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Abstract: Motivated largely by a number of recent investigations, we introducerasedtigate the various properties of a certain new
family of the A-generalized Hurwitz-Lerch zeta functions. We derive many potentiagful results involving thesg-generalized
Hurwitz-Lerch zeta functions including (for example) their partial défetial equations, new series and Mellin-Barnes type contour
integral representations (which are associated with Rgxfanction) and several other summation formulas. We discuss theintglte
application in Number Theory by appropriately constructing a seemingrglramntinuous analogue of Lippert's Hurwitz measure.
We also consider some other statistical applications of the family oftigeneralized Hurwitz-Lerch zeta functions in probability
distribution theory.
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1 Introduction and Definitions function (s,a) and the Lerch Zeta functiofy(¢) defined
by (see, for details 5, Chapter I] and29, Chapter 2])
Throughout our present investigation, we use the
following standard notations:

21
s)i=Y ==dP(1,51)=((s1

N:={1,23-}, No:={0,1,23,---} =NU{0} ¢« & (st =dlsd (1.2)

and (O(s) > 1),
7" :={-1,-2,-3,---} =Z; \ {0}. " 1

Also, as usualZ denotes the set of integei® denotes the {(s,a):= ZO s=®(Lsa)
set of real number& " denotes the set gositivenumbers & (n+a) (1.3)
andC denotes the set of complex numbers. (O(s) >1;aeC\Zg)

One of the fundamentally important higher and
transcendental functions d@&nalytic Number Theorys ]
the familiar general Hurwitz-Lerch Zeta function (o(E) = o emé 2 o
®(z,s,a) defined by (see, for examplé&, [p. 27. Eqg. 1.11 s(§) = ; (n+1)s ( 'S, ) (1.4)
(1)]; see also26], [29, p. 121et seq) and [30, p. 194et "
seq)) (O(s) > 1; £ €R),

®(2,5,8) = il z (1.1) respectively, but also such other important functions of
R nZO (n+a)s ' Analytic Number Theorgs the Polylogarithmic function

(or de Jonguére’s function Lig(2):
(aeC\Zy;seC when |7 <1;0(s)>1 when [7=1).

It contains, as itsspecial cases, not only the Riemann : - f _
Zeta function{(s), the Hurwitz (or generalized) Zeta Lis(z):= n; ns 2b(zs,1) (1-9)
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(seC when [z <1;0(s)>1 when |7=1)

and the Lipschitz-Lerch Zeta functiap(&,a,s) (see P9,
p. 122, Equation 2.5 (11)]):

00 e2nni§
n; (n+a)s

O(s) >0 when &cR\Z; O(s)>1 when &€Z),

@(&,s,a) ;= = CD(esz,s,a) (1.6)

(aeC\Zqg;

which was first studied by Rudolf Lipschitz (1832-1903)

and MatyS Lerch (1860-1922) in connection with

p,deNp; Aj€eC(j=1,---,p)s apeC\Zy (j=1,---,0);

Pj,Uk€]R+ (J :177p1 k:]-vvq)!
A > —1 whens,ze C;

A=-1 andse C when |z < O
1
A=-1andO(Z)>

2 :D)’

(A,v € C) denotes the Pochhammer symbol

when |Z|

where(A),

Dirichlet's famous theorem on primes in arithmetic (or the shiftedfactorial) which is defined, in terms of the

progressions (see als@7, Section 5]). Indeed, just as its
aforementioned special cased(s) and {(sa), the
Hurwitz-Lerch Zeta function®(z s,a) defined by 1.7)
can be continuedheromorphicallyto the whole complex
s-plane, except for a simple pole si= 1 with its residue
1. Itis also known thatd, p. 27, Equation 1.11 (3)]

1 /°°
r(s) Jo
1 ®¢s-1 e—(a—l)t
T (s /0 gz

(O(a) >0; O(s) >0 when |z £ 1(z#1);

ts—l e—at
®(z,s,a) =

1-zet

dt

a.7)
O(s) > 1 whenz=1).

Recently, Srivastavaet al. [36] introduced and

systematically studied various properties and results

involving a natural multiparameter extension and
generalization of the Hurwitz-Lerch zeta function
®(z,s,a) defined by 1.7) (see also 27] and [32]). In
order to recall their definition (which was motivated
essentially by the earlier works of Goyal and Laddb@[
Lin and Srivastava 15|, Garg et al. [8], and other
authors), each of the following notations will be

familiar Gamma function, by

1
{)\()\+1)---

it being understoocconventionallythat (0)g := 1 and
assumedacitly that the abové -quotient exists. In terms
of the extended Hurwitz-Lerch zeta function defined by
(1.10, the following unification and generalization of
several known integral representations stemming from
(1.7) was given by Srivastavat al. [36] (see also 28,
Theorem 6] for a more general sum-integral

representation formula):
ts—l efat
I(s) /o

(Alap1)7"' 7(Ap7pp);

(v=0;A €C\{0})

(A+n-1) (v=neN;AC),

(P1,++,Pp, 01,

0q)
Agy Apiy,e Nq (zsa)

oW

/ dt (1.11)

(Hl, O-l)a T (IJQ> Uq);

(min{O(a),0(s)} > 0),
provided that the integral exists. Here, and in what

employed: follows, p4  or % (p,g € No) denotes the
Fox-Wright function, which is a generalization of the
p p, q oj familiar generalized hypergeometric function
= I_ij ' I_|10j (1.8) Ry (p,qe Np), with p numerator parametees, -- - ,a,
1= 1= and g denominator parameterb;, ---,by such that
. ) . ) defined by (see, for details;,[p. 183], B3, p. 21et seq].
_ p—q and B5, p. 50et seq]; see also 14, p. 56], 21, p. 30] and
=5 0j— > pj :-:s+ZuJiZA1+T- [31, p. 19])
= =1 =1 i=
(1.9) (a1, A1), - (Bp, Ap);
The extended Hurwitz-Lerch zeta function (bu.Ba). - (b, Bo): z
q> =g
(Pl Pp01 0g) © (@) (@p)acn
b o (252 e
is then defined by:{G, p. 503, Equation (6.2)] (see also F (b)) T (be) (A, A1), - (ap. Ay):
— ) q ' '
[27] and([32]) ) =) T " [(bl,sg (bq,Bq);Z} (1.12)
P1,5Pp; 015, O
AL, Apie, s Hg (Zsa) <
Ai>0 (j=1 p); Bj>0
0 ]l:ll()\J)an zn
Z} g T as (1.10) _ q P -
I_I IJJ noj (]:17 aQ)!1+ZB]_ Aj:O )
=1 =1 =1
@© 2014 NSP
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where the equality in the convergence condition holds true

for suitably bounded values | given by

. (ﬁAjAJ) . (ﬁBij>_

Definition 1. By suitably modifying this last integral
representation formulal(1l), we now introduce and

(1.13)

Two interestingfurther special cases of the function
@ﬁ (z,s,a;b) are worthy of note here. First of all, for=0,
we find from the definition1.16) that

0} (zsa0) = ®;(zsa)

1 00 ts—le—at
- I'(s)/o A ze )P dt (1.17)

investigate the various properties of a significantly more(d(a) > 0; 0(s) >0 when |z <1 (z#1); O(s—pu) >0 when z=1),

general class of Hurwitz-Lerch zeta type functions

defined by

(P1++,Pp;01,+,0q) .
¢)\17.,._’/\p;u1’...,uq (2757 q b7A)

1/mts‘lex —at—B
(9o P t

(Alapl)v"'v()\[hpp); ¢
ze

(Hla 01)7 T (IJQ7 Uq),

o dt, (1.14)

(min{O(a),0(s)} > 0; O(b) 20; A 2 0),
so that, obviously, we have the following relationship:

(P1,,Pp; 01,7+, 0q) .
A1, ApiHe e, Hg (Z’ 5 O’)\ )

— @\PL:Pp: 01,0
Ag, ApiHa, s Hg

_ (P1,+,Pp.01,++,0q) .
—e D e (zsab,0).

(z,s,a)

(1.15)

In its special case when
p—1=9=0 (Mi=p pr=1),

the above definition1(14) would reduce immediately to

the following form:
I'(s)/o t exp(—at—t/\)

(1-ze) H ot

O} (zsab) =
(1.16)
(min{0O(a),0(s)} > 0; O(b) 20; A 20; p € C),

where we have assuméatther that
O(s)>0 when b=0 and |7 <1 (z#1)
or
O(s—u)>0 when b=0 and z=1,

provided, of course, that the integral ib.{6) exists. The
function @[} (z,5,a;b) was introduced and studied by
Raina and Chhajed®B, p. 90, Equation (1.6)] and (more
recently) by Srivastavat al.[34].

where the functionp,(z,s,a) defined by
(H)y 2

(D*
(a+n)® n!

zsa) =
isaiy
was studied by Goyal and Laddh&0[ p. 100, Equation
(1.5)]. As a matter of fact, in terms of the
Riemann-Liouville fractional derivative operatofZ%'
defined by (see, for example§,[p. 181], 4, p. 70 et
seq] and [24])

(1.18)

l Z
== -t "t fmdt (O(u)<0)
Aitay=] ik

@) (M-1=0(n) <m(meN)),
it is easily seen from the series definitions th1j and
(1.18 that

1

r(u)

(O(u) >0),

which (as already remarked by Lin and Srivastai/, p.
730]) exhibits the interesting (and useful) fact that the
function @/ (zs,a) is essentially a Riemann-Liouville
fractional derivative of the classical Hurwitz-Lerch
function @®(zsa) (see also the closely-related
investigations by Gargt al.[9] and Linet al.[16]).

@, (zsa) = AT d(zsa))  (1.19)

The other interesting special case of the function
O[} (z,s,a;b) arises when we seét = y=1andz=1in
the definition (.16). We thus find that

of(1.sab)
- Zb (Sva)
1 [t texp(—at— )
-5 /0 o Ud, (120

where {,(s,a) is the extended Hurwitz zeta function
defined in f, p. 308]. In fact, just as it is already pointed
out in [18], the series representation (se23[p. 91,
Equation (2.1)]) given for the function@ﬁ (z,s,a;b) in
(1.1 is incorrect. Obviousfurther specializations in
(1.17 and (.20 would immediately relate these
functions with the Riemann zeta functiaf(s) and the
Hurwitz (or generalized) zeta functiaf(s,a) defined by

© 2014 NSP
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(1.2 and (1.3), respectively. where
Remark 1. In a series of recent papers, Bayeidal. (see = I (bj +Bjs) : r(1—a —As)
[2], [3] and [7]) introduced and studied the so-called ,D. e ,D. b
generalized Hurwitz-Lerch zeta functiofi(s, u;a,z) of =(s) = q P :
order u, which they defined bycf. [3, p. 608, Equation |'| I (1—bj—Bjs) |'| I (aj+Ajs)
(6)]) j=m+1 j=n+1
(1.25)
. Here
T [t le®
{(smaz):= (s /0 (1—ze ) dt (1.21) zeC\{0} with |arg2)|<m,

an empty product is interpreted asrh, n, p andq are
integers such that € m < g and 05 n £ p,
A,—>O(j_:17-~~,p) and Bj>0(j_:1,~~~,q)7
aje(c (J:137p) and . BJEC (]:1,,(]),
or, equivalently, by ¢f. [3, p. 608, Equation (7)]) and . is a suitable Mellin-Barnes type contour
separating the poles of the gamma functions

(O(a) >0; O(s) >0 when |7 <1 (z# 1);

O(s—u) >0 when z=1)

K+ n) z . (1.22) {I_(bj+Bj5)}T=l
n! (a+n)

{(su;a,2) =
”ZD from the poles of the gamma functions

By comparing the definitionsl(18 and (L.22), it is easily n
observed that {rd-aj—Aps)}_,.
(s a2 = (k) & (2sa), (1.23) The relatively more familiaiG-function Gpg(2) of
H Cornelis Simon Meijer (1904-1974) is a special case of
that is, that Fox’s H-function defined by 1.24), and we have the
L
(k)

following relationship (see, for details22, p. 415]; see
also p] and [20)):
. - (@)= (a1,2),+, (ap, 1)
Clearly, therefore, Equationl23 exhibits the fact that GIM(z) =GN0 | z = HI (2 .
the generalized Hurwitz-Lerch zeta functidis, u; a, z) ' ’ (bj)?:l " (b1,1),---,(bg, 1) '
of orderp, which was considered recently by Bayetchl. (1.26)
(see P, [3] and [7]), is merely a constant multiple of the where, for convenience,
widely- and extensidely-investigated extended
Hurwitz-Lerch zeta functior®;; (z,s,a) defined by {.18.
In our present systematic investigation of the
Gpa | 2

@, (zsa) = {(s.1;a,2).

A-generalized Hurwitz-Lerch zeta function

(aj)?:l ap, - aap
. =Gpq | 2 . (1.27)
(bj)j_1 by, -+, bq

defined by 1.14, we make use also of the widely-studied 2 EXplicit Series and Mellin-Barnes Type
H-function of Charles Fox (1897-1997), which is defined Contour Integral Representations
by (see, for details 1, p. 2, Definition 1.1]; see alsd.B,

(P1,+,Pp,01,+,0g) .
(DAlv"'r/\p;IJl-,"'vqu (Z7S7a'5 b7A)

p. let seq], [31, p. 10et seq and [35, p. 49et seq]) Our first set of results are contained in Theorem 1
below.
[ (ap,Ap) Theorem 1. The following explicit series and
H%“(z) = H;Tiqn z Mellin-Barnes type contour integral representation
| | (bg,Bq) formulas hold true for the extended Hurwitz-Lerch zeta
- (@A), (3, Ap) function
= ngdn z (P1,,Pp; 01+, 0q)
L (b]_,B]_), ,(bq7Bq) ¢A17..A,)\p;ulc..’uq (Z7S7a7 b7A)
1 : .
= / =(s)2%ds, (1.24) defined by(1.14) :
57
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series representatio.(). We, therefore, omit the details

(P 09T 103) involved.
D Aot (BS&DA) In our derivation of each of the representation
p formulas @.1) and @.2), it is assumed that the required
- ()\J)an inversions of the order of summation and integration are
j justified by absolute and uniform convergence of the
nZO (a+n)s- d ) series and integrals involved. The final resultslf and
D HiJna; (2.2) would thus hold true whenever each member of the
assertions4.1) and @.2) of Theorem 1 exists.
"
Hé’g (a+n)b — (2.1) Remark 2. For the funcnon@’\ (z,s,a;b) defined by
s1),(0,1) n: (1.16), the following special cases of Theorem 1 were
derived in [L8]:
(A >0)
and 1 2 (M
A . o n
O 2sab) = 37g 2 arnp
q
Mr(H) 1
(P1.+ Pp.OL.+00) j=1 ‘HZ3 | (a+n)bi - (2.4)
s Apitis. b T(zsabA)= (51),(0,%) "
21AT (s) [1 7 (7)) TATA
; )=t (A >0)
o "(S)Fjljll'()u—ﬁpj) and
/ q
7 (a—s)° [T (4 —50) e ~
i j i O" (zsab) = 1 / F(s)l‘(us 5)
2mAT (9T (1) ) 1w (a—3)
1
Hoz |(@a—s)br (-2 ds (22) e .
7 (s1),(0,%) ‘HES | (a—s)b3 | =2 Sds  (2.5)
(57 1)7 (07 X)
A >0),
. " =9 . (A>0),
provided that each member of the assertig@sl) and

it being assumed that each member of the assertids (
and @.5) exists (see, for details1§]).
Proof. By making use of the series expansion of the  We now turn toward some series representations and

(2.2exists.

Fox-Wright function other related results for the extended Hurwitz-Lerch zeta
function
(Al,Pl)a"'a()\pva)? (P1,+,Pp, T, ,0g)
¥ zet Dy e (z,s.ab,A)
(M1,01),-+, (Mg, Oq); s

defined by 1.14. We first give a pair of new series
occurring in the integrand ofl(14) and evaluating the representations involving the the familiar Laguerre

resulting integral, in terms of Foxid-function defined by ponnomiaIsLﬁa)(x) of order (index)a and degre@ in x,
(1.24, by means of the followingorrectedversion of a  defined by
known integral formulaZ1, p. 10, Equation (1.53)]:

@) o w nta) (—x)
/Otalexp< t—g)dt Lg)(x)'_kzj(n—k) k!

tP

n+ o '
1 20 1 = ( ) 1F1 (26)
= — HO’Z bce (23) n a+ 1,
P @, (03)
in terms of the Kummer’s confluent hypergeometric
(min{D(a) O(b),0(c)} > 0; p > 0) function 1F;, which are generated by (see, for example,

[35, p. 84, Equations 1.11(14)])
we obtain the series representati@rily.

Our demonstration of the Mellin-Barnes type contour —a-1 Xty < | (@) n
integral representatior2(2) is much akin to that of the (1-1) exp( 1-t) nz) n (Xt 2.7)
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Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1490 NS P

H. M. Srivastava: A New Family of th@-Generalized Hurwitz-Lerch Zeta ...

(<L, aeC).

Indeed, upon setting
t—1-t

in (2.7), we get

exp(—tt/\)) =M@+l gb

We now make use of2(8) and the series expansions

zet
(H1,01), -, (Mg, Og);
occurring in the integrand ofl(14). If we evaluate the

i}L,&‘” (b) (1—M)n. (2.8)

n=

of
(17t)\)n ( lapl)a 7( p7pp)

and P4y

Proof. As already outlined above, our demonstration of
the first assertion2(9) of Theorem 2 is based essentially
upon the representation2.8) and the following
well-known Eulerian integral:

/ tPle 9t dt =
0

(min{0(p),0(0)} > 0).

The second assertioB.(L3 follows from the first assertion
(2.9 when we interpret thé-series in 2.10 by means of
the definition (.10.

Just as in our demonstration of Theorem 1, igisitly
assumed that the required inversions of the order of
summation and integration are justified by absolute and
uniform convergence of the series and integrals involved.
The final results Z.9) and .10 would thus hold true

I (p)

5 (2.11)

resulting Eulerian integral, we are led easily to the serieSyhenever each member of the assertich8)(and @.10

representations given by Theorem 2 below.

of Theorem 2 exists.

Theorem 2. Each of the following series representations Remark 3. By suitably specializing Theorem 2, we
holds true for the generalized Hurwitz-Lerch zeta function obtain the following known series representations for the

(Plf'\Pp-UL"'-Uq) .
AL"'J‘piIJl-“'«,IJq (Z7s7a! b7A)

defined by(1.14) :

(P1,+.Pp;01,++,0q) .
d))‘lv"'v)‘p;ulv"'~“q (Z) S?a! b)A)

p
_ e’ g Z(_l)k<n> jl;ll(/\j)ém
(S)n:Ok:O K 14 ﬁ(“])[ﬂj
Z

T (s+A(a+k+1))L5 (b) (2.9)

(a+ g)s+)\ (a+k+1)

(O(a) >0; O(s+Aa) > —A)

and

(P17 ,Pp, 01+, 0q) .
O (ZsabA)

_ e s sa(" (@)
) nZokZo( 1) (k)r(s+)\(a+k+1))|_n (b)

(P2, ,Pp,01,+,07)

T AL At Hg (2.10)

(zs+A(a+j+1).a)

(O(a) >0; O(s+Aa) > —A),

provided that each member of the asserti¢@9) and
(2.10 exists

(p1,++.Pp.01.++,0q)

M Attt (S

being given by(1.10).

generalized Hurwitz-Lerch zeta functio@f} (z,s,a;b)
defined by 1.16):

A L e 2 KN\ (U+e—1
o, (Z’S’aib)7®n7,:ok20(il) <k>< ’ >
a Z
T (s+A(a+k+1))LE (b) AT (2.12)
(O(a) >0; O(s+Aa) > —A)
and
O (zs,a;b)
—b o n
_ %n: > (—1)"(?)F(s+)\(a+k+ 1))
LY (b) @ (z 5+ A (a+k+1),8)  (2.13)

(O(a) > 0; O(s+Aa) > —A),
provided that each member of the assertiahd3) and

(2.13 exists @} (z;s,a) being given by {.18 (see, for
details, B4]).

Remark 4. For the extended Hurwitz zeta functigg(s, a)
defined by {.20), it is easily deduced from the assertion
(2.13 of Theorem 2 whed = y =1 andz=1 that

i S (—1)1(?>r(s+a+j+1)
n=0j=

LOb) Z(s+a+j+1a)

b
o (57 a) = %
(2.14)

(O(a) > 0; O(s+a) > —1),

© 2014 NSP
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provided that each member &.14) exists { (s,a) being
the Hurwitz (or generalized) zeta function given dy3.

The obviougurther special case of(14 whena= 1 and s [d)ffl’l /{pp”fl’ e %) (z,5,8;b,))
o = 0 would yield thecorrectedversion of a known result B ( S
(see B, p. 298, Equation (7.78)]). + ¢>/\f1’ 'App"lll " Y(~zsab /\)}
Lastly, we choose give several pairs of summation > 2
formulas _involving the the generalized Hurwitz-Lerch — P 2p,,,1 20y,-+,20q) (,s, §;2A b,)\) (2.17)
zeta function AL+ Api3 Hi - H 4772
(P1,+,Pp, 01, ,0q) and
Mo Apibizs u Y(z,s,a,b,A)

defined by {.14). First of all, it is easily seen from the first e [

: — (P1,,Pp,01,,0q)
assertion2.1) of Theorem 1 that ! q’;\bl ,\ppull g “(zsabA)

(P17 .Pp, 01, ,0q)
—cD/\l ot # V(- zsab/\)}

(pl »Pp; 01,7+, 0 )
(D)\l “ApiH1, s Hg (Z sabA) _ ()‘l)pl T ()\p)pp . (D(zpl,--.,2pp,1,201,---,2aq>
(D(PL 'Aﬁ;pufl .[.1 )( zsab )\) (/Jl)al .. (IJq) /\1+Pl,---,)\p+Pp;%7H1+017"'~,IJq+qu
o 2 a+1l
p A
o 11 (Aj)2np; <4, 52 b A) (2.18)
2 j=1
AT (s) n; (a+2n)°. |9| (1) 2n0, provided that each member of the asserti¢Rsl7) and
j=1 ! (2.18) exists.
n . -
HSS (a+2n)b 2 (2.15) Proof. In view of the definition {.14), we get
(s1.(03) ] V' (b1 Py
@, Apiti ity Y(z,s,a;b,A)
(A >0) dJ“");ppfl e %) (z,s,a,b,))
and e
= i/ 5t exp(—at— ?)
(P1,+.Pp, 01, ,0q) r(s) Jo !
(D/‘L S ApiHy, “ T(zsabA) (A1,p1),--+, (Ap, Pp); .
(p1, ,Pp,UL -, 0 : p%* ze
AL Apil, ( 25,4, b /\) (IJL 01), T a(uq’ UCI);
p
o N At (A1,p1),++, (Ap, Pp);
_ 2 ZO =1 e+ Ley +pl'pq* —287t dt,
7AI_(S) n— S d (ulao-l)v"'v(uwo-q);
=0 (a+2n+1
( P* 11 (k) 2.19)
which readily simplifies to the following form:
HZD | (a+2n+1)bi X ] ysimp J
(87 1)7 (Oa X) ¢)(\Pl /{Pp 01, )(Z sa; b /\)
722n+1 1, ApsHL, H
(2n+1) (A >0). (2.16) q,(pl Aip“(;l . )(z s.a;b,))
Alternative expressions for the first members of the :i/m ts-1 exp(—at—b>
summation formulas 215 and @.16) are given by r(s) Jo tA
Theorem 3 below. (A, p1),--  (Ap, Pp); 2
—e 7| dt.
Theorem 3. Each of the following summation formulas e 1.1), (M1, 01), -+, (Hq. Oq); 4
holds true for the the generalized Hurwitz-Lerch zeta (2.20)
function
Upon setting
(D)(\Pl Appal )(zsab)\)
1 psH1, 5 Hg t ot
defined by(1.14) : t— > and >
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in (2.20), if we interpret the resulting integral by means of defined by 1.14) satisfies a partial differential equation
the definition (.14), we arrive at the first assertio.07) when the parametex is given by
of Theorem 3. In a similar manner, we can prove the 1
second assertior2 (18 of Theorem 3. A=— (meN).

Alternatively, we can derive the assertio2s1(7) and m
(2.18 of Theorem 3 by applying the series representationWe first derive the following lemma which will be useful
in (2.1) in order to interpret the second members2Lf in the demonstration of our main result of this section
and @.16), respectively. (Theorem 4 below).

Remark 5. For the particular cas®}} (zs,a;b) defined  Lemma (Derivative Property)The following derivative
by (1.16, the following mterestlng analogues of the formulas hold true

assertions 2.17) and @.18 were derived earlier by

Srivastaveet al.[34]:

(H1)ay - (K ) (P1,Pp, 01+, 0q)
T @ P zs,ab,A
951 { (— zs,ab) (zsab)} (Apr - (Ap)py { A Apifi g ht )}
( *+,Pp,01,+,0q) )
B 2n St (22 s5+m2'b )Zzn (2.21) Ph s o1 Ap i 01, g g (B S @+ 11D, A)
Z) (A >0) (3.1)
and and

25 1[@( 2,5,8,b) — O} (z,s,a;b)] (Mo~ (Ha)y d

H (M)p, (Ap)pp Oz
2n+1 22 s - = +n b) ZZI’H—l (P, ,Pp,01,,0q) 5 1
nZO Zn+ 1) u( ; D e zs,a b =
(2.22) _ (P Pp.01,0)
. ) T T AHpL AptPpiH 01, Hg 0y
provided, of course, that each member of the assertions .
(2.27) and Q.22 exists. In fact, by puttingt = 1 in (2.21) <z s,a+1;bm ) (meN) (3.2
and @.22, and upon settingz -+ —z and a — 2a,
Srivastaveet al.[34] showed also that Proof. Our proofs of the derivative formulas.() and
(3.2 are simple and direct. For example, by applying the
251 [@f (z,5.2a;b) + 0} (—zs, 2a; b)} series representatio@.(), it is easily observed that
=0} (Z,sa2 2.2
of (Zsa2'p) G2 o ey d (o prora
to)oy ~(baloq O for - pnen )y s b 2]
and ()‘1)01 e ()‘p)Pp dZ L
p
. /\
251 [@{‘ (z,5,2a;b) 79{\ (—zs, 28 b)} B (IJl)al .. (Ilq)oq i jl;ll( J)an
T AT () (A1) (A L q
—=z0) <22,s,a+;;2)‘ b). (2.24) (S Aa)er Aoy 851 (a4 n)S-jl;l (Kj)no,
In its further special case when= A = 1, the summation H2O | (a+ n)b% 4
formula .23 can be shown to correspond to known 0,2 (s1),(0,1) (n—1)!
results (see, for example4,[ Theorem 7.9]; see alsat,[ AT
pp. 308—309]). _ (Mo, (Ha)ag
AT (8)(A1)py -+ (Ap)pp

3 Derivative Properties and Associated "
Partial Differential Equations : ZO

In this section, we aim at showing that the generalized i
Hurwitz-Lerch zeta function

(P1,+,Pp; 01, ,0q)
cDAL Aot b “(z,;s,a;b,A)
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T TAtp1, AptPpiHi+01. Hg O
(zsa+1;bA) (A >0),

- m(pl-,"',pp,al,"',aq) <Z# 07 7Ea 727 ey Mme N) .
m m

We thus find that

which vyields precisely the first assertio.1) of the
Lemma. The second assertioh2) follows immediately H2 | (a—s)b
from (3.1) upon setting 02

(s,1),(0,m) ]

)\:% (meN) and bbb (meN). I (s+w) T (mw)[(a—s)b] ™ dw

T 2m Jo
Our main result in this section is contained in the B (277)15rm r
following theorem. = 2niym Je (s+w)
m :
Theorem 4. Let m € N. Then the generalized . I‘Lr <w+ J_1> [(a_g) bm*m] W odw
Hurwitz-Lerch zeta function = m
1-m
(pl,...7pp7o'17...7o'q> . l _ (27T) 2 Gm+1,0
ALy ApiHa, e Hg (Z’ sab, m) vm 0,m+1
satisfies the following partial differential equation
(a—s)bm™ - L (3.8)
m
|:(—1)m+lmm®b—(a+1)bm62:| S’O7m’an' ' m
(pl~"'~,Pp~,Ulv"'~,Uq) < . 1) } _ Where
) : zs,a;b, — =0, (3.3
{ AL+ Apibia o g m (33) Ggfmﬂ((a—s)bmm)
\t/)vyere the differential operator®, 6, and & are given is a very specialized case of MeijeiGfunction Gp'g (2)
defined by 1.26).
1 m—1 We know that the functiokV defined by
0= (6 -9 (&) (- ) (34
m m
( ay, ,ap)
W:=G"|z (3.9
d 0 P.d
62::20—Z and Gb::b%, (3.5) b1, by
respectively. satisfies the following differential equation of order

max(p,q) (see, for example5] p. 210, Equation 5.4(1)]):
Proof. First of all, let us rewrite thél-function occurring
in the Mellin-Barnes type contour integral representation[(—-1)» ™" z(9,—ay +1)--- (9,—ap+1) — (9, —b1) - (8, — bg) | W = 0,
(2.2) as follows:

where
9,=12 d
HES [(a—s)m1 ) ] T Cdz
(s1),(0,%) Clearly, therefore, the function given bg.) satisfies the

—w following differential equation:
- = [ r+wr ("1) [(a—s) bﬂ dw, (3.6)

2711 e A et . 1 m—1
e O ICE I G|
where£ is a suitable Mellin-Barnes type contour integral

in the complexw-plane. We now set l{Gg&mig <(a5>bmm i ) } =0, (3.10)
SO g e
1 1
oM (meN) and b—bm (meN) where, as already stated iB.9),
in the above equatior3(6) and then apply the following b 0
well-known (Gauss-Legendre) multiplication formula O = b’

(see, for example ]| p. 256, Entry (6.1.18)]): _ . .

Now, if we write [see also Equatio3(4)]
-m m i —
r(m2 = (2m) 2" mh 4 M- <Z+ i-1
= m

) 8D a9 d) (@ (B:=b).
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P
T 1 I (Aj—spj
then the equatior3(10 becomes /'°° 5+ )jl;ll (i ==pi)
ey q
1 (a=9)° 1 T (K —s0))
Dy {Gom#ﬁ ((a—s) bm™™ - - ) } =1
S, 07 mm T m 10
m+ - —
= (- m (a5 bGYHS G| @-gpmr s
S7 Oa m’m?’ ’m
3.14
((a—s) bm™™ ) . (3.11) (3.14)
50, &, 2, , is more complicated. Since the residues d + 1) at the
By applying the differential operatom, to the Poless=—k (ke N)are computed by
function Res{l (s +1)} = lim (s+K) I (s+1)
¢(p17...7pp_’0'1,4..’o'q) ssa b% E s=—k s——k
AL.A._’/\p;ul’...,uq 92 Gy am B (_1)k*1 (3 15)
given by @.2) with (k—=1)1’ '
77 A= 1 (meN) the Residue Theorem implies that
2 - m q
and s Jm2m 7 M (k)
b—bm (meN), Sy ; j=1
we find by making use of3(11) that (s J_|:|ll‘ (Aj)
(pl‘p ’0'1’.,._’0') X % E
im ' p o . Z - ZXRes{I (s+1)}
V/m(2m) 2 |;| rd) o I'(s)I_DlI' (Aj —spj) &L (ar ke F] F (4 +koj) s=—k

Om+1
{ S0 e M vmiem 0 ()
~-m q = —
T p
) ,—Dlr (Hj) r(s nr (A})
_ 5 [l
2nir r(A b
i (S)J-I;Il (A7) . ]|:|ll' (Aj+kpj) L1t K
. !
" T |:|1F(/\j—5PJ) ;(aJrk)s Igl F (i +ko)) (k—1)!
o5 (a-s) LY
e (a75)3_|:|ll' (Mj—s0j)
= -Gyr? ((a+k)b 1o ms )
Gymﬂ (a—s)bm™™ z%ds g S%mime e Tm
5707%17%7"' 7mT71 Zf(ZIT)T |_| I_(HJ)
()™ b (as — ), (3.12) = =

where the first integral?; is actually the generalized i
Hurwitz-Lerch zeta function given by

8

|
~
=

+
=

o
~—

(Pl;' +Pp;01,++,0q) b 1 . J
S = cD - Apii u <—z,s,a,b ’m)' (3.13)

The evaluation of the second integrd} given by

_ q _
\ﬁn (27T)1Tm |_| r (ui) GgHmi(l) ((a+1+k)bm " 1 2 m—1 )
Iy = p‘zl SO Tm
27l (s) [1 7 (7)) _ MzA1-Ap
=1 Hi---Hg T (S)
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p
o N7 (A +1),
j=1

(—2)"
k!

, —
K0 (a+1+K)° [T 7 (Hj + 1)y,
=1

HED [(a+1+k)b

(s.1),(0,m) ]
ZA1---Ap
Hi--- Hg
(P1s+ ,Pp; 01, ,0g) 11
’ ¢A111,---5\pil;ulll~-~ JMgt+1 (*27 s,a;bm, m) (3.16)

Thus, by applying the derivative formul&.9) in (3.16),
we get

_ d (P1,,Pp,01,+,0q) bt 1
jz_ _Zdz{wAlv"'v)‘p;lJl»'“leq _szaavbmva .
3.17)

Now, upon substituting from3(13 and @.17) into
(3.12, we obtain

(P1+Pp, 01+, 0q) [ i1
Qb{(DAl-“w)\p;le“'Mq < zs.ab m)}

o aymEl —m (P1.,Pp,01,,0q) [ ha 1
_( 1) m ab(p)‘ls"‘:/\p;UL'“a“q Z,S,a,b am

0
oyl o mp, Y
+(-1) m " bz 97

(Pl~"‘spp~,alv"'~,cq) . I‘Tl'l 1
{qJAl‘...,)\p;lJl_’...’“q <szaavb 7m)}a (318)

which, after a straightforward simplification, assumes the

following form:

[(_1)"‘+l m" D, —ab— bez}

(P1.++,Pp, 01, ,0q) b 1 _
{q)}\l-,“-,)\p:ﬂla“'«,#q <_Z’ sabm, m> } =0 (319)
7

<92 =z o"‘z) .

(meN) and

Finally, by setting

b—bm zZ— —2

(Pr. Pps100) o . _
{¢A1,~-»,Ap:u1,~~,uq (z,s,a,b,l)}fo. (3.20)

Furthermore the generalized Hurwitz-Lerch zeta function
(1, .Pp,01,,0q) .
Prr At g (ZSED1),

when considered as an analytic function of the variable b
satisfies the following relationship

7] 7} 7}
oo (b5 9) (22 2)
(pl~""p 7011"'70) .
{qJAL... sf\pgjl»ll-,"wl»qu (Za S,a; ba 1)}
(a+1)bAy--Ap
Hi--- Hq

_\PL .01, 0g) .
O oot (zsat1ib.1).

(3.21)

4 Applications Involving the Hurwitz
Measure and Probability Distributions

Let xa (n) be the characteristic function of the subset
A of the setN of positive integers (or, in the language of
probability theory, the indicator function of the eveAtC
N). Then it is well known that the following arithmetic
density of number theory:

k
densA) = Jim > xal) (1)

does not define a measure on thelsef positive integers.
In order to remedy this deficiency, Golombl] defined a
probability on the sample spadeand showed that, if the
subsetA of N has an arithmetic density, then
lim Qs (A) = dengA), (4.2)
s—1
thereby allowing number-theoretic facts regarding
densities of sets of positive integers to be proven by

probabilistic means and then showing that such properties
are preserved in the limit. Subsequently, in an interesting

result @.3) asserted by Theorem 4.

Remark 6. An interesting special case of Theorem 4
occurs when we seh= 1. We are thus led immediately

to the following results.

Theorem 5.The generalized Hurwitz-Lerch zeta function

(P1,+Pp:01,,0q) :
Do Apita, g (zsab1)

satisfies the following partial differential equation

b (055-5) (b35-1) - (a+vpzs]

an analogous definition of the probabiliti®s when the
setN is replaced by the set of all real numbers greater
than 1. Thus, for a Borel sétC (1,), Lippert’s Hurwitz
measure of the se is defined by (see, for detailsl 7, p.
279, Definition 1]

Py(A) = ﬁss) /1 Txa@(s+1xd  (4.3)
or, equivalently, by

P.(A) = / IR CCLICE B
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where, in terms of the Hurwitz (or generalized) zeta

function{(s,a) defined by {.3), we have

f(xs):=— (4.5)

and

~dd(sx) _ _d(s+1,x
O {C

More recently, Srivastavaet al. [34] introduced and

dii(x,s) = dx.

investigated a new continuous analogue of Lippert's
Hurwitz measure in4.3) by using a special case of the

generalized Hurwitz-Lerch zeta functio@[} (z,s,a;b)
defined by 1.16), that is,

A _ 1 [ st b

— o (s aibA) |
L Ap LR p—1=0=0 (A=p=1;p1=1)

(4.6)

Definition 2. A Borel set [named aftéEmile Borel (1871-

In view of the following relationship:
Ps((1,00)) = / dii (a,s;b,A)
1
= J‘m“(aaS;bv/\)_“(laS;ba/\) =1

the generalized Hurwitz measuRe(A) in (4.7) or (4.9
also defines a probability measure [@new).

Remark 7. For A = 1 and by lettingo — 0, we have

lim H>S |ab =TI (s), (4.12)
b=0 = (s,1),(0,1)
which implies that
o . 06f(1sab)
Ay (@sbD) ==l o1 s10)
{(sx) .~
— = (XS). 4.13
140 fr(xs) (4.13)

Thus, clearly,fi (x,s) can be continuously approximated
by i (a,s;b,1).

1956)] is any setin a topological space that can be formedrheorem 6. The measurefi(a,s;b,A) satisfies the
from open sets (or, equivalently, from closed sets) throughollowing difference equation
the operations of countable union, countable intersection

and relative complement. Thus, for a Borel A&t (1,),
the generalized Hurwitz measure of the Aés$ defined by

_ S
- 0} (1,51;b)

-/OOXA(a) o} (1,s+1,ab)yda (4.7
1

Ps(A)

or, equivalently, by

P (A) = /%(1 )XA(a) dit (a,sb,A), (4.8)

where )
fi(asba) = o 192D (4.9)
el (1,5,1,b)
and
dii (a,s;b,A)
__do} (1,sab)
O} (1,s1h)
S 0} (1,s+1,a;b) da, (4.10)

- 0} (1,s,1;b)

since it is easily seen from the definitioh. 16 that

d
P {@3 (zsa b)} =-s0) (zs+1.ab).

@ (4.11)

I](a+1as;b))\)7ﬁ(aa8;ba)\)

Hé‘g [abAl }
= (5),(0.3) (4.14)
AasT (s)0] (1,5,1;b) '

(s>1;,a>0;b>0;A>0).

Proof. From the series representatich4) of

O (zsa+1b) (with p=1 and z=1),
we have

o} (1,s,a+1;h)
1 0& 1
AT (9) HZO (a+n+1)°

HZY [(@a+n+1)bi
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~H§jg abr . (4.15) By expanding the functio@{‘ (1,s,i+¢&,b) by means of
(s.1),(0,4) Taylor's series and using the derivative formual(l), we
get
The difference equatiort(14 now follows on combining
1
(4.9 and @.15. Py(A) = YT
Remark 8. ForA = 1 and by lettingo — 0, the difference i (1s1b)

equation 4.14) reduces to the following form: i
quation ¢.19 d (sszlef (Ls+Lib)
i=

~ ~ 1
U(aJrlaS)*IJ(aaS) = asg (5)7 (4.16) > o

- g—s(s+ 1) Z@f (1,5+2,i;b) + - ) . (4.22)
wherefl (x,s) is given by @.5). 2 i=

For open events, the generalized Hurwitz measure

Ps(A) in (4.7) or (4.8) can be evaluated by using.g) and We now consider each sum i#.g2) separately. We
the above Proposition. The results are being stated a§us find that
Theorem 7 below. o 1

o} (1,s+m,i;h) = ————
Theorem 7.1f A = (a,a+ 1), then iZ\ AT (s+m)

Ps(A)=PRs((a,a+1)) H20

Hé’g [abA1

(i +n)bi
(s+m1),(0,7)

22 (i+n)s
1

(37 1)7 (0’ %) ]

= . 3 : . (4.17) .
)\al’(s)@l (1,5,1,b) )\I_(S—l—m)
More generally the generalized Hurwitz measure of an T
open set AC (1, ) is given by Hé’g (j+n+1)bx
P(A) = S R((a,h)) c < (s+m1),(0,3)
SR = g Rl 2,2, (i+n+2)>m
g (easa-edwshi)) oo (4.23)
% O{‘ (1,s,1;b) ’ ' Since the number of non-negative integer solutions of the
Diophantine equatiof+n= N is
where
N+1
A={](a,h) (a,bi € [L0);iel). ( 1 >N+1,

icl
] ~the double summation i(23 can be replaced by a single
The following theorem shows that the generalized symmation, that is,
Hurwitz measureRs(A)in (4.7) or (4.8) basically inherits
all properties of Lippert's Hurwitz measure given b 3) Z@f (1,5+m.i;b)
i=

or (4.4).
Theorem 8. Corresponding to the generalized Hurwitz H2O [ (N+1)bi
. 0.2
measure given b{#.18), let 1 o (s+m1),(0,2)
- stm-1
AE) =JGi+e) (e€[01)). (4.19) A (s (N2>
ieN =0} (1,s+m—1,1;b). (4.24)
Then We thus obtain
lIimPs(A(g)) =¢. 4.20
51 s(A(#)) (4.20) lim Ps(A)
s—1
A . 2 A :
Proof. From (4.18), we have =lim ssw - is(s+ 1) w
s»1\ 0] (1,s1b) 2 o7 (1,5,1;b)
> (@) (1sib)—0} (1,si+eb 2 A ;
P (A) = 21 1 (Ls, A) L (Lsi+eb)) (4.21) :e—is(s+1)|imw (4.25)
= 07 (1,8,1;b) 2 =1 07 (1,51;b)
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We note that, wheis — 1, the series fo@f (1,s,1;b) is Proof. The assertion in4.28 can be derived easily by
divergent and the series for@) (1,s+1,1;b) is  using the exponential series fei*. On the other hand,
convergent. Therefore, all other terms vanish 4n2f since
except the leading term. Consequently, we get d (PLPp.0L.~0g)

d;{"’h, o (zsab,A) |

lim R (A) = ¢, (4.26)

which completes the proof of Theorem 8.

»Pp, 01,

(Pl
-S CD - Apibizr

" W (zs+1abA), (4.30)

which follows readlly from the definition1(14), if we

o make use of integration by parts, we find from the
It does not seem to be difficult to extend the definition of the momeniEs[&"] that

above-detailed investigation of the generalized Hurwitz
measure, which was presented earlier by Srivasthad.
[34], to analogously cover wider and more general
situations involving the Hurwitz-Lerch zeta function

(P1,+5Pp; 01,

aq)
M Apipin.e u (z,s,a;b,A)

defined by {.14). Nevertheless, we choose to turn instead
toward an investigation of the following general
probability distribution involving this generalized
Hurwitz-Lerch zeta function.

Definition 3. A random variableé is said to be
generalized Hurwitz distributed if its probability dersit
function is given by

(Pl +Pp;01,+,0q)
S - Apititr bl (z,s+1,a;b,A) @ 1)
fe (a) == ct>§‘l’1 e (25,15b,4)
0 (otherwise,
(4.27)

where it istacitly assumed that the arguments, b, A and
u. and the parameters

(j=1,- (j=1,-

are fixed and suitably constrained so that the probability
density functionfs (a) remains nonnegative.

A}, Pj ,p) and pj,0; ,9);

Theorem 9. Suppose that is a continuous random
variable & with its probability density function defined by
(4.27). Then the moment generating function(j¥1of the
random variabléel is given by

M (3) = Es & ] = niEs[E"] ‘;’T, (4.28)
with the momeniEs[£"] of order n given by
nonl r(s=k
PR e
ﬁi’ii,x‘:?pi’ia,p:’“’ @s-klbh) o

(P1,+,Pp, 01,7, O
Az ApiHa, s Hg

lim
a—»oo

Es[E"] = /:Oa” fe (a)da

s
(P1.++.Pp, 01+, 0q)
dJAll Appul " (z,5,1;b,7)

00n (Pi
[

N (P1,++.Pp, 01,
(D/\l )\p Ha,

e d (pl
. - q:; '
/1 o da{ :
an (D(Pl *\Pp, 01,

A1, Apifa, “

(le .Pp, 01, ,0q)
Aot u (z,5,1;b,7)
n

+0q) .
" (z,5,1;b,A)

»Pp, 01,
< ApiH

1
q)
y (z,5,1;b,A)

‘”(z,s+1ab/\)d

+Pp;01,++,0q)
)\p.ul -, Hg

)(zs,ab)\)

zs,a;b,A) > da
(zsaba)}

a=1

(P1,+,Pp, 01,
Alv Ap Ha,-

n 1 (PL 5Pp; 015
(D = ApiHy

a" ¢(p1'"“’p"’al’m‘g“) (z,s,a;b,A) }

Tq)
“ (z,5,8;b,A)da

e

=1-Ilim {
a—o

+
(1,
(D)\l

o0
/ a1
1

=1+

Avy e Api, s g
(p1,- 7pp70'17"~,
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=0 (neN). (4.32) [8] M. Garg, K. Jain and S. L. Kalla, A further study of general
Hurwitz-Lerch zeta functionAlgebras Groups Geom25
Consequently, we have the following reduction formula (2008), 311-319 (2008).

for Eg[&M]: [9] M. Garg, K. Jain and H. M. Srivastava, Some relationships
between the generalized Apostol-Bernoulli polynomials and
(Pl-,"'7p!:>-,0'17"'-,0'q) (zs—1,1;b,A) Hurwitz-Lerch Zeta functionsintegral Transforms Spec.
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—FEgq [5”*1] (neN). (4.33) Sandeshl11, 99-108 (1997).
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. . : integersJ. Number Theory2, 189-192 (1970).
By iterating the recurrence4(31), we arrive at the [12] P. L. Gupta, R. C. Gupta, S.-H. Ong and H. M. Srivastava,

desired result4.29 asserted by Theorem 6. A class of Hurwitz-Lerch Zeta distributions and their
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531 (2008).
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Applications Chapman and Hall (CRC Press Company),
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