent outliers arise from $QLD(\beta, \gamma)$ (and independent of $X_1, X_2, ..., X_{n-1}$.) Assume $\alpha = \beta$ and $\gamma = \theta/g$, where 0 < g < 1,.

Consider the following linear estimators of the mean of *DLD* $\frac{\alpha+2}{\alpha+1}\theta$:

1.Best linear estimator

$$\boldsymbol{\theta}^* = \sum_{i=1}^n a_i X_{i:n} = \mathbf{\hat{A}} \mathbf{X},$$

(24)

where $\mathbf{\hat{A}} = (a_1, a_2, ..., a_n)$ is the vector of the coefficients of the BLUE. The bias and variance of the BLUE are

$$Bias(\theta^*) = E(\theta^*) - \theta = \frac{\dot{\eta} \omega^{-1}}{\dot{\eta} \omega^{-1} \eta} \mu[p] - \theta$$

$$= \sum_{i=1}^n a_i \mu_{i:n}[p] - \theta.$$

$$Var(\theta^*) = \frac{\dot{\eta} \omega^{-1} \Sigma[p] \omega^{-1} \eta}{(\dot{\eta} \omega^{-1} \eta)^2}$$
(23)

where $\mu[p] = (\mu_{1:n}[p], \mu_{2:n}[p], ..., \mu_{n:n}[p])$, and $\Sigma[p] = [Cov(X_{r:n}, X_{s:n})[p], 1 \le r \le s \le n]$. 2.Complete sample mean \bar{X}

3.One sided trimmed estimator

 $= \mathbf{\hat{A}} \Sigma[p] \mathbf{A}.$

$$T_{m,n} = \frac{1}{n-m} \sum_{i=1}^{n-m} X_{i:n},$$

4.One sided Winsorized estimator

$$W_{m,n} = \frac{1}{n} \sum_{i=1}^{n-m-1} X_{i:n} + (m+1)X_{n-m:n}.$$

5.Cikkagouder-Kunchur estimator

$$CK_n = \frac{1}{n} \sum_{i=1}^n (1 - \frac{2i}{n(n+1)}) X_{i:n},$$

3.4 Numerical results

By using the means, variances, and covariances of order statistics which evaluate from (21) and (22) when $\alpha = 2$ and $\theta = 1$, we compute the *MSE* and bias of these estimators for n = 5, 6, 7, p = 0, 1, 2, and g = 0.1, 0.2, 0.3, 0.4, 0.5 We summarize the numerical results in Tables (2), (3),(4) and (5). From Table 2, Table 3, Table 4, and Table 5, we can observe:

1.For p = 0, $\frac{\alpha+1}{\alpha+2}\bar{X}$ and BLUE are unbiased estimators but BLUE has the minimum MSE among all estimators. 2.The bias increases as *g* decreases and/or/ *p* increases for most estimators.

3. The MSE increases as g decreases and/or p increases for most estimators. 4. At g = .5 and g = .4 & p = 1, for n = 5, g = .4 & p = 1, for n = 6 and g = .5 & p = 1, for n = 7 $\frac{\alpha+1}{\alpha+2}CK_n$ has the lower MSE than $\frac{\alpha+1}{\alpha+2}T_{1:n}$.

5. $\frac{\alpha+1}{\alpha+2}T_{1:n}$ performs better than $\frac{\alpha+1}{\alpha+2}CK_n$ for g < .5 and p = 1 whereas $\frac{\alpha+1}{\alpha+2}T_{2:n}$ has the best performance for the small value of g and p = 2 (the small value of g means the probability of the presence of outliers is big).

6. The effect of outliers on L-Estimators decreases as *n* increases.

		g =	g*								
р		Bias	MSE	-							
0	$\frac{\alpha+1}{\alpha+2}\bar{X}$.0000	.1750								
	$\frac{\alpha+1}{\alpha+2}T_{1.5}$	3012	.2032								
	$\frac{\alpha+1}{\alpha+2}T_{2.5}$	4987	.3291								
	$\frac{\alpha+1}{\alpha+2}T_{3,5}$	6534	.4855								
	$\frac{\alpha+1}{\alpha+2}W_{1,5}$.0897	.2704								
	$\frac{\alpha+1}{\alpha+2}W_{2,5}$	1666	.2356								
	$\frac{\alpha+1}{\alpha+2}W_{3,5}$	4338	.3350								
	BLUE	.0000	.1744								
	$\frac{\alpha+1}{\alpha+2}CK_5$	2638	.1655								
		<i>g</i> =	0.1	<i>g</i> =	0.2	<i>g</i> =	0.3	<i>g</i> =	0.4	<i>g</i> =	0.5
	a 1 -	Bias	MSE								
1	$\frac{\alpha+1}{\alpha+2}X$	1.800	6.880	.8000	1.655	.4660	.7452	.2500	.3796	.2000	.3200
	$\frac{\alpha+1}{\alpha+2}T_{1,5}$	0540	.2040	1003	.1947	1401	.1897	1875	.1876	2032	.1880
	$\frac{\alpha+1}{\alpha+2}T_{2,5}$	3633	.2581	3841	.2667	4032	.2752	4278	.2872	4365	.2917
	$\frac{\alpha+1}{\alpha+2}T_{3,5}$	5723	.4151	5835	.4239	5941	.4325	6083	.4444	6135	.4489
	$\frac{\alpha+1}{\alpha+2}W_{1,5}$.5087	.7753	.4264	.6463	.3569	.5470	.2755	.4438	.2726	.3659
	$\frac{\alpha+1}{\alpha+2}W_{2,5}$.0718	.3481	.0338	.3219	0006	.3004	0447	.2766	.0218	.2351
	$\frac{\alpha+1}{\alpha+2}W_{3,5}$	2976	.3128	3167	.3132	3348	.3143	3588	.3170	2273	.2325
	BLUE	1.921	7.893	.8443	1.849	.4869	.8086	.2580	.3964	.2056	.3302
	$\frac{\alpha+1}{\alpha+2}CK_5$.9574	2.567	.2871	.5635	.0612	.2659	0867	.1730	1214	.1628
2	$\frac{\alpha+1}{\alpha+2}X$	3.600	20.06	1.600	4.415	.9320	1.749	.5000	.7093	.4000	.5450
	$\frac{\alpha+1}{\alpha+2}T_{1,5}$	1.044	2.793	.3772	.6950	.1387	.3498	0341	.2234	0788	.2061
	$\frac{\alpha+1}{\alpha+2}T_{2,5}$	1111	.2533	1956	.2401	2618	.2405	3351	.2529	3583	.2596
	$\frac{\alpha+1}{\alpha+2}T_{3,5}$	4396	.3403	4773	.3575	5100	.3752	5499	.4003	5633	.4097
	$\frac{\alpha+1}{\alpha+2}W_{1,5}$	2.651	13.91	1.294	3.510	.8388	1.646	.5286	.8435	.4442	.5880
	$\frac{\alpha+1}{\alpha+2}W_{2,5}$.5355	1.021	.3729	.7264	.2489	.5444	.1156	.3934	.1438	.3186
	$\frac{\alpha+1}{\alpha+2}W_{3,5}$	0713	.3962	1371	.3588	1936	.3354	2615	.3186	1421	.2440
	BLUE	3.781	22.21	1.666	4.809	.9633	1.873	.5121	.7404	.4084	.5637
	$\frac{\alpha+1}{\alpha+2}CK_5$	2.230	8.346	.8570	1.637	.3953	.5979	.0938	.2480	.0233	.2034

Table 2: Bias and MSE of the L-Estimators in the presence of outliers n = 5.

	$g = g^*$										
р		Bias	MSE								
0	$\frac{\alpha+1}{\alpha+2}\bar{X}$.0000	.1458								
	$\frac{\alpha+\tilde{1}}{\alpha+2}T_{1.6}$	2711	.1712								
	$\frac{\alpha+1}{\alpha+2}T_{2.6}$	4513	.2760								
	$\frac{\alpha+1}{\alpha+2}T_{3.6}$	5934	.4065								
	$\frac{\alpha+1}{\alpha+2}W_{1.6}$.1319	.2434								
	$\frac{\alpha+1}{\alpha+1}W_{2,6}$	-0.0790	.1956								
	$\frac{\alpha+1}{\alpha+2}W_{3,6}$	-0.2979	.2378								
	BLUE	.0000	.1453								
	$\frac{\alpha+1}{\alpha+2}CK_6$	-0.2237	.1387								
	0.12	g =	0.1	g =	0.2	g =	0.3	$g \equiv 0$	0.4	g =	0.5
		Bias	MSE	Bias	MSE	Bias	MSE	Bias	MSE	Bias	MSE
1	$\frac{\alpha+1}{\alpha+2}\bar{X}$	1.500	4.802	.6666	1.173	.3883	.5418	.2083	.2879	.1666	.2465
	$\frac{\alpha+1}{\alpha+2}T_{1,6}$	0496	.1650	0919	.1592	1280	.1564	1706	.1562	1847	.1569
	$\frac{\alpha+1}{\alpha+2}T_{2,6}$	3232	.2115	.3434	.2197	3618	.2277	3853	.2388	3936	.2429
	$\frac{\alpha+1}{\alpha+2}T_{3,6}$	5111	.3383	5227	.3471	5337	.3557	5483	.3674	5536	.3718
	$\frac{\alpha+1}{\alpha+2}W_{1,6}$.5104	.6758	.4343	.5651	.3704	.4800	.2965	.3918	0455	.1660
	$\frac{\alpha+1}{\alpha+2}W_{2,6}$.1527	.3202	.1145	.2922	.0800	.2690	.0367	.2432	2336	.1865
	$\frac{\alpha+1}{\alpha+2}W_{3,6}$	1487	.2401	1705	.2368	1909	.2345	2177	.2327	4204	.2785
	BLUE	1.608	5.558	.7063	1.318	.4070	.5890	.2155	.3003	.1716	.2540
	$\frac{\alpha+1}{\alpha+2}CK_6$.8636	2.071	.2656	.4646	.0644	.2240	-0.0671	.1477	.2656	.4646
2	$\frac{\alpha+1}{\alpha+2}\bar{X}$	3.000	13.95	1.333	3.090	.7766	1.239	.4166	.5169	.3333	.4027
	$\frac{\alpha+1}{\alpha+2}T_{1,6}$.8344	1.822	.2970	.4781	.1022	.2568	0417	.1763	0796	.1657
	$\frac{\alpha+1}{\alpha+2}T_{2,6}$	1007	.1959	1770	.1905	2367	.1945	3028	.2080	3238	.2144
	$\frac{\alpha+1}{\alpha+2}T_{3,6}$	3842	.2670	4213	.2847	4534	.3022	4924	.3265	5056	.3355
	$\frac{\overline{\alpha}+\overline{1}}{\alpha+2}W_{1,6}$	2.277	9.981	1.150	2.632	.7710	1.292	.5097	.6983	.0833	.2266
	$\frac{\alpha+1}{\alpha+2}W_{2,6}$.5770	.9204	.4231	.6558	.3066	.4915	.1823	.3533	1421	.1877
	$\frac{\ddot{\alpha}+1}{\alpha+2}W_{3,6}$.0867	.3644	.0150	.3137	0457	.2796	1180	.2507	3565	.2530
	BLUE	3.172	15.674	1.396	3.404	.8065	1.337	.4281	.5416	.3413	.4176
	$\frac{\alpha+1}{\alpha+2}CK_6$	1.981	6.577	.7662	1.305	.3578	.4861	.0915	.2083	.7662	1.305

Table 3: Bias and MSE of the L-Estimators in the presence of outliers n = 6.

		<i>g</i> =	= <i>q</i> *								
р		Bias	MSE								
0	$\frac{\alpha+1}{\alpha+2}\bar{X}$.0000	.1250								
	$\frac{\alpha+2}{\alpha+1}T_{1,7}$	2474	.1478								
	$\frac{\alpha+2}{\alpha+1}T_{2,7}$	4137	.2370								
	$\frac{\alpha+2}{\alpha+1}T_{37}$	5455	.3487								
	$\frac{\alpha+1}{\alpha+2}W_{1,7}$.1617	.2242								
	$\frac{\alpha+1}{\alpha+1}W_{2,7}$	0173	.1721								
	$\frac{\alpha+1}{\alpha+2}W_{3,7}$	2025	.1843								
	BLUE	.0000	.1245								
	$\frac{\alpha+1}{\alpha+2}CK_7$	1941	.1194								
		<i>g</i> =	= 0.1	g =	0.2	g =	0.3	g =	0.4	g = 0	0.5
		Bias	MSE	Bias	MSE	Bias	MSE	Bias	MSE	Bias	MSE
1	$\frac{\alpha+1}{\alpha+2}\bar{X}$	1.285	3.545	.5714	.8801	.3328	.4159	.1785	.2294	.1428	.1989
	$\frac{\alpha+1}{\alpha+2}T_{1,7}$	0460	.1387	0851	.1348	1182	.1333	1572	.1340	1699	.1348
	$\frac{\alpha+1}{\alpha+2}T_{2,7}$	2926	.1791	3120	.1867	3297	.1941	3521	.2042	3599	.2079
	$\frac{\alpha+1}{\alpha+2}T_{3,7}$	4640	.2849	4758	.2934	.4868	.3016	5014	.3126	5067	.3167
	$\frac{\alpha+1}{\alpha+2}W_{1,7}$.5067	.6017	.4359	.5049	.3770	.4307	.3093	.3538	.2876	.3312
	$\frac{\alpha+1}{\alpha+2}W_{2,7}$.2043	.3007	.1667	.2722	.1331	.2487	.0913	.2222	.0770	.2140
	$\frac{\alpha+1}{\alpha+2}W_{3,7}$	0498	.2051	0729	.1990	0943	.1941	1220	.1890	1319	.1876
	BLUE	1.383	4.131	.6071	.9922	.3451	.4450	.1850	.2389	.1473	.2047
	$\frac{\alpha+1}{\alpha+2}CK_7$.7823	1.695	.6905	1.062	.0637	.1913	0543	.1284	-0.0818	.1210
2	$\frac{\alpha+1}{\alpha+2}\bar{X}$	2.571	10.27	1.142	2.288	.6657	.9284	.3571	.3976	.2857	.3137
	$\frac{\alpha+1}{\alpha+2}T_{1,7}$.6942	1.289	.2439	.3553	.0787	.2014	0454	.1460	0784	.1390
	$\frac{\alpha+1}{\alpha+2}T_{2,7}$	0925	.1601	1624	.1585	2171	.1638	2775	.1769	2968	.1828
	$\frac{\alpha+1}{\alpha+2}T_{3,7}$	3437	.2201	3798	.2369	4109	.2533	4485	.2758	4612	.2841
	$\frac{\alpha+1}{\alpha+2}W_{1,7}$	2.008	7.569	1.045	2.080	.7200	1.063	.4939	.6001	.4366	.5117
	$\frac{\alpha+1}{\alpha+2}W_{2,7}$.5926	.8339	.4479	.5973	.3391	.4497	.2237	.3240	.1880	.2921
	$\frac{\alpha+1}{\alpha+2}W_{3,7}$.1821	.3501	.1089	.2924	.0473	.2526	0251	.2169	0491	.2078
	BLUE	2.704	11.110	1.201	2.541	.6846	.9868	.3679	.4175	.2932	.3257
	$\frac{\alpha+1}{\alpha+2}CK_7$	1.778	5.297	.2445	.3880	.3251	.4025	.0869	.1779	.0314	.1487

		g =	<i>g</i> *								
р		Bias	MSE	-							
0	$\frac{\alpha+1}{\alpha+2}\bar{X}$.0000	.0875								
	$\frac{\ddot{\alpha}+\tilde{1}}{\alpha+2}T_{1,10}$	1983	.1044								
	$\frac{\alpha+1}{\alpha+2}T_{2,10}$	3350	.1647								
	$\frac{\alpha+1}{\alpha+2}T_{3,10}$	4450	.2412								
	$\frac{\ddot{\alpha}+1}{\alpha+2}W_{1,10}$.2147	.1901								
	$\frac{\overline{\alpha}+\overline{1}}{\alpha+2}W_{2,10}$.0918	.1401								
	$\frac{\ddot{\alpha}+1}{\alpha+2}W_{3,10}$	0344	.1198								
	BLUE	.0000	.0871								
	$\frac{\alpha+1}{\alpha+2}CK_{10}$	9009	.8768								
		g =	0.1	g =	0.2	g =	0.3	g =	0.4	g =	0.5
	au 1 =	Bias	MSE	Bias	MSE	Bias	MSE	Bias	MSE	Bias	MSE
1	$\frac{\alpha+1}{\alpha+2}X$.9000	1.763	.4000	.4575	.2330	.2300	.1250	.1386	.1000	.1237
	$\frac{\alpha+1}{\alpha+2}T_{1,10}$	0383	.0940	0705	.1281	0975	.0926	1287	.0941	1387	.0949
	$\frac{\alpha+1}{\alpha+2}T_{2,10}$	2314	.1221	2489	.0661	2645	.1338	2840	.1414	2907	.1442
	$\frac{\alpha+1}{\alpha+2}T_{3,10}$	3695	.1912	3811	.1982	3917	.2049	4055	.2138	4103	.2170
	$\frac{\alpha+1}{\alpha+2}W_{1,10}$.4881	.4628	.4294	.3925	.3814	.3388	.3273	.2835	.3103	.2673
	$\frac{\alpha+1}{\alpha+2}W_{2,10}$.2824	.2630	.2480	.2361	.2179	.2138	.1813	.1889	.1690	.1811
	$\frac{\alpha+1}{\alpha+2}W_{3,10}$.1102	.1691	.1510	.1585	.0653	.1496	.0383	.1395	.0290	.1363
	BLUE	.9752	2.080	.4274	.5179	.2459	.2495	.1299	.1436	.1034	.1267
	$\frac{\alpha+1}{\alpha+2}CK_{10}$	8913	1.442	8924	1.004	8935	.9244	8951	.8914	8957	.8861
2	$\frac{\alpha+1}{\alpha+2}X$	1.800	5.060	.8000	1.147	.4660	.4812	.2500	.2210	.2000	.1800
	$\frac{\alpha+1}{\alpha+2}T_{1,10}$.4609	.6050	.1565	.1893	.0416	.1208	0477	.0969	0720	.0943
	$\frac{\alpha+1}{\alpha+2}T_{2,10}$	0757	.1041	1326	.1061	1768	.1116	2256	.1222	2412	.1267
	$\frac{\alpha+1}{\alpha+2}T_{3,10}$	2668	.1437	2995	.1570	3273	.1698	3606	.1871	3717	.1934
	$\frac{\alpha+1}{\alpha+2}W_{1,10}$	1.520	4.069	.8505	1.248	.6219	.7011	.4595	.4350	.4176	.3810
	$\frac{\alpha+1}{\alpha+2}W_{2,10}$.5890	.6501	.4680	.4750	.3784	.3648	.2842	.2688	.2554	.2436
	$\frac{\alpha+1}{\alpha+2}W_{3,10}$.3149	.3237	.2453	.2625	.1878	.2190	.1214	.1773	.0998	.1659
	BLUE	1.931	5.856	.8482	1.292	.4888	.5265	.2588	.2324	.2061	.1867
	$\frac{\alpha+1}{\alpha+2}CK_{10}$	8796	2.017	8823	1.132	8850	.9710	8886	.9051	8900	.8946

4 Real Data

The following data is real data represents the waiting times (in minutes) before the service of one hundred (100) bank customers.

	Table 6: The real data .												
0.8	0.8	1.3	1.5	1.8	1.9	1.9	2.1	2.6	2.7				
2.9	3.1	3.2	3.3	3.5	3.6	4.0	4.1	4.2	4.2				
4.3	4.3	4.4	4.4	4.6	4.7	4.7	4.8	4.9	4.9				
5.0	5.3	5.5	5.7	5.7	6.1	6.2	6.2	6.2	6.3				
6.7	6.9	7.1	7.1	7.1	7.1	7.4	7.6	7.7	8.0				
8.2	8.6	8.6	8.6	8.8	8.8	8.9	8.97	9.5	9.6				
9.7	9.8	10.7	10.9	11.0	11.0	11.1	11.2	11.2	11.5				
11.9	12.4	12.5	12.9	13.0	13.1	13.3	13.6	13.7	13.9				
14.1	15.4	15.4	17.3	17.3	18.1	18.2	18.4	18.9	19.0				
19.9	20.6	21.3	21.4	21.9	23.0	27.0	31.6	33.1	38.5				

1041

-

[1] used this data set and obtained the ML estimates of the rate parameter $\hat{\theta} = 0.187$ with $SEL(\hat{\theta}) = 0.013$ for Lindley distribution and $\hat{\theta} = 0.101$ with $SEL(\hat{\theta}) = 0.010$ for the exponential distribution.

[7] used the same data. They found the ML estimates of the rate parameter θ as follows

Model	$\hat{ heta}$	â	$1/\hat{ heta}$
Lindley	0.186571		5.359886
Exponential	0.101245		9.87703
QLD	.0.196209	0.066138	5.09660

Here, we find the ML and Bayes estimates of the scale parameter θ using (10), and (14), we consider (a = b = 1). The results are presented in Table 7.

Table 7: The ML and Bayes estimates from the real data when there is no outlier.

Estimate	$\alpha = 0$	$\alpha = .02$	$\alpha = .03$	$\alpha = .04$	$\alpha = .06$	$\alpha = .1$	$\alpha = .2$
$\hat{ heta}_{ML}$	4.9385	4.9831	5.0048	5.0262	5.0678	5.1477	5.3324
$SEL(\hat{\theta}_{ML})$	0.0037	0.0002	0.0000	0.0006	0.0046	0.0218	0.1104
$\hat{ heta}_B$	4.8962	4.9398	4.9609	4.9817	5.0224	5.1003	5.2805
$SEL(\hat{\theta}_B)$	0.0107	0.0036	0.0015	0.0003	0.0005	0.0100	0.0786

We observe from Table 7 that $\hat{\theta}_{ML}$ is better than $\hat{\theta}_B$ in the following cases: ($\alpha = 0$), ($\alpha = .02$ and $\alpha = .03$. But $\hat{\theta}_B$ is better in the following cases: $\alpha = .04$, $\alpha = .06$, $\alpha = .1$ and $\alpha = .2$.

The box plot detected that the last four data are outliers.

We calculate the maximum likelihood and Bayes estimates by considering that only the last data is an outlier (p = 1). The results are presented in Table 8.

Table 8: The ML and Bayes estimates from the real data when there is a single outlier.

							-	
g	Estimate	$\alpha = 0$	$\alpha = .02$	$\alpha = .03$	$\alpha = .04$	$\alpha = .06$	$\alpha = .1$	$\alpha = .2$
0.1	$\hat{ heta}_{ML}$	4.8042	4.8495	4.8716	4.8933	4.9357	5.0171	5.2053
	$SEL(\hat{\theta}_{ML})$	0.0383	0.0226	0.0164	0.0113	0.0041	0.0002	0.0421
	$\hat{ heta}_B$	4.7626	4.8068	4.8283	4.8494	4.8907	4.9701	5.1537
	$SEL(\hat{\theta}_B)$	0.0563	0.0373	0.0294	0.0226	0.0119	0.0008	0.0236
0.2	$\hat{ heta_{ML}}$	4.8286	4.8733	4.8950	4.9164	4.9582	5.0386	5.2247
	$SEL(\hat{\theta}_{ML})$	0.0293	0.0160	0.0110	0.0069	0.0017	0.0014	0.0505
	$\hat{ heta}_B$	4.7867	4.8303	4.8515	4.8723	4.9131	4.9915	5.1730
	$SEL(\hat{\theta}_B)$	0.0454	0.0287	0.0220	0.0162	0.0075	0.0000	0.0299
0.3	$\hat{ heta}_{ML}$	4.8518	4.8964	4.9181	4.9394	4.9811	5.0611	5.2464
	$SEL(\hat{\theta}_{ML})$	0.0219	0.0107	0.0067	0.0036	0.0003	0.0037	0.0607
	$\hat{ heta}_B$	4.8098	4.8533	4.8744	4.8952	4.9358	5.0139	5.1947
	$SEL(\hat{\theta}_B)$	0.0361	0.0215	0.0157	0.0109	0.0041	0.0001	0.0379

From Table 8, we observe that $\hat{\theta}_{ML}$ is better than $\hat{\theta}_B$ in the following cases ($\alpha = 0$) $\alpha = .02$, $\alpha = .03$, $\alpha = .04$, and $\alpha = .06$ but $\hat{\theta}_{\beta}$ is better in the following cases: $\alpha = .1$, and $\alpha = .2$. We also observe that SEL of two estimators decreases when α and/or g increases just for $\alpha = 0$, $\alpha = .02$, $\alpha = .03$, $\alpha = .04$, and $\alpha = .06$. On the other hand, we evaluate $\frac{\alpha+1}{\alpha+2}\bar{X}$, $\frac{\alpha+1}{\alpha+2}T_{m,100}$, $\frac{\alpha+1}{\alpha+2}W_{m,100}$, and $\frac{\alpha+1}{\alpha+2}CK_{100}$ estimates of the scale parameter θ for m = 1, 2, 3, and 4 and for diffrent values of α . We present the results in Table 9.

Table 9:	The	estimates	of	linear	estim	ators	from	the re	eal data	ι.
	~	0.0			00		0.4		0.0	

Estimate	$\alpha = 0$	$\alpha = .02$	$\alpha = .03$	$\alpha = .04$	$\alpha = .06$	$\alpha = .1$	$\alpha = .2$
$\frac{\alpha+1}{\alpha+2}\bar{X}$	4.9384	4.9873	5.0114	5.0352	5.0822	5.1736	5.3874
$SEL(\frac{\alpha+1}{\alpha+2}\bar{X})$	0.0037	0.0001	0.0001	0.0012	0.0067	0.0301	0.1500
$\frac{\alpha+1}{\alpha+2}T_{1,100}$	4.7939	4.8413	4.8647	4.8879	4.9335	5.0221	5.2297
$SEL(\frac{\alpha+1}{\alpha+2}T_{1,100})$	0.0424	0.0251	0.0182	0.0125	0.0044	0.0004	0.0527
$\frac{\alpha+1}{\alpha+2}T_{2,100}$	4.6739	4.7202	4.7430	4.7656	4.8101	4.8965	5.0988
$SEL(\frac{\alpha+1}{\alpha+2}T_{2,100})$	0.1062	,0.0782	0.0660	0.0549	0.0360	0.0107	0.0097
$\frac{\alpha+1}{\alpha+2}T_{3,100}$	4.5592	4.6044	4.6266	4.6486	4.6920	4.7763	4.9737
$SEL(\frac{\alpha+1}{\alpha+2}T_{3,100})$	0.1942	0.1564	0.1393	0.1234	0.0948	0.0500	0.0000
$\frac{\alpha+1}{\alpha+2}T_{4,100}$	4.4661	4.5103	4.5321	4.5537	4.5962	4.6788	4.8721
$SEL(\frac{\alpha+1}{\alpha+2}T_{4,100})$	0.2850	0.2397	0.2188	0.1991	0.1630	0.1031	0.0163
$\frac{\alpha+1}{\alpha+2}W_{1,100}$	4.9115	4.9601	4.9840	5.0078	5.0545	5.1453	5.358
$SEL(\frac{\alpha+1}{\alpha+2}W_{1,100})$	0.0078	0.0015	0.0002	0.0000	0.0029	0.0211	0.1281
$\frac{\alpha+1}{\alpha+2}W_{2,100}$	4.8965	4.9449	4.9688	4.9925	5.0391	5.1296	5.3416
$SEL(\frac{\tilde{\alpha}+1}{\alpha+2}W_{2,100})$	0.0107	0.0030	0.0009	0.0000	0.0015	0.0168	0.1167
$\frac{\alpha+1}{\alpha+2}W_{3,100}$	4.8275	4.8753	4.8988	4.9221	4.9681	5.0573	5.2663
$SEL(\frac{\alpha+1}{\alpha+2}W_{3,100})$	0.0297	0.0155	0.0102	0.0060	0.0010	0.0032	0.0709
$\frac{\alpha+1}{\alpha+2}W_{4,100}$	4.7475	4.7945	4.8176	4.8405	4.8857	4.9735	5.1790
$SEL(\frac{\alpha+1}{\alpha+2}W_{4,100})$	0.0637	0.0422	0.0332	0.0254	0.0130	0.0006	0.0320
$\frac{\alpha+1}{\alpha+2}CK_{100}$	4.8704	4.9186	4.9424	4.9659	5.0123	5.1023	5.3132
$SEL(\frac{\tilde{\alpha}+1}{\alpha+2}CK_{100})$	0.0167	0.0066	0.0033	0.0011	0.0001	0.0104	0.0981

From Table 9, we note the following: (i) estimate of $\frac{\alpha+1}{\alpha+2}\bar{X}$ at $\alpha = .03$ has the lowest SEL among other values of α . (ii) SEL of every estimator $\frac{\alpha+1}{\alpha+2}T_{m,100}$ decreases as α increases.

(iii) For the trimmed estimators, $\frac{\alpha+1}{\alpha+2}T_{3,100}$ gives the best estimate among other estimators for $\alpha = .2$ while $\frac{\alpha+1}{\alpha+2}T_{1,100}$ gives the best estimate among other trimmed estimators for the other values of α .

(iv) For the Winsorized estimators, $\frac{\alpha+1}{\alpha+2}W_{1,100}$ has the smallest SEL for $\alpha = 0$, $\alpha = .02$, $\alpha = .03$, $\alpha = .04$ and $\alpha = .06$, but $\frac{\alpha+1}{\alpha+2}W_{4,100}$ has the smallest SEL for $\alpha = .1$, $\alpha = .2$

(v) $\frac{\alpha+1}{\alpha+2}CK_n$ has lowest SEL at $\alpha = 0.06$ among other values of α and among other estimators.

 $(\text{vi})\frac{\alpha+1}{\alpha+2}\bar{X}$ at $\alpha = 0$, $\alpha = .02$ and $\alpha = .03$, $\frac{\alpha+1}{\alpha+2}W_{1,100}$ at $\alpha = .04$, and $\frac{\alpha+1}{\alpha+2}T_{1,100}$ at $\alpha = .1$ have the lowest SEL among other estimators.

Acknowledgments

This research was funded by the Deanship of Scientific Research, Taif University, KSA (Research project number (1-441-140).

Conflicts of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

References

- [1] Ghitany ME, Atieh B and Nadarajah S. Lindley distribution and its applications. *Mathematics and Computers in Simulation*, 78(4): 493-506 (2008)
- [2] Mazuchelia, J. and Achcarb, JA. The Lindley distribution applied to competing risks lifetimedata. *Comput Methods Programs Biomed*, 104, 188-192 (2011)
- [3] Chesneau, Christophe, Lishamol Tomy, and Jiju Gillariose. A new modified Lindley distribution with properties and applications. Journal of Statistics and Management Systems, 24(7), 1383-1403 (2021)

- [4] Shanker R And Mishra A. A quasi Lindley distribution. *African Journal of Mathematics and Computer Science Research*, 6(4): 64-71 (2013)
- [5] Elbatal, I and Elgarhy, M. Statistical Properties of Kumaraswamy Quasi Lindley Distribution. International Journal of Mathematics Trends and Technology, 4 (10) (2013)
- [6] Elbatal, I. and Elgarhy, M. Transmuted Quasi Lindley Distribution: A Generalization of the Quasi Lindley Distribution. *Int. J. Pure Appl. Sci. Technol.*, 18(2), 59-70 (2013)
- [7] Shanker, R. Fesshaye, H. and Sharma, SH. On quasi Lindley distribution and its applications to model lifetime data. *International Journal of Statistical Distributions and applications*, 2(1): 1-7. (2016)
- [8] Opone, F., and Ekhosuehi, N.. Methods of Estimating the Parameters of the Quasi Lindley Distribution. *Statistica*, 78(2), 183–193 (2018)
- [9] Sadek, A., Mohie El-Din, M., & Elmeghawry, S.. Estimation of Stress-Strength Reliability for Quasi Lindley Distribution. Advances in Systems Science and Applications, 18(4), 39-51 (2018)
- [10] Al-khazaleh, Ahmad M. H. and Alkhazaleh, Shawkat. On Wrapping of Quasi Lindley Distribution. Mathematics, (7) (2019)
- [11] Childs A. Advances in statistical inference and outlier related issues. Ph.D. Thesis, McMaster University, (1996)
- [12] Arnold B, Balakrishnan N and Nagaraja H. A First course in order statistics. John Wiley & Sons, New York, (1992)
- [13] Lindley, Dennis V. Approximate bayesian methods. Trabajos de estadística y de investigación operativa 31.1 : 223-245 (1980)
- [14] Gradshteyn I and Ryzhik L. Tables of Integrals, Series and products. Seven edition, Elsevier Inc, (2007)