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Abstract: Using a computerized symbolic computation technique based on impracabilelliptic function method, we find
several solutions for Whitham-Broer-Kaup-Like (WBKL) system. 3&solutions contain hyperbolic, triangular solutions. When the
parameters are taken as special values the solitary wave solutions chtaled for other systems. The traveling wave solutions are
also discussed that obtains solitary wave and singular soliton solution.
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1 Introduction The (1+1) Broer-Kaup (BK) system:

U + Ul +Vx =0,
B 1)
Vi + Uy + (UV)x + Uk = O,

The study of solitons, cnoidal waves, snoidal wavesijs ysed to model the bi-directional propagation of long
appear everywhere no matter where we look around. Fofyaves in shallow water]-[3]. In this paper, we study the

example, it shows up in plasma physics, mathematicalyhitham-Broer-Kaup-Like (WBKL) system given in the
biosciences, nuclear physics, theoretical physicsform:

nonlinear fiber optics, fluid dynamics, mathematical

chemistry and several others. Out of these areas, the Ut +- Ul + Wi+ Blhoc = 0, 2
application of solitons is predominantly prominent in the Vi + (UV)x + O Uk — BV = 0.

area of nonlinear fiber optics where loads of data ar
transmitted over transoceanic and transcontinenta .
distances in just a matter of a few femto seconds or rather 1-If ¥ =1, System %) reduce to Whitham-Broer-Kaup
atto seconds. Thus, the world of information sciences has = SYStem

er?meiﬁsely ad\f/anc?? beca|L_J|se of thte prof_ound tprotgresz in Ut -+ Ul + Vy + By = 0,

e theory of solitons. Hence it is important an _
imperative to dig a little deeper in this area of solitons Vi + (UV)x + O Usex — BVxx = O,
since research in this field has made gigantic leaps in the which is a completely integrable model describes the
technology of information sciences. This paper is  dispersive long wave in shallow water, whargt)
therefore going to address the study of solitons, cnoidal is the field of horizontal velocityy(x,t) is the height
waves and snoidal waves for a particular nonlinear  which deviates from the equilibrium position of liquid,
evolution equation which is the Whitham-Broer-Kaup o andp are constants that represent different diffusion
equation. powers f]-[7].

e can find special cases of systedj (

®)
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2.1f y=1 anda = 0, System 2) reduce to the classical Although Porubov et al. J1] have obtained some
long-wave systemd-[10]: exact periodic solutions to some nonlinear wave
equations, they use the Weierstrass elliptic function and

Ut + Ul + Vx + Buxx = 0, 4 involve complicated deducing. A Jacobi elliptic function
Vi + (UV)x — BVix = 0, ) (JEF) expansion method, which is straightforward and

effective, was proposed for constructing periodic wave
which describe the shallow water wave with diffusion. solutions for some nonlinear evolution equations. The
3.f y=a =1 andpB = 0, System 2) reduce to the essential idea of this method is similar to the tanh method

variant Boussinesq systerhl]-[14]: by replacing the tanh function with some JEFs suchas
cn and dn. For example, the Jacobi periodic solution in
Ut -+ Ulx + Vx = 0, terms ofsn may be obtained by applying thsa-function
Vt + (UV)x + Ugex = O, ®) expansion. Many similarly repetitious calculations have

to be done to search for the Jacobi doubly periodic wave
which is a model for water waves, wheu¢x,t) and ~ solutions in terms ofn anddn [32]. _
v(x,1) are the velocity and the total depth, respectively. ~ The objectives of this work are two fold. First, we seek
4lfy=1a= % andp = 0, System 2) reduce to the 10 extend others works to establish new exact solutions of

dispersive long wave system: distinct physical structures for the nonlinear systetn (
The improved Jacobi elliptic function expansion (IJEFE)
Ut 4 Uly +Vy = 0, method will be used to achieve the first goal. The second
1 (6) goal is to show that the power of the IJEFE method is its
Vi + (Uv)x + éuxxx =0, ease of use to determine shock or solitary type of solutions.

In this paper, we extend the IJEFE method with

wherev(x,t)is the elevation of the water wave(x,t) ~ Symbolic computation to such special equations for
is the surface velocity of water along-direction. constructing their interesting Jacobi doubly periodic e/av
Solutions of 6) is very helpful for coastal and civil solutions. It is shown that soliton solutions and triangula
engineers to apply the nonlinear water wave model inPeriodic solutions can be established as the limits of
a harbor and coastal desigtf]- [17]. Jacobi doubly periodic wave solutions. In addition the
50f vy =1, a = %52 and B = 0, integrable algorithm that we use here is also a computerizable
Kaup-Boussinesq shallow water system may bemMethod, in which generating an algebraic system. Two
obtained 12]. The integrable nonlinear systems are key procedures and laborious to do by hand. But they can
used extensively as approximate models inPe implemented on a computer with the help of
hydrodynamics. They describe in a relatively simple mathematica. The outputs of solving the algebraic system

way the competition between nonlinear and dispersivefrom a computer comprise a list of constants. In general if
effects: any of the parameters is left unspecified.

Ut + Ut + W = 0, L .
1 (7) 2 Improved Jacobi’s elliptic function method

Ve + (UV)x + = E2Uyx = O,

4 In this section, we introduce a simple description of the

wherev(x,t) denotes the height of the water surface IJEF method, for a given partial differential equation

above a horizontal bottom and(x,t) denotes its G(U, Uy, U, Uy, ...) = 0. (8)
velocity averaged over depth, describes motion of , . .
shallow water. We like to know whether travelling waves (or stationary

. ~waves) are solutions of EcB), The first step is to unite the
The nonlinear wave phenomena can be observed ifhdependent variablesandt into one particular variable
various scientific fields, such as plasma physics, opticathrough the new variable

fibers, fluid dynamics, chemical physics, etc. The
nonlinear wave phenomena can obtained in solutions of {=x+vt, uxt)=U(J)

nonlinear evolution equations (NEEs). The exactwherec is wave speed, and reduce E8) {0 an ordinary
solutions of these NEEs plays an important role in thegifferential equation(ODE)

study of nonlinear phenomena. In the past decades, many o

methods were developed for finding exact solutions of GU,U,U U ,...)=0. 9)
NEESs as the inverse scattering methdg|{[19], Hirota's
bilinear method 20], homogeneous balance meth@i]|
sine-cosine method 2p,23], Extended F-expansion
method P4] optical soliton-like P5], tanh function

methods 26,27], % expansion method1P, 28], Jacobi
and Weierstrass elliptic function methd2d[30].

Our main goal is to derive exact or at least approximate
solutions, if possible, for this ODE. For this purpose, let
us simplyU as the expansion in the form,

uxy) =U(@) =3 au'+ yaw s (10)
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Table 1: Spectrum of nonlinear waves.

when m—0, the Jacobi functions degenerate to the

A B c Y(4) triangular functions, i.e.,
1 -1m? n? sn@) or
Cd(Z)=§2E§; sn{ —sin, cn{ —scos{ and dn— 1.
1-m? 2m?-1 - cn(d)
me-1 2-m -1 dan@)
m -1-m? 1 nsOs;; o 3Whitham-Broer-Kaup like system
de@)=gi¢)
R one-1 142 nc@)= (io We first consider the WBKL systen2)
cn
-1
-1 2-|'T'|2 rT12-1 nd (Z)_dn(z) Ut + UUX + WX+[3UXX — 07
1 2-mP 1-mP sc Q)= - (15)
cn(¢) Vi + (UV)x + O Uk — BV = 0,
1 2mP-1 M2 -1-m?) sd(z):j‘;((g))
1-mP 2-m2 1 cs(Z)=§2E§§ if we use{ = x+ vt carries systemlf) into the system of
) Pl 1 dsq)=3n ODEs
i gt 3 ns)+cs({) vU' +UU + W +BU" =0
‘]LTmz ﬁ ‘]Limz nc{)+sa{) ’ / W " B ” , (16)
1 ﬁ ﬁ ns@)+ds() V +(UV) +aU —-BV =0,
4 4
s w2 e sn@)+ics({) i i i i
4 2 4 where by integrating once we obtain, upon setting the
constant of integration to zero,
where u? B !
) W+ —+W+pU =0,
¢ = V/A+BY2+Cyt, (11) 2 (A7)
the highest degree n%‘%% is taken as V+UV+al —pv =0,
dPU if we use the first equation irl{) into the second one, we
O(475)=N+p, p=123.-, (12) find
dger
dPU (2ay+B2)U" —U3—3vU2- 202 =0. (18)
O(Uqﬁ):(q—i_l)N—’_pv q:0,1,2,-~~7p:1,2,3,~-.

(13  Balancing the tern” with the termU3 we obtainN = 1

Where A, B andC are constants, an in Eq. Q) is a then

positive integer that can be determined by balancing the _ -1 r \/ﬁ
nonlinear term(s) and the highest order derivatives.U(Z)*aOJrall’UJr&lw W= VATBY +C%_é)
Normally N is a positive integer, so that an analytic T ; :
solution in closed form may be obtained. Substituting co substituting Eq. 19) into Eq. (18) and comparing the

X . o efficients of each power ap in both sides, to get an
Egs. (0)- (11) into Eq. ©) and comparing the coefficients over-determined system of nonlinear algebraic equations
of each power of () in both sides, to get an

with respect tov, &, i = 1, —1. Solving the

0\_/er-determ|ned system of non_lmear algebraic equations, o determined system of nonlinear algebraic equations
with respect tav, ag, ay, - - -. Solving the over-determined by use of Mathematica, we obtain three groups of

system of nonlinear algebraic equations by use OfconstantS'
Mathematica. The relations between valuesds, C and '
corresponding JEF solutiafi({) of Eq. (L0) are given in 1.
Table 1. Substitute the values &, B, C and the
corresponding JEF solutiogy({) chosen from table 1 a1 =+/2A(B%2+2ay), v=+iy/-B(B2+2ay),
into the general form of solution, then an ideal periodic
wave solution expressed by JEF can be obtained. a;=0 and ap=+i\/B(B2+2ay),

Where cn({) and dn({) are the Jacobi elliptic cosine (20)
function and the JEF of the third kind, respectively. And

Q) =1-s2(), Q) =1-nPsP(), (14)

with the modulus n{0 < m< 1). a; = +4/2C(B2+2ay), a 1=+44/2A(B%+2ay),

When m—1, the Jacobi functions degenerate to the
hyperbolic functions, i.e., V=ag= i\/(BZJr 2ay)(6VAC—B),
sn{ —stanhl, cn{ —» sech, dn{ —» sechd, (21)
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B V2%
Us 71(\/m+ cd(x+i/(1+ mz)Vlt))’

w:i%/[ii\/(l—i—mz)ylx
a ==+/2C(B%+2ay), a1=7F\/2A(B*+2ay), (_\/m+ vVon )
cd(x+i

v = ag = +i\/(B2+2ay) (6/AC+B), (1+m)yt)

(22) VG
V2 2
—\/ (L+mP)y; +
Cya+rmn cd(x=i/(1+ mz)ylt))
—1)Bv/2(m—-1)y1x
for each group of constant, we find sixteen solutions of : :
(15), for example for group 1 we find:- nd(x£i (1(1|J(rm2')y1t()18d(r);2i)l )(21+rn?)y1t)}’
cd(x =i + )yt

(25)

(e ST

(2 —1nt)”

- 2y
ul—ﬂt(\/m“L n(XEi (1+m2)V1t))7
Vlzi%/[ii\/mx
2y
(~Varmms Sn(xE] (1+rr12)y1t)>

ii (1+rn?)y1X + Y 7

1
Vg == ;/[ (2mz—1)yl><

\/ me)
( V-2 12rr12 yll)ylt))

(zmz Dy

2
2(1—1P) 2
_ 2% 2 1 2rn2y+ 1 yl
( (1+m2)v1+sn(xii (1+mZ)y1t)) ( VI 1 (2m2 — 1)V1t))
_ Bv2pen(x£iy/(1+mP)yt)dn(xLi (1+mz>y1t)} +mB (1—rT12)y1><
sn(x=£iy/(14nm?)yt)? 23) cn(x=+ 4/ (2m2 — 1)yt)sn(x+ (ZmZ—l)Vlt)}
wherey; = (B2 +2ay) dn(x+ /(2m2 — 1) y1t)2 ’
(26)
+(1/(—=2+md) V1+ —1+ Mm%
2—-m)nt)’
\V2mPy; 1
U = £(y/ (14 mP) V1+ SXE] 1+mz)y1t)>7 Vs ==+ ;/[ (2—mP)y1x
vy ey o (o YT )
_ ' 2—m)n)
( 21P 4 - (1+”‘2)V1>
ns(x=£i\/(1+m2)yit) L V@2-m)y mz) " (27)
L Vs (1—£mz)y1>< o \/ (—1+m)yr  \2
2 (ezemm g mzmt))

2
<ns(szi A+m)ut) (1+”‘2)V1>

_ Byv2myies(x£iy/(1+mP)yit)ds(x i (l+mz)y1t))]
ns(x+iy/(1+m?)yt)2 7

+mBy/2(-1+ mz)V1><

cn(x=++/(2—mP)yit)sn(x+ (2—mz)y1t)}
(24) dn(x= /(2 — m2)yit)2

)
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V2mPyn

c(x+iy/(1+m)yt)’

Us =+ (y/(1+md) y1+
Vezj:%/[u/(l—i-mz)ylx
(\/ L+t

(1+mZ) y

V2P )

c(xEiy/(1+m)pt)

(Van? ).
dcxi| 1+rr12)y1t)
+pBm(1— m)mx
nc(x£iy/(1+mP)yt)sc(x+i (l+mz)y1t)}
de(x£iy/(1+m)yt)? ’
(28)
U7 == (1/(1—2m2) - v 2mZy11)y1t)
V7 == %/[1/(2[“2—1)le
\/ mPyi
(y/a-2m) M+ e 1)y1t))
(2m2 Dn
\/ mPyi 2
(\/ (1—2m?) V1+ o 1)V1t))
—imBy/2y1x

de(x+ +/(2m? — 1) yit)sc(x =+

(2m? — 1)V1t)}

nc(x=++/(2mf — 1)yt)?
(29)
\/2 B2 —2ay
+ (4/( 2+mZy1+ T
Vg =+ %/[ (2—m2)y1x
\/2 B2—-2ay
sy =)
eSS
\/2 B2—-2ay \2
(V¢ (-2 rmPpt o mz)ylt))
—imB/2y1 x
cd(x++/(2—m)yit)sd(x+ (2—mZ)y1t)}
nd(x= /(2 — m2)y1t)2 ’
(30)

vQ=;[\/(zfm2) (\/(72+mzm+

\/232+2ay
—24+nP
Wt s V=P

V/2B2+2ay )
SC(x+ /(2= mP)yat)

2
2 m2y1<\/m+ (X;:/ZB +2ay

2
2— mz)Vlt))
_ Bv2ypde(x+ /(2 mP)yat)ne(x+ /(2 mz)vlt)].

sc(x+ /(2—m2)yit )2

(31)

\/2[32+2ay
uto==+(1/(1— 2rr12 V1—|— 2mz 1)y1t)
vlo:%/[q/(Zmz—l)ylx

( /71 o y1+ \/2[32+Zay )
(2P — 1)yit)
(2m2 Dy,
( /7l o y1+ \/2[32+Zay )2
(2m? —1)yat)
—B/2y1x

cd(X=++/(2m? — 1)yat)nd(x £ (2m?—1)y1t)}
sd(x= /(2m2 — 1)yt)? ’

(32)
/ \/ (1-m)n
Upp == ( 2+m2 = mZ)ylt)
vllz%/[\/(zfmz)ylx
\/ (1-m)y
(\/ (24Pt — = mZ)ylt))
+ (2- m2) X
\/ (1-m)y 2
(\/ —2+m?) V1+ = mz)ylt))
+B (1*”‘2)V1><
ds(x=+/(2—mé)yit)ns(x+ (2—mz)y1t)}
cs(x+ 1/ (2—mP)yt)? ’
(33)
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0.707104/B%+2ay

Uis =+ (1/(1—0.5m2)y1 + ds(x+ vt) 4+ ns(x+ vt)’

\/2 me(1—né)y;
=+ (y/(1—2m?) 1
t2= Wty 2 —Lyt)’ V15::|:Y/K—O.?O?lOB\/BZ—kZayx

V12 :} [\ /(2m2 — 1)y; x cs(X+ vt)ds(x+ vt) + cs(x+ vt)ns(x+ vt))
y e (ds(x+ vt) + ns(x+ vt))2
\/—
v/ (1—2m)y, (1 0B+ 0.70710%/B2 +2ay
( (2m — 1)Vlt)) +V( (1-0.5m)y ds(x+ vt) +ns(x+ vt))
(2”‘2 Dy v 0.70710% /B2t 2ay \2
g +§(V (1-05m)y ds(x+vt)+ns(x+vt)) }’
( (1—2n2)y 2—mA(1-mi)y )2
2 —Dpt) v =4/(0.5m2 —1)y; o
+Bm\/2(mz— 1)y1><
cs(x+ /(22 — D)yst)ns(x+ /(22 — 1) ylt)} b == (+/(1_05mP) 0.707103/mPys
’ cs(X+ vt) +sn(x+vt)’

ds(x++/(2m2 — 1)yt)?2
B4 =+ {( 707101 /mPy; x

(+ t)dn(x+ vt) —ids(x+ vt)ns(x+ vt)
(ics(x+ vt) +sn(x) + vt)? )

0.70710%/m2y;
0.70710%/B2+ 2ay +"(\/m+ cs(x+ vt +sn(x+vt))

Uiz==(y/(-0.54+mP)y1 + oS(x£ VD) + nS(x V)’ y 0T0TI0R/TP 12
V13:%/[0-7071013\/B2+20y>< +§(W Cs(X+ vt) +sn(x+ Vt)> }
(—cs(x+ vt)ds(x+ vt) — ds(x+ vt)ns(x+ vt)) v=+=4 \/OST—lyl
(cs(x+ vt) +ns(x+ vt))? (38)
0.70710%/B2+2ay
+ V( (-05+m)ys + CS(X+ Vt) + ns(x+ vt))

3.1 Triangular periodic solutions

v 0.70710%/B2+2a
2 (osrmp+ VP rzary®,
2 CS(X+ Vt) + ns(x+ vt)
Some trigonometric function solutions can be obtained, if

v=+,/(05-m)y, 35) the modulusn approaches to zero in Eq23)-(52)

U7 = — /Y1 + V2\/yicsax + vt),
1
. - /20T TR Vi7=— y[ﬁﬁ\/ﬁcot(er vt)csax+ vt)
Urg = (/(-05-05 lernc X+ Vt) 4 sc(x+ vt)’ _ <—f+\f\fcsc(x+vt)) (39)
Vig—+ y[(ﬁ\/Z (0.25— 0.25m2) 1 x

de(x+ vt)nc(x+ vt) +de(x+ vt)sc(x+ vt)
(nc(x+ vt) +sc(x+ vt))?

——v( \F+\[\chqx+vt)> },

—————— /2(0.25-025m)y; U1 = — Vi + V2,/yisedx+ vt),
+V< (~0.5-05m) yl+(nc(x+ vt)+sc(x+vt))> 1 /2
v / /2(0.25—0.25P)y, Co5_0an?) )2} Vlsz—y{—v(—\/ﬁ-‘r 2\/Ese0{x+vt))
+5 —05-05m)y1) |, (40)
2 \nc(x+ vt) +sc(x+vt) _7‘/( \f+\f\fse0{x+vt))2

(0.54+0.5m)y;
(36) —V2B./yisedx+ vt)tan(x+ vt)} ,
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Ue = — V2i\/V1 + V2\/y1cot(X + vt),
Vig :%/(v ( —V2i/Vi+V2,/yicotx + vt))

1 » (41)
- QV(_ V2i Vi +V2\/yicot(x+ vt))
+ V2B yyicsdx+ V),
Uzo = — V2i /Y1 + V2\/yitan(x+ vt),
Voo = — 1 {— V2B./yisedx+ vt)?
' (42)

—v (= V2V + V2 tanix vi)

- %v(f V2 i+ V2 /yitan(x+ vt))z],
Up1 =0.707107/y1((sin(x+ vt) +tan(x+ vt)) —i),
Vor = — %/( - 0.7071013\/ﬁ(cos(x+ vt) + sedx+ vt)z)

—v (0.70710W((sin(x+ vt) +tan(x+ vt)) — i))
Fig. 1. Three-dimensional of the modulus of solitary wave

—~ %v (o.7o7107m((sin(x+ vt) solutionups (Eq.47) ata =p=v=y=1.
+tan(x+ vt)) — i))z),
(43)
Up2 =0.707107%/y1((cog X+ vt) + cot(X+ vt)) —i),
Voo =— %/(v (0.707107\/E((cos(x+ vt) +cot(x+ vt)) — i))

+ %v <O.70710W((cos(x+ vt) 4+ cot(x+vt)) — i))2

Ups = — V2,/y1 + V2 /yitanh(x+ vt),
Vos :;1/ (\@B\/ﬁsech{H vt)?

(47)
+B (0.70710W( — csgx+ vt)2 —sin(x+ vt)))) , v ( - \/Z/ﬁ-i- \fZ\/ﬁtanl'(x—&— Vt)) )
(44) +%v(—\@\/ﬁ+ V2\/yitanh(x + vt)) ),
Upz = — /Y1 + 1.41421,/yiSin(x+ vt),
Vo3 :%/ (B (1.4142Wcos(x+ vt))
y (Wf 1.41421,/yisin(x + vt)) @) e —le/ﬁ + VA Fisedlc )
1 5 v26:——(—v(—i\/ﬁJr\/ii\/ﬁsecmervt))
+5v (Vi - 141421 isin(x+vt) ) ). . y , 48)
- Ev(— iv/Y1+ V2i/yisechix+ vt))
3.2 Soliton solutions +V/2Bi/yisectix+ vt)tanh(x+ vt)),
Some solitary wave solutions can be obtained, if the
modulusm approaches to 1 in EqR3)-(52)
Ups = — V2,/¥1 + V2\/yrcoth(x + vt), Up7 = —iv/Yi+ V2 /yicschix+ vt),
Vog = — %/(v (\/QW —V2\/yicoth(x + vt)) Vo7 = —;];(\/EB\/WCON”(X-F vt)csch{x+ vt)
(46) (49)
~Lu(vayi - vaymcatic w)’ ~v(iviiVayireserice w)
+ V2B /yacschx+ vt)2>, —%v(—i\/ﬁJr V2,/yicschx+ vt))z),
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10

Fig. 22 Three-dimensional of the modulus of solitary wave Fig. 4: Graphical representation of of the modulus of solitary
solutionvys (Eq.47)ata =B =v=y=1. wave solutions,s (Eq.47) fort =0,land2atr = =v=y=
1.

Upg = 0.707107%/y1(sinh(x+ vt) +tanh(x+ vt) — 1),
0.707107%/y1v
4 Vog = 0.70710%/mv [E (cosk(x+ vt) + sechix + vt)z)
y v
- (sinh(x+ vt) +tanh(x+ vt)) — 1)
3,
0.707107% 2
5 —fm(sinh(wr vt) +tanh(x+ vt)—l)) },
ol i (50)
| Uzg = 0.707107%/y1(sinh(x+ vt) +tanh(x+ vt) — 1),
i 0.70710%/y1v
1 ] Vog = = PITVAY {E (cosi{x+ vt) + sechix+ vt)z)
I y v
A - + (sinh(x+ vt) + tanh(x+ vt)—l)
10 10 0.70710%/yi 2
+ fyl (sinh(x+ vt) +tanh(x+ vt) — 1) } ,
X (51)
uzo = 0.707107%/y1(coth(x+ vt) +isinh(x+ vt) — 1),
Fig. 3: Graphical representation of of the modulus of solitary 0.707107 /Viv
wave solutionys (Eq.47) fort=0,1and 2atr =B =v=y= V30 = % [%(icosf(x—k vt) — cschix+ vt)?)
1.

+ (coth(x+ vt) +isinh(x+ vt) — 1)
. 0.70710%/y1

5 (cotr‘(x+ vt) +isinh(x+ vt)—l)z]

(52)

For above last two groups of constants (2, 3) we find
another thirty solutions. Three-dimensional of the
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modulus of solitary wave solutionsis and vps, are  and the inverse widtB is
displayed in Figured and2, respectively, with values of Y%

parameters listed in their captions. Moreover, graphical® — Vazby' (64)

representation for the same solutions are plotted in figures . o

3 and4, respectively, with values of parameters listed in "WNile the parameteD is given by

their captions. D_ ap+2bg . (65)
/(8 +21)? — Gayby

4 TRAVELING WAVE SOLUTIONS The definitions of the parameter given by (63)-(65) leads

. . . . ) to the constraint conditions
This section will focus on obtaining the traveling wave

solutions to (15). The solitary waves as well as theabz >0, (66)
singular soliton solution will be derived by the aid of ;.

traveling waves33]. First of all, (15) is now rewritten in

the following pair of coupled equations, after removing (a1 +2b1)? > 9aby. (67)

the dissipative terms: Finally, the wave profile forh(x —vt) can be obtained

Gt +a100x +azrx =0, (53)  from (60).
It +ba (ar), + b20wx = 0. (54) Integration of (61) also leads to the singular 1-soliton
The starting point is the traveling wave hypotheses that aréomt'on thatis given by
A
X,t - X— vt 5 55 — = - .
q(d) g(x—w) (55)  g(x—w) 5 SHBX v (68)
an
In this case, the free parameté&s@ndD are respectively
r(xt) = h(x—w), (56)  given by
whereg andh are the wave profiles andrepresents the 6V
velocity of the traveling waves. Introducing the notation A= > (69)
S=X—W, (57) \/931b1— (a1 +2b1)
equations (53) and (54) transforms to the ordinary@nd
differential equations D_ a1+ 20y _ (70)
2vg— a10° — 2aph = 0, (58) \/ 9a;b; — (a1 + 2b1)2
and while the free parametdB, in this case stays the same as
vh—bigh—byg’ =0, (59) (64). These free parameters from (69) and (70) therefore

. : . . introduce the constraint
respectively, after choosing the integration constanteto b

zero, since the focus in on obtaining the soliton solution. (a1 +2b1)* < 9ayby, (71)
Here in (58) and (59), the notatiogs= dg/ds andg” =

d2g/d2 are utilized. From (58), it is possible to obtain which must hold in order for the singular solitons to exist.

Again the singular soliton profile foh(x —wt) can be
1 obtained from (60).
h:Taz(ng—algz). (60) (60)

Substituting (60) into (59) and integrating once, leads to
9 (60) into (59) graing 5 CONCL USIONS
Vo, (a+20)V 5 a4

N2
= - + ) 61 . . . -
(g) azbzg 3azh, 9 4a2bzg (61) IJEF shows that soliton solutions and triangular periodic
after simplification, where the integration constant is, Solutions can be established as the limits of Jacobi doubly
once again, taken to be zero. Now from (61), separating’eriodic wave solutions. Whem-—1, the Jacobi
variables and integrating one more time, leads to thdunctions degenerate to the hyperbolic functions and

1-soliton solution given the solutions by the extended hyperbolic functions
A methods. Whem — 0, the Jacobi functions degenerate
g(x—wt) = , (62)  to the triangular functions and given the solutions by
D+ coshB(x—w)] extended triangular functions methods. Additionally, the
where the amplitudd of the soliton is given by direct traveling wave hypothesis also lead to solitray
6V waves and singular soliton solutions, for the
A= ) (63) non-dissipative Broer-Kaup equation. In this case there
\/(al +2b1)% — 9ayby are several constraint conditions that fell out in order for
© 2014 NSP
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the solitons to exist. [22] M. Yaghobi Moghaddam, A. Asgari and H. Yazdani,
Applied Mathematics and Computatior210, 422-435

These results will be discussed further in future where (2009).

several other aspects will be addressed. These are tH&3] S. Tang, C. Li and K. Zhang, Communications in Nonlinear

conservation laws 34], perturbed Broer-Kaup system Science and Numerical Simulatiat, 3358-3366 (2010).

including the stochastic perturbation. Additionally, Iful [24] A. H. Bhrawy, M. A. Abdelkawy, S. Kumar, S. Johnson, A.

numerical simulations will be carried out and these results _Biswas, Indian Journal of Physid, 455-463 (2013)

will all be declared in future publications. [25] V. N. Serkin, V.M. Chapela, J. Percino, T.L. Belyaeva,
Nonlinear tunneling of temporal and spatial optical solitons

through organic thin films and polymeric waveguides, Optics
Communications]192, 237-244 (2001).
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