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Abstract: In this paper, a class of impulsive functional differential systems isstiyated. It is proved that for the asymptotic stability
of the zero solution of the system considered, it is sufficient that onlyesmmponents of the right-hand side of the system are bounded
for unbounded values of time. For functional differential equationsawitimpulses, similar results were proved by Burton and Makay
using Lyapunov—Krasovskii functionals. The goal of this paper is bogthese criteria for a class of impulsive functional differential
systems with variable impulsive perturbations applying the LyapunowxRikhin technique.
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1 Introduction are an analogue of Lyapunov functions. Moreover, the
technique of investigation essentially depends on the

Since the 1960s, different classes of functionalchoice of minimal subsets of a suitable space of piecewise

differential equations (FDEs) have been object ofcontinuous functions, by the elements of which the

numerous investigations related to the applications ofderivatives of Lyapunov’s functions are estimated. The

these equations to almost every area of appliednethod is known as the Lyapunov—Razumikhin function

sciences 3, 5, 6]. The framework of the more than 50 method B-9]. It is proved that for the asymptotic stability

years old stability theory and asymptotic behavior studiesof the zero solution of the system considered, it is

for FDEs have not lost their attraction and have beensufficient that only some components of the right-hand

extended widely. On the other hand, many physicalside of the system are bounded for unbounded valuges of

systems undergo abrupt changes at certain moments d&for functional differential equations without impulses,

time due to impulsive inputs. In terms of the mathematicalsimilar results are proved by Burton and Mak&y ising

treatment, the presence of pulses gives the system kyapunov functionals.

mixed nature, both continuous and discreteg?[ 4, 7-9].

At the present time, there have appeared many results for

equations with fixed moments of impulse effect. In the 2 Prelimaries

investigation of impulsive differential equations with s . ) ) )

variable impulsive perturbations, there arises a number ofet " > 0, R® be thes-dimensional Euclidean space with

difficulties related to the phenomenon “beating” of the NOrM||-[l.to € Ry =[0,e0), J C R, and 0 D C R®. Define

solutions, bifurcation, loss of the property of autonomy, the following class of functions:

etc. [2,7,8]. The wider application, however, of this type PCJ,D] = {0:J— D: o is piecewise continuous

of equations requires the formulation of effective crieri with points of discontinuityl € J

for stability of their solutions. In the present paper, the

asymptotic stability of the zero solution for a class of -

impulsive functional differential systems with variable and o(f-0)=0(f)}.

impulsive perturbations is studied. For this purpose,Let R} = {x € R®: ||x|| < H}. Consider the system of

piecewise continuous auxiliary functions are used whichimpulsive functional differential equations with variabl

at whicha(f — 0) ando(f + 0) exist
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impulsive perturbations

X(t) = f(t,x) +9(t,%), = h(t, %, %),

@)

f 1 [to,0) x PC
g: [t07°°) X Pq[— 70]5Rr|-?] — an
h: [to,) x PC[—r,0],R

and fork € N,
T Ry X RY — (tg, ), A R} - R",
Bk: R} - R", C¢:RY xRN —R™

AX(t) =x(t+0) —x(t—0), Ay(t) = y(t+0) —y(t—0), and

fort > to, x € PC[[—r,0],R}] andy; € PC[[—r,0],R}}] are
defined by

x(s) =x(t+s) and w(s) =y(t+9)

for —r < s< 0, respectively. Let
¢0 € Pq[_r?oLRu] and (RS Pq[_r,o]va

Denote by (x,y) = (X(:;to, o, @),Y(:;to,$0.@)) the
solution of system) satisfying the initial conditions

X(t;to, Po, ) = Po(t —to), to—r <t <to,

y(t to, ¢o, ) ([b( —t ), to—r <t<tp, @
X(to+ O;to, $o, @) = ¢0(0),

y(to + Osto, o, @) = @(0).

The solutions (x,y)

first kind in which they are left continuous (seg)] i.e.,

of system 1) are piecewise
continuous functions with points of discontinuity of the

the momentty. It is clear that the solutions of systems
with variable impulsive perturbations have points of
discontinuity depending on the solutions, i.e., different
solutions have different points of discontinuity. Thisdea
to a number of difficulties in the investigation of such
systems. One of the phenomena occurring with systems
of type (0) is the so called “beating” of the solutions. This
is the phenomenon when the mapping pdtnk(t), y(t))
meets one and the same hypersurfage several or
infinitely many times 2,7, 8].

Together with systemljj, we consider the impulsive
system

X(t) = f(t,%), t#wXx(t),0), keN, 3)
AX(t) = Ac(x(t)), t=Tt(x(t),0), ke N.

Let To(X,y) =to for (x,y) € R}y x R}. We assume that the
functionsty are continuous such that

to < Ti(X,Y) < T2(Xy) <...Tk(X,y) > as K—e

uniformly on R}, x R}. We also suppose that the
functions f, g, h, A¢, Bx and Cx are smooth enough to
guarantee existence, uniqueness, and continuabilityeof th
solution (x,y) = (X(-;to, $o, @), ¥(-;to, po, @)) of (1) and
of the solution x(-;to,¢0) of (3) for each
$o € PC[-r,0,RY], @ € PC[—r,0, R[] andt > to.
Existence and uniqueness criteria are given2ir8], and
we have not included them here.

In the remainder of this paper, we shall use the
following assumptions:

(A1) There exists a constaht> 0 such that

Ih(t,x,y)|| <L for
(t,%,¥) € [to,) x PC[—r,0],Rf}] x PC[—r,0],R{}].

(A2) There exists a continuous functié R, — R such
thatP(0) =0 and

l9(t, @)l <P(lo®)[)) for te
—r,t],RY].

[to, )
and any functiorp € PCJt

at the moments;, when the integral curve of the solution (As) If x€ R} andy € R, then for allk € N,

(x,y) meets the hypersurfaces

0 = {(t,x,y) € [to, ) x Ry x RJ : t = 1(x,Y)},

the following relations are satisfied:

X(ti, —0) = x(ty,),
X(t|k +0) = X(tlk) +A|k(X(t|k)) + Blk(y(tlk))>
y(t|k - 0) = y(t|k)7

y(ti, +0) = y(ty,) +Ci, (x(t, ), y(t,))-

The pointsty (to < tx < txy1), k € N, are the impulsive

moments. Let us note that, in generkl# . In other

(X4 A(X) +Br(Y) [ < [IX]

and
ly+Cx Y < Iyll-

(A4) The integral curves of systeni)(meet successively
each one of the hypersurfaceg k € N, at most once.

(As) f(t,0) =0, 9(t,0) =0, h(t,0,0) =0 fort € [tg,0).

(Ag) Ac(0) =0, B,(0) =0,Cy(0,0) =0 fork € N.

The condition (A) guarantees the absence of the
phenomenon “beating” inlj. It is clear that in this case,
the integral curve of each solution of systeB) (neets
each of the hypersurfaces

words, it is possible that the integral curve of the problem

under consideration does not meet the hypersurfpcat

s = {(t,X) € [to,) x R} : t = T1y(x,0)}
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at most once; i.e., for system3)( the phenomenon
“beating” is not observed either. We point out that
efficient sufficient conditions which guarantee the
absence of “beating” of the solutions of impulsive

functional differential systems are given @[
We now introduce the following notations:

I¢lle = sup [l¢(t—to)|| for ¢ €PC[-r.0RY],

tG[to—r,to]
lolr = sup [@(t—to)]| for ¢ePC[-r,0,RY],
tG[tofl’.to]
K= {ae C[R‘HR+} . aT? a(o) = 0}7
and fork € N,
Gk = {(t,X,y) € [to,®) x R} x R} :
Tk—l(xvy) <t< Tk(xvy)}v
Q= {(t,X) € [to, ) x R}y x RY:
Tk_]_(X, O) <t< Tk(X, 0)}
and

G=JG, Q=]
keN keN

We shall investigate the stability of the zero solution
of system (). To this end, we will use the following
definitions of some stability properties of the zero

solution of @).

Definition 1. The zero solution of systefh) is said to be

(a) stableif for all to € R and for all € > 0, there exists
0 = O(tg, €) > O such that for all

(¢07qb) € Pq[_no]’Ra] x PCH—I', 0]7Rm}

satisfying
([ ollr + [[@llr <9,
we have

[1X(t;to, $o, @) || + [IY(t:to, do, ) || < €

forallt > tg;

(b) uniformly stableif the numberd in (a) is independent
oftg e Ry;

(c) attractiveif for all tp € R, there exists\ = A(tp) >0
such that for alle > 0, for all

(¢07(R)) € PC[[—F,O],R&] X Pq[_no]?Rm}
satisfying
[[¢ollr + ll@llr <A,
there existy/ = y(to, Po, @, €) > O with
[1X(t;to, @0, @) [| + [ly(tito, bo, @) < €

forallt >to+ vV,

(d) equi-attractivef the numbely in (c) is independent of

(¢07(R)) € PC[[—r,O],Rm X Pq[_r’o]va];

(e) uniformly attractive if the number A in (c) is
independent ofgte R, and the numbely in (c) is
independent of

(to, o, @) € R, x P[—r,0],RY] x P[—r,0], RY];

(f) asymptotically stablé it is stable and attractive;

(g) equi-asymptotically stableif it is stable and
equi-attractive;

(h) uniformly asymptotically stabli it is uniformly stable
and uniformly attractive.

Definition 2. A function V: [tg,») x R} x R} = R
belongs to classy/frovided

1.V is continuous in G and locally Lipschitz continuous

with respect to its second and third arguments on each

of the sets @ ke N;

2.V(t,0,0) =0fort € [to, );

3. For each ke N and any point(tg, X, Ys) € Ok, there
exist the finite limits

(txy)—(t5.x5.5)
(t,xy)€Gy

V(t5 +0,%5,¥p) = lim
( 0 ;XQ,YS) () (6 %5 0)
(txY)€Cy 11

V(tvxay)a

V(t,xy),

and the equality Vi — 0,x5,Y5) = V (15, %5, Y§) holds;
4. For each ke N and any(t,x,y) € gk, we have

V (t+ 0, X+ Ac(X) +Bk(y), Y +Ck(X,y)) < V(t,x, y%-4)

Definition 3. A function W: [tp,») x R}} — R belongs to
class W provided

1. W is continuous i®2 and locally Lipschitz continuous

with respect to its second argument on each of the sets

QL keN;

2.W(t,0) =0fort € [tg, »);

3. For each ke N and any pointt;, x;) € , there exist
the finite limits

W(té_07xz)) = lim W(t7X)7

(t‘x)a(té ,XB)
(tx)eQy

W(ts+05¢) = lim  W(t,x),

(LX) = (tg5%5)
tX)€Qs1

and the equality Wt — 0,x5) = W(t§, Xg) holds.
4. For each ke N and any(t, x) € s, we have

Wt +0,x+A(x)) < W(L,). 5)

© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1478

N SS ¥

M. J. Bohner , I. M. Stamova: Asymptotic Stability Criteria for a Class of...

Definition 4. LetV € Vp. Fort > to with t # T(X(t), y(t)),
ke N, and

(¢a(p) € Pq[t =

we define by

t]aREI] X Pq[t - "»t],Rm,

DLV (L9 (1), 9(1) = lig\Sngé[—V(t, b(1), 0(1))+
V(t+3,0(t)+

S(f(t,¢r)+9(t @), @(t) +Sh(t, dr, @))]
the upper right-hand derivative of V with respeci{19.

Note that in Definition4, D/\V(t,¢(t), (1)) is a

@

functional wherea¥ is a function. This special feature

2. There exist functions ¥ Vp and g c € K such that

a([lx[| +[lyl) <V(t.xy),

forall (t,xy) € [to,) x R} xR}] (8)
and the inequality
DV (t,9(1), @) < —c(llo)]) 9)

is valid for any te [to, o), t # (¢ (1), (1)), ke N,
and any functions

(¢,9) e POt —
that satisfy(6).

r,t],RY] x Pt —r,t], RY]

was a source of difficulties in the application of the 3. There exist functions W Wp and &,c; € K and a

second method of Lyapunov for functional differential

equations. Using simple considerations, Razumikiin [
proved that the derivativé)a)V(t,¢(t),(p(t)) should be

estimated only by the elements of minimal subsets of the
integral curves of the investigated system when the

condition
V(t+sd(t+s),@t+s) <V(t,o(t), @), s€[-r,0)
(6)

holds. The condition &) is called the Razumikhin

condition and the corresponding technique is known as

Razumikhin techniqu@-9].

Analogously, one can define the upper right-hand

derivativeDZg)W(t, ¢ (t)) for an arbitrary functioW € Wy

fort > to, t # e(x(t),0), ke Nand¢ € POt —r,t], R}}],
which will be estimated whenever
W(t+s¢(t+s)) <W(t,¢(t)), se[-r,0). (7)

Let ty < txy1, k € N, be the moments in which the

integral curve (t,x(t;to, do, @),Y(t;to, Po, @)) of the
problem (), (2) meets the hypersurfaceg, k € N. In the

proof of the main results, we shall use the following

lemma.

Lemma 1(See 8]). Assume that the function ¥ \j is
such that the inequality

D™V (t, 9 (1),

is valid for t € [tg,), t # tk, k € N, and any functions
(¢7 (p) € Pq[t - rat]aRﬂ] X Pq[t - rat]aRm] for WhICh (6)
is true. Then, for t tg,

o(t)) <0

V(t,X(t;to, $o, @), Y(t; to, do, b))

<V (to+0,¢0(0),®(0)).

3 Main Results

Theorem 1. Assume the following.
1. ConditiongA1)—(As) hold.

constant d> 0 such that

ay(|Ix[) < W(t,x) (10)
for all (t,x) € [to, ) x R},
W(t,x1) —W(t )| <dxa—xf  (11)

forallt € Jto,0) and %, %2 € R}}, and the inequality

D W) (t, 9 (1)) < —ca(W(t, 9(t)))

is valid for any te [tg,»), t # Tk (9(1),0) k € N, and
any functiong € PC[[t —r,t],R}}] that satisfieg7).

Then the zero solution of systefh) is asymptotically
stable.

12)

Proof. Let € € (0,H) andtp € R;. From the condition
V(tp,0,0) = 0 and the properties of the function, it

follows that there exists a constadit= d(tp, &) > 0 such
that if ||x|| 4 ||ly|| < &, then

sup  V(to+0,x,y) < a(e).
x|+l <o

Let (¢o, @) € PC[—r,0,R}y] x PC[[—r,0],R{}] be such
that

[dollr + [ @llr < &
and let (xy) = (X(-ito, fo, %), Y(-;to, b0, )) be the

solution of problem 1), (2). Since all conditions of
Lemmal are met, we have

V(t,X(t;to, do, %)7y(t;t07 ¢o, (R)))

<V(to+0, $0(0), @(0))

for allt € [tp, o). On the other hand,

1#0(0)]| + @ (O)| < l[gollr + [l wllr < S

and henc¥ (to+0, ¢0(0), @ (0)) < a(e). From @), (4) and
the last inequality, we find

a(|[x(t;to, ¢o, @l + [[y(t; to, po, @) )

© 2014 NSP
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< V(t,X(t; to, do, @), Y(t; to, Po,
< V(to+0,0(0), ®(0))
< a(e),

®w))

which implies that

[[X(t;to, $o, )| + [ly(t;to, do, )| < €

for all t > tg. This implies that the zero solution of system
(1) is stable. Then we can choose a numbet A (tp) >0
such that if

[dollr + ll@llr <A,

then

[I(t;to, do, )| + [[y(t;to, po, @) || < H

for anyt > to. We shall prove that in this case

Jim y(t;to, o, v) = 0. (13)
If we suppose thatlQd) is not true, then for some, there
exists a sequencgr}r_; € [to, ) tending toe for R —
oo such that]|y(ér)|| > & for all Re N. If t,, ke N, are

the moments in which the integral curve of the solution

(X(+;t0, $0, @), (- to, $o, )) meets the hypersurfaceg,
k € N, then fort # ty, by (A1), we obtain

d :
IOl <501 = oyl <t s
We shall prove that

Ily(t)|| > €0/2 for te[ér—(0/2L),&R] = Jr.
In fact, let 0< ég—t < &/2L. Integrating L4) fromt to
&r, we obtain

= d dr<L(&r—t)< 2
| g mler<LE-n< 3.
On the other hand, each intendal R e N, contains a finite
number of the point$ty }. Assume, for instance, that these
are the pointss,ts.1,...,tsyp. Then by (4), we obtain

[ 8 (o) = / 4 V(D) e
S [ Spymlar
] s+1 tj— l
— d
+ /tw (D) ldr
= Iys=0l-lyt+0)
£ Iy =0~ Iuty-s-+ O]
j=st1

+Iy(Er—0)[ = [Iy(tstp + O
> [ly(&r) [l = ly(®)I]-

Therefore,

ér
eo— Iyl < (&Rl — Iyl < [ o IvDlidr < 2

whence we deduce thdly(t)|| > &/2. If we choose a
suitable subsequence of the sequefiég} (which we
again denote by{égr}), then we can assume that the
intervals Jr do not intersect one another and
to < &1 — (&/2L). Then, from 0), we deduce that

DoV (L, 9(1), p(t) < —c(&/2)
in the intervalslg and
DoV (L, 9(1),p(t) <0

for the remaining values dffor whicht # (¢ (t), @(t)),
k € N, and whenever

V(t+s¢(t+s),ot+s) <V(t,o(t),

forse [—

o(t))
r,0). Integrating and applying}, we obtain

V(&r,X(&r),Y(§r)) <V (to+0, $0(0), @(0))

—c(g—zo) g—fR—> —o as R— oo,

which contradicts §). Hence, 13) holds. Next we shall
prove that

w(t) =W(t,x(t)) =0 as t— oo. (15)
Applying (11), we obtain
D" W)(t,¢) +dlg(t, )|
fort € [to, ), t # (9, @), k€ N, and for

¢ ePqt—r, ¢ € POt —r.t], |RY).
Hence, by 12) and (A), we have

D "Wy (t, ¢ (1)) < —ca(W(t, ¢ (1)) +dP(@(t)])) (16)

fort € [to, ), t # (P (1), @(t)), ke N,

¢ e PCt —rt],RY], @ePdt—r,

and wheneveW(t+s,¢(t+s)) <W(t,d(t)), se
We set

D+VV(]_) (ta ¢) S

t], RA,

t), R,
[—r,0).

limsupw(t) =

t—o0

a, Ilmlogfw(t) =

B.

If we assume thatr > 3, then for an arbitrarily small

numberu > 0, we can find sequenceg > p, — o for

n — oo such that
w(pn) =

B+u, W(h)=a—u,
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and B+ u < w(t) < a—u for p, <t < gy Since the
function P is continuousP(0) = 0, and lim_ y(t) = 0,
there existy € N such that fom > v andt > p,, we have

P(lot)]) < LEFH)

Then, from (6), we find

DWy 1, 8(1)) < ~ca(B + ) +a L)

for n>v andt € (pn,0n), t # (P (1), e(t)), which
together with %) vyields w(pn) > w(q,). Hence

=0

B+ 1 > o — u, which contradicts the assumption that

o > [. This shows that there exists the limit

limW(t,x(t)) =0 >0.

t—o0

If we assume now that > 0, then we can find a number
T > 0 such that

be such that
[ollr + llgollr <&

and let (x,y) = (X(;to, $o, @),Y(:;to, Po, )) be the
solution of problem J), (2). As in Theoreml, we prove

that

a(|x(t;to, go, @l + [[y(t;to, $o, @)I|)

< V(t,x(t;to, o, @), Y(t; o, do, )

< V(to+0,¢0(0), %(0))

fort > tg. From the above inequalities anti7f, we get the
inequalities
a(|[x(t;to, do, @l + [[y(t;t
< V(to+0,60(0),®(0))
< b([|¢o(0)[| +[|@(0)])
< b([[gollr + l@llr)

< b(d) < a(e),

from which it follows that

@0, @)|)

[[X(t;to, do. @) || + [|y(t;to, b0, @) || <& for t>to.

and This proves the uniform stability of the zero solution of
system {). We can prove the equi-attractivity of the zero

solution of systemX) by arguments analogous to those in

forallt > T. Then, applying 16) again, we obtain
(o) 1 o

+ < — . —

D Wy (t.¢(1) < & (5) +doser ()
1 o
= —3a(3) <0
fort > T, so that by virtue ofg), through an integration,
we get
1 (o)
W(t,X(1)) = W(TX(T) =51 (5) (t=T) = —eo

ast — oo, which contradictsX0). Hence {5) holds. Thus,
by (10), we obtain that

lim x(t;to, go, @) = O.

Taking into account that lim.. Y(t;to, #o, @) = 0, we
conclude that the zero solution of systet) i attractive.
This completes the proof.

Theorem 2. Let the conditions of Theorefinbe satisfied
and let a function k= K exist such that

V(t,x,y) < b([IX[+[IYI]), (t.%,y) € [to, ) x R} x R(h}?)
Then the zero solution of systét is uniformly stable and
equi-asymptotically stable.

Proof. Lete € (0,H). Choos&d = d(¢) > 0 so thab(d) <
a(e). Let

(¢Oa(ﬂ)) € Pq[_rv O}’erjl] X Pq[—l’, 0]’Rm]

the proof of Theorem.

Theorem 3. Let the conditions of Theorethbe fulfilled
and let a function b e K exist such that

W(t,x) < by (|[X]]), (t.X) € [to,0) xR (18)

Then the zero solution of systeifl) is uniformly
asymptotically stable.

Proof. From Theoren?, it follows that the zero solution of
system {) is uniformly stable. Hence, for angy < (O,H],
there exist® = d(¢) > 0,0 < ¢, so that if

(¢0a%) € Pq[—l’,O],]Rm X Pq[_rvo]’Rm]

is such that
ldollr + ll@llr <9,
then
[X(t;to, $o, @) | + [ly(t;to, do, @)l < €
for all t > to. Now we shall prove that the zero solution of

system 1) is uniformly attractive. Choosé& = d,(¢) > 0
so thatd;(€) < &/2 and

P(n) < %cl (a1 (;5» for 0<n<&, (19)

whered is the Lipschitz constant for the functiof. Let,
moreover,T; = T1(€) > 0 andT, = T,(g) > 0 be such that

b(H) —a(&1/2)

O @)

(20)
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and SW(t0+T1+T2, (to+T1+T2))
2[by(H) —a1(6/2)]
To(e) > 21 <W(&1+0,0(é1))
28)> == (ar(6/2) D
Letv € N be such that —Cl< ( )) (to+Ti+To—¢&1)
&¢(41/2)

b(H) — (v 1= <0 (22) < W(EL+0.do(&) - ( ( )) T

Letto e R,
n m < bl(H ( (5>> al 5/2)]
(60, @) € PC[-1,0], Ry x PC[-r,0], R 2 ca( al (8/2))
be such that —a (5>
1 .
[¢ollr + llgllr <& 2

and let (x,y) = (X(-;to, b0, ®).Y(-;to, do, @)) be the The contradiction obtained shows that there exists

solution of problem 1), (2). Assume that for all
t € (to,to + T1], the inequality||y(t)|| > d1/2 holds. Then
from (9), we obtain

DV (.00 < —cllo < o( 3 ) @

fort € (to,to+ Ta], t # (P (1), @(t)), k € N, and for
(¢,(P) € Pq[t* r,t},er X Pq[tfrvﬂaer-Tl]}

satisfying @). Integrating 23) from tg to to + T and using
(4), (8), (20), we obtain

a(2) = atlotto+ T+ loto+ )
<V(to+T1,¢(to+Tw), ¢(to+T1))
< V(to+0.40(0),(0)) ~Tuc 7

o\ b(H) —a(4/2)
< b(H)—c<2> —c(61/2)

(%)

& € [&1,t0 + T1 + To] such that||x(&2)|| < /2. Then we
have

4]
IX(&2) [ +[ly(&2)]| < 5 +01 <6,

and from the uniform stability, it follows that
()| +[ly(t)[| < & fort > &. Hencelx(t)|| + [ly(t)|| <&
for t > to+ Ti(€) + T2(€). Now, let us suppose that that
there existsfs € [&1,t0 + T1 + To] for which |ly(&3)|| > &1
and let

&s=inf{t € [E1,to+ T+ T2t [[Y(D)]| = S}

If & = w(X(&),y(é)) for some R € N, then

lly(é5+0)|| = 01 and||y(&s)|| < d1. But then, from (A),

we obtain that

1y(és+0)[| = [ly(¢s) +Cr(X(&5),
< [ly(és)|l < 8.

The contradiction obtained shows thpt(&s)|| = o1 and

s # (X(s),Y(és)) for k € N. Using again (A), we
obtain that there exist&; with

y(&s))ll

1 <éu<és<to+Ti+Te
such thaty # 1x(X(&4),Y(&a)) for k€ N, [|y(&a)|| = &1/2

The contradiction obtained shows that there existsandd;/2 < |ly(t)|| < & fort € (&4,¢&5). From assumption

&1 € (0,tg+ T1] such that]y(&1)|| < &1/2. We shall prove
that if for any t € [&1,to + T1 + To], the inequality
Ily(t)]] < & holds, then there exis® € [&1,t0+ T1 + T2

such that|x(&2)]| < 8/2. Indeed, suppose that this is not

true, i.e., for anyt € [&1,to + T1 + T2}, we have
[Ix®)| > 5/2 Then, by 12), (A2), (19, and (@0), we
obtain

D "Wy (t, ¢ (1)) < D"W(t, ¢(t)) +dlg(t, o(t)) ||
< —cy(W(t, ¢()))+dP M)l
EAITENAL)
< —%Cl (al (2)) (24)
for t € [E1,to+ Ta + T2, t # T(@(t), @(t)), k € N.

Integrating 24) from &; to to + T1 + T and using {0),
(5), (18), and 1), we obtain

a (‘;) < ar(d(to+ T+ T2

V(és, ¢ (&s),

(A1), it follows that(d/dt)||y(t)|| < L fort # T (x(t),y(t)),
k € N, so that, as in the proof of Theorelnwe obtain that
&s— &4 > 01/2L. From the choice ofs, it is clear that

V(s,0(9),0(s)) <V(L (1), ot))

for &4 < s< &s. Then from ), we have
DGV (1,90, 00) < <o) <o(F) @9

fort € [&4,s], t # T(@(1), @(1)), k € N. Integrating 25)
and using 4), we obtain

®(&s))
< V(&0 (&) &) o 5 ) (65~ &)
< V(g 0.6 —c( 2 ) o

Thus we have proved that if¢ollr + ||@llr < J, then
exactly one of the following two cases is possible:
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L. |[x(t;to, do, @) | + [|y(t;to, o, @) | < € for
t>to+ T+ To.
2. There exist4 andé&s with
to<éa<és<to+Ti+T

such that

V(&s,¢(5), (és))
o

<V (&a,9(&4), p(&)) —C (2) a

2L

In the same way, we can prove that exactly one of

following two possiblities takes place:
L. |[x(t;to, do, @) | + [|y(t;to, po, @) || < € for
t> to—|—2[T1+T2].
2. There existg and &g with
to+T1+To < &g < &o<to+2[T1+ T2

such that

V (€10, (&10), @(€10))
o1

<V (&9, 9 (o), @(&a)) —C <2> 61

Z.

By induction, we can prove that|ifpol|; + || @l|r < J, then
we have exactly one of the following two cases:

L. |[x(t;to, do, @) | + [|y(t;to, po, @) || < € for
t>to+ (n—21)[Ty + Ty
2. There existgy_1 andésy with
to+ (N—=1)T1+To < &sn1 < &sn <to+n[T1L+ Ty

such that

V(ESn’ ¢(65n)a (p(ESn))

<V(&n-1,9(&sn-1), 9(&sn-1)) —C (621>

o
oL

If for any positive integem > v the second case holds,
then, using

&5(n-1) <to+(N—1)[T1+T2] < &sn-1,
(9), and @2), we obtain
V (&sv, @ (Esv), P(&sv)
<V(&v-1,0(&5v-1), (é5v-1)) —C (621) %1_

o\ a
< V(ES(vfl)v ¢(55(v71))7 (p(ES(vfl))) —C (2> Z

<V(&sv-1)-1, 9 (E50v-1)-1), P(&50-1)-1))

o\ 25
_C<2>2L
<...
<V(&a,9(&a),0(a)) —C(il> % <0,

which contradicts§). Therefore, for
t>to+V([Tu(e) +Ta(e)],
we have

[1X(t; o, ¢o, @) || + [IY(t;to, do, )| < &

This completes the proof.

4 An Example

Letx,y € R andr > 0. Consider the impulsive system

X(t) = —px(t) +ax(t —r) +ay(t),
t# T(X(t), y(t)), kEN,

y(t) = —ax(t) + PSUR. g Y(t +5) — g¥(b),
t# T(X(),y(t), KeN,

Ax(t) = ax(t),  Ay(t) = bex(t),
t=T(X(t),y(t)), keN,

(26)

whereq > 0, p> 0, and fork € N, a, bk € (—1,0] and

T(X(), Y(1) =P () +Y2(t) +k.

Thenty € C[R?,(0,)] for k € N, 1¢(X,y) — o ask — oo
uniformly on (x,y) € R?, and also

0< k(X Y) < Tkr1(x,y) for (xy) eR, keN.

Together with systen?g), we consider the system

X(t) = —px(t) +ax(t—r),

t £ 1(X(1),0), ke N,
AX(t) = ax(t),

t = 1¢(x(1),0), ke N.

(27)

Let ¢o, @ € C[[—r,0], R] and define
V(t,xy) =x2+y?> and W(t,x) =x2.

Letqg < p. Then fort > 0 and for anyp, ¢ € Pt —r1,t],R]
such that

V(t+s¢(t+s),0(t+s)) <V(t, (1), o(t))
for se [-r,0), we have
DV (t. 9 (1), (1))
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= —2pg?(t) +20p ()Pt )
p

+2p@(t) sup @(t+s)—2-¢A(t)
se[-r,0] q

@(t)+ sup @(t+s))?

se[-r,0]

< q[%(t)+9t—r)] +p
%2
+(p2 t)] -

(1 1) 2

2p ( a 1) P (t)

fort #£ (¢ (t), @(t)). Also,

DopW(t, ¢ (t)) = —2pd?(t) +2q¢ (t)p(t —r)
—2pp2(t) +q[¢%(t) + 9 (t —1)]
2(—p+a)p*(t)

fort > 0 and for anyp € PC[t —r,t],

W(t+s ¢(t+s) <W(t,¢(t)), s€

Fort = 1 (x(t),y(t)), k € N, we have

V(t+0,x(t) +aex(t) +byy(t)) <V (t,x(t),y(t)),

and fort = 1¢(x(t),0), k € N, we have

—2p?(t

< 2p[¢? 2pg2(t) — 22(/)2(0

R] such that

[-r,0).

W(t + 0,x(t) + ax(t)) <W(t,x(t)).

If there exists a constamt > 0 such that
1
~—1>a>0,
q

then all conditions of Theore®are satisfied, and then the
zero solution of 26) is uniformly asymptotically stable.
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