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Abstract: In this article, the definition and characterization of relative booster ideals in distributive p-algebras are given. The

relationship between disjunctive relative booster ideals and normal relative booster ideals is established in the distributive p-algebras.

A lattice congruence relation defined via the relative boosters is given and its quotient lattice structure is obtained.
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1 Introduction

O. Frink introduced the notion of
pseudo-complementation of meet semi-lattices to
generalize the class of Boolean algebras. Many authors
introduced this concept of pseudo-complementation in
different classes for example, the class of bounded lattices
to get the class of p-algebras, consequently distributive
p-algebras, Stone algebras, modular p-algebras,
quasi-modular p-algebras. Ideals are investigated in the
class of pseudo-complemented semi-lattice by T.S. Blyth
,refer to [1]

A. Badawy and M. S. Raw [2] introduced the
definition of booster ideals in distributive p-algebras in
the sense of annihilators with pseudo-complemented
elements and discussed some properties. W.H. Cornish
studied a normal lattice [3] and announced that
disjunctive normal distributive lattices are important in
the compactification theory. Y. S. Pawar and S. S.
Khopade studied the characterization of disjunctive ideals
in 0-distributive lattices, see ([4],Theorem 3.11).
Recently, many articles study properties of types of
boosters in different classes of algebras, e.g., MS-algebra
in [5] and [6], Stone almost distributive lattice in [7], [8]
and so on.

In the present article, we generalize the concept of
booster which was defined by A.Badawy et al.in [2]. The

relative booster ideals in distributive p-algebras is
defined, and its important properties are shown. The
behavior of disjunctive relative booster and normal
relative booster ideals of distributive p-algebras is
discussed, and hence the disjunctive booster and normal
booster distributive p-algebras are given. Furthermore,
the lattice congruence relations defined via the relative
boosters is established.

After preliminaries in section 2, the definition and
characterization of relative booster ideals of distributive
p-algebra L are introduced. Some related properties are
proved and the structure of relative booster ideals of L are
given in section 3. In section 4, the relationship between
disjunctive relative booster ideals and normal relative
booster ideals in distributive p-algebra is established.
Consequently, the disjunctive and normal booster
distributive p-algebras are given, and every Stone algebra
is a normal booster. Concluding by section 5, a
relationship between the lattice congruence relation Θ
and booster ideals on L is given. Moreover, the structure
(L/Θ ;∧,∨, [0]Θ ,D(L))) is investigated.

2 Preliminaries

In the present section, we recall some of the basic
definitions and theorems that will be needed.

∗ Corresponding author e-mail: eman.rezk@science.tanta.edu.eg
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Definition 1.[1] Let (L;∧,∨,0,1) be a bounded lattice. An

element a⋆ ∈ L is called a pseudo-complement of a if for

all x ∈ L

x∧a = 0 iff x ≤ a⋆

Therefore, in a bounded lattice the pseudo-complement of

a is the largest element x ∈ L with the property that a∧x =
0.

The bounded lattice L is said to be pseudo-complemented
lattice (a p-algebra, for short) if every element in it have
at most one pseudo-complement.
It is clear that 0⋆ = 1 and 1⋆ = 0. A p-algebra is called
distributive (modular) if the underlying lattice is
distributive (modular).

A distributive p-algebra is called a Stone algebra if it
satisfies Stone identity

x⋆∨ x⋆⋆ = 1, for all x ∈ L

Theorem 1.[1] Let L be a p-algebra. For all a,b ∈ L,

(1)a ≤ b implies b⋆ ≤ a⋆,

(2)a ≤ a⋆⋆,

(3)a⋆ = a⋆⋆⋆,

(4)(a∨b)⋆ = a⋆∧b⋆,

(5)(a∧b)⋆⋆ = a⋆⋆∧b⋆⋆,

(6)(a∧b)⋆ ≥ a⋆∨b⋆,

(7)(a∨b)⋆⋆ = (a⋆⋆∨b⋆⋆)⋆⋆ ≥ a⋆⋆∧b⋆⋆.

Moreover, if L be a Stone algebra, then

(8)(a∧b)⋆ = a⋆∨b⋆,

(9)(a∨b)⋆⋆ = (a⋆⋆∨b⋆⋆)⋆⋆ = a⋆⋆∧b⋆⋆.

Let L be a p-algebra, an element a ∈ L is called a closed
element if it satisfies the condition a⋆⋆ = a. The set of
all closed elements of L denoted by B(L). It is known that,

(B(L);∧,▽,⋆ ,0,1) forms a Boolean algebra where

a▽b = (a⋆∧b⋆)⋆

An element d ∈ L is said to be a dense element if it
satisfies the condition d⋆ = 0. The set of all dense
elements of L denoted by D(L).

Let I(L) be the set of all ideals of L. Then (I(L);⊆)
forms a complete lattice, and the lattice operations defined
on I(L) are given by, for I,J ∈ I(L),

I ∧ J = I ∩ J and I ∨ J = {x ∈ L : x ≥ a∨b,

f or some a ∈ I and b ∈ J}

It is known that, (I(L);∧,∨,(0],L) forms a complete
lattice. In the special case, I = {a}, a ∈ L, the ideal
(a] = {x ∈ L : x ≤ a} is called the principal ideal
generated by a ∈ L. One can see that

(a]∧ (b] = (a∧b] and (a]∨ (b] = (a∨b],

refer to [1].

Definition 2.[2] Let a be an element in a distributive p-

algebra L. Then the booster (a)△ of a is the set:

(a)△ = {x ∈ L : x∧a⋆ = 0}.

Clearly, (0)△ = (0] and (1)△ = L. In addition to boosters
have the following properties:

Proposition 1.[2] Let L be a distributive p-algebra. Then

for any a,b ∈ L:

(1)(a)△ is an ideal of L containing a,

(2)(a)△ = (a⋆⋆)△ = (a⋆⋆],
(3)(a)△ = (a] iff a ∈ B(L),
(4)(a)△ = L iff a ∈ D(L),
(5)If a ∈ (b)△, then (a)△ ⊆ (b)△,

(6)If a ≤ b, then (a)△ ⊆ (b)△,

(7)a⋆ = b⋆ iff (a)△ = (b)△,

(8)(a)△ = (0)△ iff a = 0.

Let Con(L) be the set of all congruence relations on L, it
is complete distributive lattice under set inclusion. For
any a ∈ L, the congruence class of a with respect to the
congruence Θ on L is given by
[a]Θ = {x ∈ L : x ≡ a(Θ)}. The set of all congruence
classes is denoted by L/Θ . The operations are defined on
L/Θ by
[a]Θ ∧ [b]Θ = [a∧b]Θ and [a]Θ ∨ [b]Θ = [a∨b]Θ for all
[a]Θ , [b]Θ ∈ L/Θ . Then the algebraic system
(L/Θ ;∧,∨, [0]Θ , [1]Θ)) forms a lattice called a quotient
lattice of L modulo Θ , refer to [1].

Throughout the present article, L stands for a
distributive p-algebra unless otherwise mentioned

3 Relative Boosters

In the present section, the concept of relative booster and
related properties are given.

Definition 3.Let A be a non-empty subset of L and I be a

fixed ideal in L. A relative booster of A in an ideal I is the

set Abo defined as:

Abo = {x ∈ I : x∧a⋆ = 0 f or all a ∈ A}

where a⋆ represents the pseudo-complemented element of

a in L.

In the special case, if A = {a}, we write

(a)bo = {x ∈ I : x∧ a⋆ = 0} is called the relative booster
of a in I. If I = (a] is a principal ideal generated by a in L,
then (0)bo = (0],(a)bo = (a]. If I = L, then (a)bocoincide

with the booster (a)△ as in [2].

Lemma 1.If A is a non-empty subset of L and I is a fixed

ideal of L. Then Abo is an ideal of I.

Proof.Suppose that x,y ∈ Abo, then

(x∨ y)∧a⋆ = (x∧a⋆)∨ (y∧a⋆) = 0, for all a ∈ A.

So, x∨ y ∈ Abo. Let x ∈ Abo and z ∈ I,z ≤ x, meeting both
sides with a⋆, then

z∧a⋆ ≤ x∧a⋆ implies that z∧a⋆ = 0, for all a ∈ A.

Thus z ∈ Abo and Abo is an ideal of I.

c© 2022 NSP

Natural Sciences Publishing Cor.



Inf. Sci. Lett. 11, No. 6, 1913-1918 (2022) / www.naturalspublishing.com/Journals.asp 1915

Corollary 1.The relative booster (a)bo of a ∈ L is an ideal

of I containing a.

Proposition 2.For any two elements a,b ∈ L and a fixed

ideal I in L. The following properties are true:

(1)(a)bo ⊆ (a⋆⋆],
(2)If a ≤ b then (a)bo ⊆ (b)bo,

(3)(a)bo ∩ (b)bo = (a∧b)bo,

(4)If b ∈ (a)bo then (b)bo ⊆ (a)bo,

(5)I = ∪a∈I(a)
bo,

(6)If a ∈ B(L), then (a)bo ⊆ (a],
(7)If a ∈ I∩D(L), then (a)bo = I,

(8)(a)bo = (0)bo iff a = 0,

(9)If a,b ∈ L and (a)bo = (b)bo, then :

(a ∧ c)bo = (b ∧ c)bo and (a ∨ c)bo =
(b∨ c)bo for all c ∈ L.

Proof.

(1)we have that, (a)bo = (a)△ ∩ I.Then, (a)bo ⊆ (a)△ =
(a⋆⋆].
(2)Let a≤ b and x∈ (a)bo ⊆ I. Then x∧b⋆≤ x∧a⋆= 0.
Accordingly x ∈ (b)bo and (a)bo ⊆ (b)bo.
(3)Clearly, we have (a ∧ b)bo ⊆ (a)bo,(b)bo. Now, let

x ∈ (a)bo ∩ (b)bo ⊆ (a⋆⋆]∩b⋆⋆], i.e., x ≤ a⋆⋆, x ≤
b⋆⋆. Then x ≤ a⋆⋆ ∧ b⋆⋆ = (a ∧ b)⋆⋆. Hence,

x ∧ (a ∧ b)⋆ = 0, and then x ∈ (a ∧ b)bo.Therefore,
(a)bo ∩ (b)bo = (a∧b)bo.

(4)If b ∈ (a)bo, then b∧ a⋆ = 0 which implies a⋆ ≤ b⋆.

Now, let x ∈ (b)bo. Then x∧a⋆ ≤ x∧b⋆ = 0. As a result,

x∧a⋆ = 0 and so x ∈ (a)bo.
(5)Since a ∈ (a)bo, it means that
I = ∪a∈I{a} ⊆ ∪a∈I(a)

bo ⊆ I.

(6)If a ∈ B(L), then a = a⋆⋆. By using (1),

(a)bo ⊆ (a⋆⋆] = (a].
(7)If a ∈ I ∩D(L), then a⋆ = 0. Thus, for all x ∈ I we get

x∧a⋆ = 0. Therefore I = (a)bo.
(8)a ∈ (a)bo = (0)bo = (0] iff a = 0.

(9)Let (a)bo =(b)bo, and x∈ (a∧c)bo. Then (x∧a⋆)∨(x∧
c⋆) = x∧(a⋆∨c⋆)≤ x∧(a∧c)⋆ = 0. Hence (x∧a⋆) =
(x∧ c⋆) = 0, it implies x ∈ (a)bo = (b)bo and x ∈ (c)bo.
Accordingly x ∈ (b)bo ∩ (c)bo = (b∧ c)bo (from (3)). As a
result, (a∧c)bo ⊆ (b∧c)bo. Similarly, (b∧c)bo ⊆ (a∧c)bo.

If x ∈ (a∨c)bo, then x∧ (a∨c)⋆ = x∧a⋆∧c⋆ = 0. Thus,

x∧c⋆ ∈ (a)bo = (b)bo and x∧b⋆∧c⋆ = x∧(b∨c)⋆ = 0.
Therefore, x∈ (b∨c)bo and (a∨c)bo ⊆ (b∨c)bo. Similarly,
(b∨ c)bo ⊆ (a∨ c)bo.

Let the set Bbo(I) = {(a)bo : a ∈ L} be the set of all
relative boosters of a fixed ideal I in L, and the operations
on Bbo(I) are defined as the following:

(a)bo ∩ (b)bo = (a ∧ b)bo and (a)bo ⊔ (b)bo =
(a∨b)bo for all (a)bo,(b)bo ∈ Bbo(I).

Theorem 2.The structure (Bbo(I);∧,⊔,c ,(0], I) forms a

Boolean algebra, where ((a)bo)c = (a⋆)bo represents the

complemented element of (a)bo in Bbo(I).

Proof.Since for any a,b ∈ L,(0)bo ⊆ (a)bo,(b)bo ⊆ I , and
by Proposition 2(9), the meet operation in Bbo(I) is well
defined.

Now, for any a,b ∈ L, a,b ≤ a ∨ b, by using
Proposition 2 (2), (a)bo,(b)bo ⊆ (a ∨ b)bo. That is
(a∨ b)bo is an upper bound of both (a)bo and (b)bo. Let
(c)bo be another an upper bound of both (a)bo and (b)bo.
Then (a)bo,(b)bo ⊆ (c)bo. Suppose that x ∈ (a∨b)bo, i.e.,

x ∧ (a ∨ b)⋆ = x ∧ (a⋆ ∧ b⋆) = 0. So,

x∧ a⋆ ∈ (b)bo ⊆ (c)bo. It implies that x∧ a⋆ ∧ c⋆ = 0

and x ∧ c⋆ ∈ (a)bo ⊆ (c)bo. Hence x ∈ (c)bo and
(a∨b)bo ⊆ (c)bo. As a result, (a∨b)bo = (a)bo ⊔ (b)bo.

The distributive condition can be proved as the
following, let (a)bo,(b)bo,(c)bo ∈ Bbo(I). Then

(a)bo ∩ [(b)bo ⊔ (c)bo] = (a)bo ∩ (b∨ c)bo = (a∧ (b∨ c))bo

= ((a∧b)∨ (a∧ c))bo

= (a∧b)bo ⊔ (a∧ c)bo

= ((a)bo ∩ (b)bo)⊔ ((a)bo ∩ (c)bo).

Hence, Bbo(I) is a bounded distributive lattice.
Since for any (a)bo ∈ Bbo(I) there exists

(a⋆)bo ∈ Bbo(I) such that

(a)bo ∧ (a∗)bo = (a ∧ a⋆)bo = (0)bo = (0], and if
(x)bo ∈ Bbo(I) satisfies the property (x)bo ∧ (a)bo = (0],
we get (x ∧ a)bo = (0] , and so x ∧ a = 0, that means

x ≤ a⋆, by Proposition 2(2), (x)bo ⊆ (a⋆)bo. Hence,

(a⋆)bo represents the pseudo-complementation of

(a)bo ∈ Bbo(I), and (a)bo ⊔ (a∗)bo = (a ∨ a⋆)bo = I.

Consequently, ((a)bo)c = (a⋆)bo is the complement of
(a)bo ∈ Bbo(I). Therefore, Bbo(I) is a Boolean algebra.

Example 1.Consider L in Figure 1. The relative booster of
the set A = {a,c} in the ideal I = (ζ ] is Abo = {0,a} and

its booster is A△ = {0,a,c}. Figure 2 represent the boolean
algebra of the set of all relative doosters in the ideal I.

τ

α β

α⋆ = µ = γ⋆β⋆ = γ = µ⋆

τ⋆ = ζ⋆ = δ⋆ = 0 = η⋆ = ξ⋆ = 1⋆

δ ζ

η

ξ

1

Figure 1: distributive p-algebra L

c© 2022 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1916 M. M. Atallah, E. G. Rezk: Relative Booster Ideals of Distributive...

I = (ζ ]

(α] (µ ]

(0]

Figure 2: The Boolean algebra (Bbo(I);∧,⊔,c ,(0], I)

Lemma 2.Let I be a fixed ideal of L and J be an ideal of

Bbo(I). Then:

(1)For any ideal K of L, the set {(a)bo : a ∈ K} is an ideal

of Bbo(I),
(2)The set {a ∈ L : (a)bo ∈ J} is an ideal of L.

Proof. (1)For all a,b ∈ K we get a ∨ b ∈ K. So, if
(a)bo,(b)bo ∈ {(a)bo : a ∈ K}, then
(a)bo ⊔ (b)bo = (a∨ b)bo ∈ {(a)bo : a ∈ K}. Now let
(a)bo ∈ {(a)bo : a ∈ K} and (c)bo ∈ Bbo(I) such that
(c)bo ⊆ (a)bo. Then
(c)bo ∩ (a)bo = (c)bo = (c ∧ a)bo ∈ {(a)bo : a ∈ K},
since a∧ c ∈ K. Thus {(a)bo : a ∈ K} is an ideal of
Bbo(I).

(2)If (a)bo,(b)bo ∈ J, implies (a)bo⊔(b)bo =(a∨b)bo ∈ J.
Accordingly, if a,b ∈ {a ∈ L : (a)bo ∈ J}, then a∨b ∈
{a∈ L : (a)bo ∈ J}. Assume a∈ {a∈ L : (a)bo ∈ J} and
c ∈ L such that c ≤ a. Hence (c)bo ∩ (a)bo = (c)bo =
(c ∧ a)bo ∈ J and c ∈ {a ∈ L : (a)bo ∈ J}. Therefore
{a ∈ L : (a)bo ∈ J} is an ideal of L.

Definition 4.Let I(L) be a lattice of ideals of L and

I(Bbo(I)) be a lattice of the ideals of Bbo(I), for a fixed

ideal I of L. Then define the maps:

φ : I(L) → I(Bbo(I)) as: φ(K) = {(a)bo : a ∈ K}, for any

ideal K of L and,

ψ : I(Bbo(I)) → I(L) as: ψ(J) = {a ∈ L : (a)bo ∈ J}, for

any ideal J of Bbo(I).

Theorem 3.The maps φ and ψ are satisfy the following

conditions:

(1)Maps φ and ψ are isotones,

(2)The map φ(ψ) is an identity map,

(3)The map ψ(φ) is a clousure operartor,

(4)ψ(φ(K ∩ G)) = ψ(φ(K)) ∩ ψ(φ(G)), for any two

ideals K,G ∈ I(L).

Proof. (1)If K,G∈ I(L) and K ⊆G, then φ(K)⊆ φ(G).On
the other side, suppose J,H ∈ I(Bbo(I)) such that J ⊆
H. Then {a∈ L : (a)bo ∈ J}⊆ {a∈ L : (a)bo ∈ H}. I.e.,
ψ(J)⊆ ψ(H).

(2)Assume J ∈ I(Bbo(I)) implies ψ(J) ∈ I(L).
Accordingly, (a)bo ∈ J

iff a ∈ ψ(J) iff (a)bo ∈ φ(ψ(J)). Therefore
φ(ψ(J)) = J.

(3)Now we show that ψ(φ) is extensive, isotone and
idempotent.

(i)Let a ∈ K ∈ I(L). Then (a)bo ∈ φ(K). It means
a ∈ ψ(φ(K)) and K ⊆ ψ(φ(K)). Hence ψ(φ) is
extensive.

(ii)Let K,G ∈ I(L) such that K ⊆ G and a ∈ ψ(φ(K)).
Then (a)bo ∈ φ(K) and there exist b ∈ K ⊆ G such
that (a)bo =(b)bo ∈ φ(G). Since φ(G) is an ideal of
Bbo(I),hence a∈ψ(φ(G)). As a result, ψ(φ(K))⊆
ψ(φ(G)) and ψ(φ) is isotone.

(iii)We get ψ(φ(K)) ⊆ ψ(φ(ψ(φ(K)))), Since
φ(ψ(φ(K))) ∈ I(Bbo(I)). Conversly, suppose
a ∈ ψ(φ(ψ(φ(K)))) implies (a)bo ∈ φ(ψ(φ(K))).
Let b ∈ ψ(φ(K)) and (b)bo = (a)bo ∈ φ(K).
Therefore a ∈ ψ(φ(K)) and it is idempotent.

(4)Suppose a ∈ ψ(φ(K)) ∩ ψ(φ(G)).It means
(a)bo ∈ φ(K) ∩ φ(G) = φ(K ∩ G). So,
a ∈ ψ(φ(K ∩ G)) and
ψ(φ(K ∩G)) ⊇ ψ(φ(K))∩ψ(φ(G)). The convers is
clear.

4 Disjunctive and Normal Relative Boosters

In the present section, the behavior of a disjunctive
relative booster ideal and a normal relative booster ideal
in distributive p-algebra are established.

Definition 5.An ideal I of L is a disjunctive relative

booster if it satisfies

(a)bo = (b)bo implies that a = b for all a,b ∈ L.

Definition 6.An ideal I of L is a normal relative booster

ideal if it satisfies

(a)bo ∨ (b)bo = (a∨b)bo for all a,b ∈ L

In particular case I = L, we can say that L is called
disjunctive (or normal) booster.

Example 2.Consider L in Figure (1). The ideal (τ] is
disjunctive and normal relative booster while the ideal (η ]
is normal relative booster but not disjunctive. The ideal
(ξ ] is neither disjunctive nor normal relative booster in L.

Theorem 4.Let I be a disjunctive relative booster ideal of

L. Then I can be embedded into Bbo(I).

Proof.Suppose that ϕ : I → Bbo(I) is defined by: ϕ(a) =
(a)bo, for all a ∈ I. It is easy to see that ϕ is well defined.
Moreover,

ϕ(a∧b) = ϕ(a∧b)bo = (a)bo ∩ (b)bo = ϕ(a)∩ϕ(b),and

ϕ(a∨b) = (a∨b)bo = (a)bo ⊔ (b)bo = ϕ(a)⊔ϕ(b).

Also, ϕ is one-to-one follows from the disjunctive of I.

Corollary 2.L is disjunctive booster iff L is a Boolean

algebra.

A characterization of a normal relative booster ideal is
given in the following results:

Theorem 5.An ideal I of L is normal relative booster iff

Bbo(I) is a Boolean sub-lattice of I(L).
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Proof.The necessary condition follows from Theorem 2.
Conversely, suppose that B+(I) is a Boolean sub-lattice of
I(L) and for all (a)bo,(b)bo ∈ Bbo(I)

(a)bo ∨ (b)bo = (c)bo, for some c ∈ L.

So, (a)bo,(b)bo ⊆ (c)bo, and a,b ≤ a∨ b, by Proposition
2(2),(a)bo,(b)bo ⊆ (a∨b)bo. Thus, (c)bo and (a∨b)bo are
upper bounds of both (a)bo and (b)bo. Since L is
distributive, then I(L) so, and

(c)bo ∧ (a∨b)bo = (c)bo ∧ [(a)bo ⊔ (b)bo]

= [(c)bo ∧ (a)bo]⊔ [(c)bo ∧ (b)bo]

= (a)bo ⊔ (b)bo = (a∨b)bo.

Therefore (a∨b)bo ⊆ (c)bo and (a)bo ∨ (b)bo = (a∨b)bo.

Corollary 3.L is normal booster iff Bbo(I) is a Boolean

sub-lattice of I(L).

Theorem 6.If L is a Stone algebra, then L is a normal

booster.

Proof.Since, a,b ≤ a ∨ b, then by Proposition 2(2),
(a)△,(b)△ ⊆ (a ∨ b)△ and so (a)△ ∨ (b)△ ⊆ (a ∨ b)△.

Now, suppose that x ∈ (a ∨ b)△,i.e.,

x ∧ (a ∨ b)⋆ = x ∧ a⋆ ∧ b⋆ = 0. It implies that

(x ∧ a⋆ ∧ b⋆] = (x ∧ a⋆] ∧ (b⋆] = (0]. Hence

(x ∧ a⋆] = (x] ∧ (a⋆] ⊆ (b⋆]⋆ = (b⋆⋆] = (b)△. But

(x] ∧ (a⋆⋆] ⊆ (a⋆⋆] = (a)△.

Accordingly, ((x] ∧ (a⋆⋆]) ∨ ((x] ∧ (a⋆]) = (x] ∧
((a⋆]∨ (a⋆⋆]) = (x]∧ (a⋆ ∨a⋆⋆] = (x] ⊆ (a)△∨ (b)△.

Therefore, x ∈ (a)△∨ (b)△ and (a)△∨ (b)△ = (a∨b)△

Corollary 4.A disjunctive booster distributive p-algebra

is a normal booster

The convers of the above corollary is not true. For
example, the Stone algebra of three elements chain is
normal booster but not disjunctive booster.

5 Congruence Relations Via The Relative

Boosters

In the present section a lattice congruence defined via the
relative boosters is studied and some properties are
derived.

Definition 7.[6] A Gilvenko congruence relation Φ on L

is defined as

a ≡ b(Φ) i f f a⋆⋆ = b⋆⋆.

Theorem 7.Let Θ be a binary relation defined on L by the

rule, for a fixed element z ∈ L and fixed ideal I of L,

a ≡ b(Θ) iff (a)bo ∩ (z)bo = (b)bo ∩ (z)bo for all a,b ∈ L.

Then Θ is a lattice congruence on L.

Proof.It is clear that,Θ is an equivalence relation on L.
Now, let a ≡ b(Θ) and c ≡ d(Θ) for all a,b,c,d ∈ L by
the definition, we get

(a)bo ∩ (z)bo = (b)bo ∩ (z)bo and (c)bo ∩ (z)bo = (d)bo ∩ (z)bo,

thus

(a∧ c)bo ∩ (z)bo = (a)bo ∩ (c)bo ∩ (z)bo = (b)bo ∩ (d)bo ∩ (z)bo

= (b∧d)bo ∩ (z)bo, and

(a∨ c)bo ∩ (z)bo = ((a∨ c)∧ z)bo = ((a∧ z)∨ (c∧ z))bo

= (a∧ z)bo ⊔ (c∧ z)bo = (b∧ z)bo ⊔ (d ∧ z)bo

= ((b∧ z)∨ (d ∧ z))bo = ((b∨d)∧ z))bo

= (b∨d)bo ∩ (z)bo

Therefore, a∧c ≡ b∧d(Θ) and a∨c ≡ b∨d(Θ)). That is,
Θ is a lattice congruence relation on L.

Example 3.Consider relative boosters of elements of
lattice L in ideal I = (ζ ]. Closed curves in Figure 3
represent the congruence classes of relation Θ which is
defined as a ≡ b(Θ) iff (a)bo ∩ (α)bo = (b)bo ∩ (α)bo

for a fixed element α ∈ L and for all a,b ∈ L.

τ

α β

α⋆ = µ = γ⋆β⋆ = γ = µ⋆

τ⋆ = ζ⋆ = δ⋆ = 0 = η⋆ = ξ⋆ = 1⋆

δ ζ

η

ξ

1

Figure 3: Congruence classes of relation Θ

Corollary 5.If the fixed element z in L, z ∈ I ∩ D(L) is

dense element, then the congruence relation Θ on L

defined as

a ≡ b(Θ) iff (a)bo = (b)bo for all a,b ∈ L

In particular case, whenever I = L, we have

a ≡ b(Θ) iff (a)△ = (b)△ for all a,b ∈ L

A Gilvinko congruence is an example of this
congruence.

Theorem 8.Let Θ be a congruence relation on L defined

as

a ≡ b(Θ) iff (a)bo = (b)bo for all a,b ∈ L.

Then, the structure (L/Θ ;∧,∨,c ,(0],D(L)) forms a

Boolean algebra.
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Proof.From the definition of the class
[a]Θ = {x ∈ L : (x)bo = (a)bo}, we have

[0]Θ = {x ∈ L : (x)bo = (0)bo}= {0}= (0].

So, [0]Θ is the smallest congruence class of L. Also, let
d ∈ D(L),

[d]Θ = {x ∈ L : (x)bo = (d)bo}= {x ∈ L : (x)bo = (1]}

= {x ∈ L : x⋆ = (0]}= D(L).

D(L) is a class of L/Θ , since the set of dense elements
D(L) forms a filter of L, then for any x ∈ L and d ∈ D(L),
we have x∨d ∈D(L). Thus [x]Θ ∨[d]Θ = [x∨d]Θ =D(L).
Therefore, D(L) is the largest element of L/Θ . Moreover,

[a]Θ ∧ [a⋆]Θ = [a ∧ a⋆]Θ = [0]Θ
and [a]Θ ∨ [a⋆]Θ = [a∨a⋆]Θ = D(L).

It means that the complement ([a]Θ)c of [a]Θ is

[a⋆]Θ . As a result, L/Θ is a Boolean algebra.

Example 4.Consider relative boosters of elements of lattice
L in ideal I = (ζ ]. Closed curves in Figure 4 represent the
congruence classes of relation Θ which is defined as a ≡
b(Θ) iff (a)bo ∩ (δ )bo = (b)bo ∩ (δ )bo for all a,b ∈ L. It
is equivalent to a≡ b(Θ) iff (a)bo = (b)bo, since δ ∈D(L).
Figure 5 shows the Boolean algebra of L/Θ .

τ

α β

α⋆ = µ = γ⋆β⋆ = γ = µ⋆

τ⋆ = ζ⋆ = δ⋆ = 0 = η⋆ = ξ⋆ = 1⋆

δ ζ

η

ξ

1

Figure 4: Congruence classes of relation Θ

D(L)

[α]Θ [β ]Θ

(0]

Figure 5: The Boolean algebra
(L/Θ ;∧,∨,c ,(0],D(L))

Corollary 6.Let Bbo(I) be a Boolean algebra of relative

boosters of fixed ideal I of L and Θ be a congruence

defined as

a ≡ b(Θ) iff (a)bo = (b)bo for all a,b ∈ L.

Then, L/Θ ∼= Bbo(I).

6 Conclusion

(1)The structure of relative booster ideals of a distributive
p-algebra L forms a Boolean algebra, and hence it is
a generalization of the booster ideals of L. Moreover,
there is a closure operator generated by I(Bbo(I)) on
the lattice ideal of L.

(2)A distributive p-algebra L is disjunctive booster iff L

is a Boolean algebra, and L is normal booster iff the
structure of booster ideals is a sublattice of the
structure of all ideals of L.

(3)If the congruence relation Θ defined via the relative
booster ideal of a distributive p-algebra L. Then the
structure (L/Θ ;∧,∨,c ,(0],D(L))) forms a Boolean
algebra isomorphic to the Boolean algebra of relative
boosters.
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