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1 Introduction

The concept of fuzzy soft set, introduced by Molodstov in
[12], is a recent development to deal with uncertainties.
The contribution made by probability theory, fuzzy set
theory, vague sets, rough sets and interval mathematics to
deal with uncertainty is of vital importance but the
problem of inadequacy of parameters has been
successfully resolved by Soft set theory. Maji et al. ([9],
[10]) and Maji and Roy ([11]) elaborated on the theory of
soft sets, fuzzy soft sets and intuitionistic fuzzy soft sets
and highlighted some of their applications. Some basic
operations of fuzzy soft union and intersection and other
algebraic properties were studied by Ahmad and Kharal
([1]). Babitha and Sunil ([3]) and Sut ([16]) defined soft
set relations and fuzzy soft relations and applied the
theory to decision making problems. Biwas and Samanta
([6]) introduced relations on intuitionistic fuzzy soft sets.

The notion of soft topology on a soft set was
introduced by Cagman et. al ([4]) and several properties
of soft topological spaces have been discussed, among
others, by Shabir and Naz ([15]), Hussain and Ahmad
([7]), and Chen ([5]). Fuzzy soft topological spaces were
studied by Tridiv ([13]) and Mahanta ([8]).

Recently, Wardowski ([17]) introduced a notion of
soft mapping and obtained its fixed point. Motivated by
his work, we initiate the study of fixed point in fuzzy soft
set theory. For this purpose we discuss some properties of
a fuzzy soft element in Section 3 of this paper. In Section
4 we introduce fuzzy soft mappings with the help of
cartesian product and relations on fuzzy soft sets.

Concepts of fuzzy soft elements and fuzzy soft mappings
to study fixed point theorems in the framework of fuzzy
soft topological spaces are introduced in Section 5.
Section 6 concludes the paper and gives insight to some
possible future work.

2 Preliminaries

Throughout this section, byU, E andP(U), we denote an
initial universe, a set of parameters, and the collection of
all subsets ofU , respectively.

Definition 1.([18]) A fuzzy set A in U is characterized by
a function with domain as U and values in[0,1]. The
collection of all fuzzy sets in U is denoted by IU .

Definition 2.([18]) An empty fuzzy set denoted by0̃ is a
function which maps each x∈U to 0. That is,0̃(x) = 0 for
all x ∈U. A universal fuzzy set denoted by1̃ is a function
which maps each x∈U to 1. That is,̃1(x) = 1 for all x∈U.

If A,B∈ IU we writeA� B wheneverA(x)≤ B(x) for
eachx∈U, andA= B wheneverA� B andB� A for all
x∈U .

Definition 3. ([18]) Let A and B be two fuzzy sets. Then
(a) their union A ∪ B is defined as
(A ∪ B)(x) = max{A(x),B(x)}; (b) their intersection
A∩B is defined as(A∩B)(x) = min{A(x),B(x)}, and (c)
difference of B from A is denoted by A/B and is defined
by (A /B)(x) = A(x)−B(x) for all x ∈U.
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Note that an implicit assumptionB � A has been
imposed to make the operationA /B well defined.

Definition 4. ([18]) The complement of a fuzzy set A is
denoted by Ac and is defined by Ac(x) = 1−A(x).

Definition 5.([12]) If F is a mapping on E taking values
in P(U), then a pair(F,E)s is called a soft set over(U,E).

Definition 6.([9]) Let A be a subset of E. A pair (F,A)
is called a fuzzy soft set over(U,E) if F : A → IU is a
mapping from A into IU . The collection of all fuzzy soft
sets over(U,E) is denoted byF (U,E).

A fuzzy soft set(F,A) over(U,E) is said to be:
(a) null fuzzy soft set if for eache∈ A, F(e) is a null

fuzzy set̃0 overU. We denote it byΦ̃ .
(b) absolute fuzzy soft set if for eache∈ A,F(e) is a

fuzzy universal set̃1 overU. We denote it bỹE.

Definition 7.([9]) For two fuzzy soft sets(F,A) and
(G,B) in F (U,E), we say that(F,A)⊆̃(G,B) if A ⊆ B
and F(e)� G(e) for each e∈ A.

Definition 8.([9]) Two fuzzy soft sets(F,A) and (G,B) in
F (U,E) are equal if F⊆̃G and G̃⊆F.

Definition 9.([9]) The difference between two fuzzy soft
sets(F,E),(G,E) in F (U,E) is a fuzzy soft set(F /̃G,E)

(say) defined by(F /̃G)(e) = F(e)/G(e) for each e∈ E.

Definition 10.([9]) The complement of a fuzzy soft set
(F,E) is a fuzzy soft set(F c̃,E) defined by Fc̃(e) = 1̃
/ F(e) for each e∈ E.

ClearlyF c̃ = Ẽ/̃F, Φ̃ c̃ = Ẽ, and((F)c̃)c̃ = F.

Definition 11.([1]) Let (F,A) and(G,B) be two fuzzy soft
sets in F (U,E) with A ∩ B 6= Φ̃ , then (d) their
intersection(F∩̃G,C) is a fuzzy soft set, whereC= A∩B
and, (F∩̃G)e= F(e)∩G(e) for each e∈ C, and (e) their
union (F∪̃G,C) is a fuzzy soft set, whereC = A∪B and
(F∪̃G)e= F(e)∪G(e) for each e∈ C.

Definition 12. ([14]) A fuzzy soft topologyτ on
F ∈ F (U,E) is a collection of fuzzy soft subsets of F
satisfying:

1.Φ̃ ,F ∈ τ ( this means that̃E is fuzzy soft subset of F,
that is,1̃ (e)� F(e), that is1≤ F(e)(x)

2.If F1,F2 ∈ τ then F1∩̃F2 ∈ τ.
3.If Fα ∈ τ for all α ∈ Λ , with Λ an index set, then
∪̃α∈Λ Fα ∈ τ .

If τ is a fuzzy soft topology onF then the pair(F,τ) is
called a fuzzy soft topological space.

3 Fuzzy soft elements

Fuzzy soft element is defined as follows.

Definition 13. ([13], [ 8]) Let e be any element in a set A⊆
E. A fuzzy soft set F over A is called a fuzzy soft element if
F(e′) is a null fuzzy set for each e′ ∈ A−{e}. We denote it
by (Fe,A) or simply by Fe

A fuzzy soft elementFe is said to be in fuzzy soft set
(G,B) if (Fe,A)⊆̃(G,B). That is, A ⊆ B and
Fe(e′) � G(e′) for eache′ ∈ A, that is,Fe(e) � G(e′) for
eache′ ∈ A. We write it asFe∈̃G. It is straightforward to
check that union of all fuzzy soft elements corresponding
to each parametere∈ A is equal to the approximate fuzzy
soft set F(e) and therefore the collection of all such
unions, corresponding to each parameter, results in the
original fuzzy soft set(F,A).

Note that ifF is a fuzzy soft set inF (U,E) andFe∈̃F
thenF = {∪̃Fe∈̃FFe : e∈ E}.

Example 1.Let F be the fuzzy soft set inF (U,E) defined
as

F = {(e1,{
u1

0.5
,

u2

0.3
}),(e2,{

u1

0.7
,

u2

0.4
})}

Then some of the fuzzy soft elements ofF are

Fe1 = {(e1,{
u1

0.3
,

u2

0.1
})}, F ′e1 = {(e1,{

u1

0.5
,

u2

0.3
})} and

Fe2 = {(e2,{
u1

0.7
,

u2

0.4
})}.

Note that Fe1∪̃F ′e1 = {(e1,{
u1

0.5
,

u2

0.3
})} = F(e1).

Similarly,

∪̃Fe2 = {(e2,{
u1

0.7
,

u2

0.4
}) = F(e2).

Therefore,{∪̃Fe1∈FFe1, ∪̃Fe2 Fe2}= F.

Basic properties with held by fuzzy soft elements are
stated in the following proposition.

Proposition 1.Let F1,F2 be two fuzzy soft sets over(U,E)
and e∈ E The following holds.

1.Φ̃ is an empty fuzzy soft element of every fuzzy soft set.
2.If F is a fuzzy soft set such that F6= Φ̃ , then F contains

at least one non empty fuzzy soft element.
3.If F e∈̃F1∪̃F2 then Fe is a fuzzy soft element of F1 or

F2.
4.Fe∈̃F1∩̃F2 if and only if Fe is a fuzzy soft element of

F1 and F2.

5.If F e∈̃F1\̃F2 then Fe is a fuzzy soft element of F1 but
not necessarily a fuzzy soft element of F2.

Proof. 1. Let e be an element ofE andF a fuzzy soft set
overE. Obviously,Φ̃(e) � F(e) asΦ̃(e)(x) = 0 for each
x∈U. ThereforeΦ̃ is an empty fuzzy soft element of every
fuzzy soft set.
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2. If F 6= Φ̃ , then there exists at least onee∗ ∈ E such
that F(e∗) 6= 0̃, that is, there exists anx ∈ U for which
F(e∗)(x) 6= 0. Let F(e∗)(x) = ε for someε ∈ (0,1]. Then
we defineF1 such that

F1(e
∗)(x) =

ε
2

andF1(e)(x) = 0 whenevere 6= e∗.

This implies that F1(e∗) � F(e∗). If e 6= e∗, then
0̃= F1(e) � F(e). Hence fuzzy soft setF1 is a non empty
fuzzy soft element ofF.

3. Let Fe be a fuzzy sof element ofF1∪̃F2, that is,
Fe∈̃(F1∪̃F2) which implies thatFe(e) � F1(e

′
) ∪ F2(e

′
)

for each e
′

∈ E . So, for each x ∈ U,
Fe(e)(x) ≤ max{F1(e′)(x),F2(e′)(x)}. Now if
F1(e′)(x) ≤ F2(e′)(x) then for each e′ ∈ E,
Fe(e) � F2(e′). HenceFe∈̃ F2. If F2(e′)(x) ≤ F1(e′)(x)
then Fe(e) � F1(e′) for eache′ ∈ E which implies that
Fe∈̃ F1. So, Fe∈̃F1 or Fe∈̃F2. Conversely, suppose that
Fe∈̃F1 or Fe∈̃F2. ThenFe(e) � F1(e′) or Fe(e) � F2(e′)
for eache′ ∈ E, that is, for allx∈U, Fe(e)(x)≤ F1(e′)(x)
or Fe(e)(x) ≤ F2(e′)(x). Thus Fe(e)(x)
≤ max{F1(e′)(x),F2(e′)(x)}. ThereforeFe∈̃F1∪̃F2.

4. LetFe∈̃(F1∩̃F2)which implies thatFe(e)�F1(e′)∩
F2(e′) for eache′ ∈ E. So for eachx∈U,

Fe(e)(x)≤ min{F1(e
′)(x),F2(e

′)(x)}.

If F1(e′)(x) ≤ F2(e′)(x) then
Fe(e)(x) ≤ F1(e′)(x) ≤ F2(e′)(x) implies that Fe is a
fuzzy sof element of F1 and F2. Similarly if
F2(e′)(x) ≤ F1(e′)(x) then
Fe(e)(x)≤ F2(e′)(x)≤ F1(e′)(x) means thatFe is a fuzzy
sof element ofF2 andF1. Conversely, suppose thatFe∈̃F1
and Fe∈̃F2. Then, for eache′ ∈ E,Fe(e) � F1(e′) and
Fe(e)� F2(e′) which implies that

Fe(e)(x)≤ min{F1(e
′)(x),F2(e

′)(x)}

for eachx in U. Therefore,Fe∈̃F1∩̃F2.

5. Let Fe∈̃F1\̃F2. Then, Fe(e) � F1(e′)\F2(e′) for
eache′ ∈ E, that is,Fe(e)(x) ≤ F1(e′)(x)−F2(e′)(x) for
each x ∈ U. Then Fe(e)(x) ≤ F1(e′)(x) but the real
numberFe(e)(x) is not necessarily less thanF2(e′)(x) for
eachx. Therefore,Fe is a fuzzy soft element ofF1 but
Fe is not necessarily a fuzzy soft element ofF2.

Example 2. Suppose that U = {u1,u2,u3} and
E = {e1,e2}. Let F andG∈ F (U,E) be of the form

F = {(e1,{
u1

0.6
,

u2

0.8
,

u3

0.3
},(e2,{

u1

0.4
,

u2

0.6
,

u3

0.7
})} and

G = {(e1,{
u1

0.5
,

u2

0.8
,

u3

0.3
},(e2,{

u1

0.2
,

u2

0.4
,

u3

0.3
})}.

Note that

F∪̃G = {(e1,{
u1

0.6
,

u2

0.8
,

u3

0.3
},(e2,{

u1

0.4
,

u2

0.6
,

u3

0.7
})},

F∩̃G = {(e1,{
u1

0.5
,

u2

0.8
,

u3

0.3
},(e2,{

u1

0.2
,

u2

0.4
,

u3

0.3
})}, and

F \̃G = {(e1,{
u1

0.1
},(e2,{

u1

0.2
,

u2

0.2
,

u3

0.4
})}.

Fe1 = {(e1,{
u1
0.4,

u2
0.1,

u3
0.3})} is a soft fuzzy element of

F.

Note that Fe1∈̃F∪̃G. Similarly, Fe1∈̃F∩̃G. Also,
Fe2 = {(e2,{

u1
0.1,

u2
0.1,

u3
0.4})} is a soft fuzzy point ofF \̃G

thenFe2∈̃F butFe2 is not a fuzzy soft element ofG.

Proposition 2. Let F1,F2 be two fuzzy soft sets over E.
Then F1⊆̃F2 if and only if Fe∈̃F1 implies that Fe∈̃F2.

Proof. Let F1⊆̃F2 thenF1(e) � F2(e) for eache∈ E, that
is F1(e)(x) ≤ F2(e)(x) for each x ∈ U . Suppose that
Fe∈̃F1. That is, for eache′ ∈ E, Fe(e)� F1(e′) and hence
Fe(e) � F2(e′) for each e′ ∈ E. Therefore, Fe∈̃F2.
Conversely, suppose that every fuzzy soft elementFe in
F1 is also a fuzzy soft element ofF2. Let F

e
1 to be the

largest fuzzy soft element ofF1 for each e ∈ E then
F

e
1∈̃F2. Let ε ∈ (0,1] and F

e
1(e)(x) + ε be such that

F
e
1(e)(x) + ε ≤ F2(e′)(x) for each x ∈ U. That is,

F
e
1(e)(x)≤ F2(e′)(x) for eache′ ∈ E. Therefore,F1⊆̃F2.

Definition 14.([8]) A fuzzy soft topological space(F,τ) is
said to be a fuzzy soft Hausdorff space if for distinct fuzzy
soft elements Fe,Fe′ of F, there exists disjoint fuzzy soft
open sets(F1,A) and(F2,A) such that Fe∈̃F1 and Fe′∈̃F2.

Proposition 3.Let (F,τ) be a fuzzy soft topological space.
A fuzzy soft set Ṽ⊆F is fuzzy soft open if and only if for
each Fe∈̃V there exists a fuzzy soft set W̃∈τ such that
Fe∈̃W⊆̃V.

Proof. Let V ∈ τ. Then clearly for eachFe∈̃V we have
Fe∈̃V⊆̃V. Let V⊆̃F be such that for eachFe∈̃V there
exists a fuzzy soft open setWFe such thatFe∈̃WFe⊆̃V
which means thatFe(e) � WFe(e′) � V(e′) for each
e′ ∈ E. Since for eache ∈ E, V(e) = ∪̃{Fe : Fe∈̃V}⊆̃

∪̃WFe(e)⊆̃V(e), we deduce thatV = {∪̃WFe : e∈ E} ∈ τ .

4 Fuzzy soft mapping

In this section, a concept of fuzzy soft mapping is
introduced. Relevant definitions are formulated and some
properties of fuzzy soft mappings are studied.

Definition 15.([2]) The cartesian product of two fuzzy soft
sets(F,A) and(G,B) is defined as a fuzzy soft set(H,C) =
(F,A)×̂(G,B), where C= A×B and H: C → F (U,E) is
defined by

H(e,e′) = F(e)×̃G(e′)

for all (e,e′) ∈C, where

F(e)×̃G(e′) = {
x

min{F(e′)(x),G(e′)(x)
: x∈U}.

c© 2014 NSP
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Example 3.Let U = {u1,u2} andA= {e1,e2,e3}. Define
fuzzy soft setsF1 andF2 as follows:

(F1,A) = {(e1,{
u1

0.6
,

u2

0.5
}),(e2,{

u1

0.3
,

u2

0.5
}),

(e3,{
u1

0.2
,

u2

0.7
})},

and

(F2,A) = {(e1,{
u1

0.3
,

u2

0.4
}),(e2,{

u1

0.6
,

u2

0.7
}),

(e3,{
u1

0.5
,

u2

0.4
})}.

Then (F1,A)×̂(F2,A) = (H,C) whereC = A×A and
H is given by

H(e1,e1) = F1(e1)×̃F2(e1) = {
u1

0.3
,

u2

0.4
},

H(e1,e2) = F1(e1)×̃F2(e2) = {
u1

0.6
,

u2

0.5
},

H(e1,e3) = F1(e1)×̃F2(e3) = {
u1

0.5
,

u2

0.4
},

H(e2,e1) = F1(e2)×̃F2(e1) = {
u1

0.3
,

u2

0.4
},

H(e2,e2) = F1(e2)×̃F2(e2) = {
u1

0.3
,

u2

0.5
},

H(e2,e3) = F1(e2)×̃F2(e3) = {
u1

0.3
,
0.4
u2

},

H(e3,e1) = F1(e1)×̃F2(e1) = {
u1

0.2
,

u2

0.4
},

H(e3,e2) = F1(e1)×̃F2(e1) = {
u1

0.2
,

u2

0.7
},

H(e3,e3) = F1(e1)×̃F2(e1) = {
u1

0.2
,

u2

0.4
}.

Definition 16.Let (F1,A),(F2,A) be fuzzy soft sets in
F (U,E). A fuzzy soft set R is called a fuzzy soft relation
from F1 to F2 if R = (G,D) where D⊆ C and G= H on
D.

Example 4.Let F1,F2 be as given in Example3. Then

R= {F1(e1)×̃F2(e2),F1(e2)×̃F2(e3),F1(e3)×̃F2(e3)}

is a fuzzy soft relation fromF1 to F2 which itself is a
fuzzy soft set with{(e1,e1),(e2,e3),(e3,e3)} as a set of
parameters. ByF1RF2,we mean thatF1(e1)×̃F2(e2) ∈ R.

We now introduce a fuzzy soft mapping.

Definition 17. Let F,G be fuzzy soft sets inF (U,E). A
fuzzy soft relation T from F to G is called a fuzzy soft
mapping from F to G denoted by T: F →G if the following
conditions are satisfied.

C1for each fuzzy soft element Fe∈̃F, there exists only one
fuzzy soft element Ge∈̃G such that FeTGe which will
be denoted as T(Fe) = Ge.

C2for each fuzzy soft empty element Fe∈̃F,T(Fe) is a
empty fuzzy soft element of G.

Definition 18.Let F,G be fuzzy soft sets inF (U,E) and
T : F → G a fuzzy soft mapping. The image of X⊆̃F under
fuzzy soft mapping T is the fuzzy soft set T(X) defined by

T(X) = {∪̃Fe∈̃X T(Fe) : e∈ E}.

It is clear thatT(Φ̃) = Φ̃ for each fuzzy soft mappingT.

Definition 19. Let F,G∈ F (U,E) and T : F → G a fuzzy
soft mapping. The inverse image of Y⊆̃G under fuzzy soft
mapping T is the fuzzy soft set denoted by T−1(Y) and
defined as:

T−1(Y)= {{∪̃Fe∈̃FFe : e∈E } : T(Fe)∈̃Y for each e∈E}.

Example 5.Let F andG be defined as:

F = {(e1,{
u1

0.6
,

u2

0.4
}),(e2,{

u1

0.3
,

u2

0.7
})} and

G = {(e1,{
u1

0.2
,

u2

0.6
}),(e2,{

u1

0.7
,

u2

0.8
})}.

DefineT asT(Fe) = Ĝe for eache∈ E, whereĜe is the
largest fuzzy soft element corresponding to each parameter
e∈ E, that is, if Ge is any fuzzy soft element inG then

Ge⊆̃Ĝe. So,T(Fe1) = Ĝe1 = {
u1

0.2
,

u2

0.6
} for all Fe1∈̃F and

T(Fe2) = Ĝe2 = {
u1

0.7
,

u2

0.8
} for all Fe2∈̃F. Moreover,

T(F) = {{∪Fe1∈̃XT(Fe1)},{∪Fe2∈̃XT(Fe2)}}

= {Ĝe1,Ĝe2}= G.

Proposition 4. Let F, G ∈ F (U,E),
(X,E),(X1,E),(X2,E) ⊆̃(F,E), and
(Y,E),(Y1,E),(Y2,E)⊆̃(G,E). Let T : F → G be a fuzzy
soft mapping. Then following hold.

i.X1⊆̃X2 ⇒ T(X1)⊆̃T(X2),

ii.Y1⊆̃Y2 ⇒ T−1(Y1)⊆̃T−1(Y2),

iii. X⊆̃T−1(T(X)),

iv.T(T−1(Y))⊆̃Y,
v.T(X1∪̃X2) = T(X1)∪̃T(X2),
vi.T(X1∩̃X2) = T(X1)∩̃T(X2),
vii.T−1(Y1∪̃Y2) = T−1(Y1)∪̃T−1(Y2), and
viii. T−1(Y1∩̃Y2) = T−1(Y1)∩̃T−1(Y2).

Proof. i. LetFe be an arbitrary fuzzy soft element inT(X1)
then there exists a fuzzy soft element̥e in X1 such that
T(̥e) = Fe. As X1⊆̃X2 so̥e is a fuzzy soft element of
X2. So for every fuzzy soft elementFe in T(X1), Fe is a
fuzzy soft element inT(X2). Hence the result.

v. Let ̥e ∈̃T(X1∪̃X2). Then ̥e = T(Fe) for some
Fe∈̃X1∪̃X2. If Fe∈̃X1 then ̥e∈̃T(X1)⊆̃T(X1)∪̃ T(X2)

and if Fe∈̃X2 then̥e∈̃T(X2)⊆̃T(X1)∪̃T(X2). Therefore,
T(X1∪̃X2)⊆̃ T(X1)∪̃T(X2). Now let ̥e∈̃T(X1)∪̃T(X2),
that is,̥e is fuzzy soft element ofT(X1) or T(X2). If
Fe∈̃T(X1), thenT(X1)⊆̃T(X1∪̃X2) givesFe∈̃T(X1∪̃X2).

c© 2014 NSP
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Similarly, If Fe∈̃T(X2), then T(X2)⊆̃T(X1∪̃X2) gives
Fe∈̃T(X1∪̃X2). ThereforeT(X1)∪̃T(X2)⊆̃T(X1∪̃X2). So
we conclude that

T(X1∪̃X2) = T(X1)∪̃T(X2).

viii . If Fe∈̃T−1(Y1∩̃Y2) thenT(Fe)∈̃Y1∩̃Y2. Since for
eache∈ E, T(Fe)⊆̃Y1(e)∩Y2(e),then, for allx, T(Fe)(x)
is less than the minimum ofY1(e)(x) andY2(e)(x). Hence,
Fe∈̃ T−1(Y1)∩̃T−1(Y2) and therefore,

T−1(Y1∩̃Y2)⊆̃T−1(Y1)∩̃T−1(Y2).

Now, let Fe∈̃T−1(Y1)∩̃T−1(Y2). Then following similar
arguments to those given above it follows that
T(Fe)∈̃Y1and T(Fe)∈̃Y2. It follows from here that
Fe∈̃T−1(Y1∩̃Y2). So,T−1(Y1)∩̃T−1(Y2)⊆̃T−1(Y1∩̃Y2).

Proofs of the rest of the properties follow on similar
lines.

Definition 20.Let (F,τ) be a fuzzy soft topological space
and K⊆̃F. A fuzzy soft open cover for K is a collection of
fuzzy soft open sets{Vi}i∈I ⊆ τ whose union contains K.

Definition 21.A fuzzy soft topological space(F,τ) is
compact if for each fuzzy soft open cover{Vi}i∈I of K
there exists i1, i2, .., ik ∈ I ,k∈ N such that K̃⊆∪k

n=1Vin.

Definition 22.Let (F,τ),(G,v) be fuzzy soft topological
spaces and T: F → G a fuzzy soft mapping. Then T is a
fuzzy soft continuous mapping (with respect to the fuzzy
soft topologiesτ and v ) if for each V∈ v,T−1(V) ∈ τ,
that is, the inverse image of a fuzzy soft open set is a fuzzy
soft open set.

We say that the fuzzy soft setK⊆̃F is fuzzy soft
compact in (F,τ) if the fuzzy soft topological space
(K,τ|K) is fuzzy soft compact.

Example 6.Let U = {u1,u2,u3},E = {e1,e2,e3}. Suppose
F ∈ F (U,E) is of the form

F = {(e1,{
u1

1
,
u2

1
,

u3

0.7
}),(e2,{

u1

0.6
,

u2

0.9
,

u3

0.7
})}.

Consider the familyτ of all fuzzy soft subsets ofF and let
V = F̂e1 ∈ τ whereF̂e1 is the largest fuzzy soft element of
F. DefineT : F → F asT(Fe) = Fe for eache∈ E. Then,
T−1(F̂e1) = F̂e1 ∈ τ .
Proposition 5.Let (K,τ) be a fuzzy soft compact
topological space and T: K → K a fuzzy soft continuous
mapping. Then T(K) is a fuzzy soft compact set in(K,τ).

Proof. Suppose thatT(K)⊆̃∪̃ℓGℓ, where{Gℓ} is a family
of fuzzy soft open sets inK. Then taking the preimage,
we have,K⊆̃T−1(∪̃ℓGℓ). As T−1(Gℓ) is open inK so
there must exist soft fuzzy openVℓ⊆̃T(K) such that
T−1(Gℓ) =Vℓ∩̃K. SoK⊆̃∪̃ℓ(Vℓ∩̃K) implies thatK⊆̃∪̃ℓVℓ.
SinceK is compact fuzzy soft set, therefore there exist
ℓ1, ℓ2, ..., ℓN such thatK⊆̃∪̃

N
i=1Vℓi . HenceK = ∪̃ℓ(Vℓ∩̃K)

= ∪̃
N
i=1T−1(Gℓi ) which implies that T(K)⊆̃∪̃

N
i=1Gℓi .

HenceT(K) is compact.

5 Fixed points of soft fuzzy mappings

We start this section with the definition of a fixed point of
a fuzzy soft mapping.

Definition 23.Let F ∈ F (U,E) be a fuzzy soft set and T:
F → F a fuzzy soft mapping. A fuzzy soft element Fe∈̃F is
called a fixed point of T if T(Fe) = Fe.

Example 7.If T : F → F is defined as an identity map, then
each fuzzy soft element ofF is a fixed point.

Proposition 6.Let (F,τ) be a fuzzy soft compact
topological space and{Fn : n ∈ N} a family of fuzzy soft
subsets of F satisfying:

A1.Fn 6= Φ̃ for each n∈ N,
A2.Fn is fuzzy soft closed for each n∈ N,
A3.Fn+1⊆̃Fn for each n∈ N.

Then∩̃n∈NFn 6= Φ̃ .

Proof. Suppose on the contrary, that∩̃n∈NFn = Φ̃ . We
know that(∩̃n∈NFn)

c̃ = ∪̃n∈N(Fn)
c̃ ( see [1]). From (A2),

(Fn)̃c is a fuzzy soft open set for eachn∈ N. Hence

F⊆̃Ẽ = (Φ̃)c̃ = (∩̃n∈NFn)
c̃ = ∪̃n∈N(Fn)

c̃.

As F is fuzzy soft compact, there existsi1, i2, ..., ik ∈ N,
i1 < i2 < ... < ik, k∈ N such that

F⊆̃F c̃
i1∪̃F c̃

i2, ...∪̃F c̃
ik.

Hence from(A3), we have,Fik⊆̃F⊆̃(Fi1∩̃Fi2∩̃...∩̃Fik)
c̃ =

F
c̃

ik
= Ẽ/Fik, which is impossible in the light of(A1).

Example 8.Let (F,τ) be a fuzzy soft topological space
whereτ contains all possible subsets of

F = {(e1,{
u1

1
,

u2

0.7
}),(e2,{

u1

0.9
,
u2

1
})}.

Let two fuzzy soft subsets ofF be defined as

F1 = {(e1,{
u1

0.4
,

u2

0.5
}),(e2,{

u1

0.8
,

u2

0.4
})}

and

F2 = {(e1,{
u1

0.6
,

u2

0.3
}),(e2,{

u1

0.8
,

u2

0.5
})}.

Note that they satisfy the conditions of Proposition6.
MoreoverF1⊆̃F2 and∩̃2

j=1Fj = F1 6= Φ̃ .

Proposition 7.Let (F,τ) be a fuzzy soft topological space
and T : F → F a fuzzy soft mapping such that for each
nonempty fuzzy soft element Fe∈̃F, T(Fe) is a nonempty
fuzzy soft element of F. If ∩̃n∈NTn(F) contains only one
nonempty fuzzy soft element Fe∈̃F, then Fe is a unique
fixed point of T.
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Proof. Observe thatTn(F)⊆̃Tn−1(F) for eachn∈ N. Let
Fe be a fuzzy soft element ofF such thatFe∈̃ ∩̃n∈NTn(F).
That is,Fe⊆̃∩̃n∈NTn(F). Consequently

T(Fe)⊆̃T(∩̃n∈NTn(F))⊆̃∩̃n∈NTn+1(F)⊆̃∩̃n∈NTn(F)=Fe.

Since T(Fe) is a non empty fuzzy soft element ofF ,
therefore we obtain thatT(Fe) = Fe.

Example 9.Let (F,τ) be a fuzzy soft topological space and
defineT : F → F asT(Fe) = F̂e for all Fe∈̃F, whereF 6=

Φ̃ and F̂e represents the largest fuzzy soft element ofF
or equivalentlyFe⊆̃F̂e for each fuzzy soft elementFe∈̃F.
Then∩̃n∈NTn(F) contains only one non empty fuzzy soft
element which iŝFe. Note thatF̂e is a unique fixed point
of T.

Proposition 8.Let (F,τ) be a fuzzy soft Hausdorff
topological space. Then every fuzzy soft compact set in F
is fuzzy soft closed in F.

Proof. Let K be a fuzzy soft compact set in(F,τ). We need
to show thatK is fuzzy soft closed, that is,Kc̃ is fuzzy soft
open. LetFe∈̃Kc̃. For everyFe′∈̃K, let Ui ,Vi ∈ τ be such
thatUi∩̃Vi = Φ̃ andFe∈̃Ui , Fe′∈̃Vi wherei ∈ I . SinceK is
fuzzy soft compact so there existsFe′ ,Fe′ , ...,Fe′∈̃K such
thatK⊆̃Vi1∪̃Vi2∪̃...∪̃Vik. DenoteU =Ui1∪̃Ui2∪̃...∪̃Uik and
V = Vi1∪̃Vi2∪̃...∪̃Vik. ThenFe∈̃U ∈ τ ,U∩̃V = Φ̃ , which
gives thatFe∈̃U⊆̃ Kc̃. ThereforeK is fuzzy soft closed.

Theorem 1.Let (K,τ) be a fuzzy soft compact Hausdorff
topological space and T: K → K a fuzzy soft continuous
mapping such that

a.for each non empty fuzzy soft element Fe∈̃K,T(Fe) is a
non empty fuzzy soft element of K,

b.for each fuzzy soft closed set X⊆̃K if T (X) = X then X
contains only one nonempty fuzzy soft element of K.

Then there exists a unique nonempty fuzzy soft element
Fe∈̃K such that T(Fe) = Fe.

Proof. Consider a family of fuzzy soft subsets ofK of the
form

C1=T(K),C2=T(C1)=T2(K), ...,Cn=T(Cn−1)=Tn(K)

for n ∈ N. It is clear thatCn⊆̃Cn−1 for eachn ∈ N. By
Proposition8, for eachn ∈ N, Cn is fuzzy soft closed.
Using Proposition6, we conclude that a fuzzy soft setD
of the formD = ∩n∈N Cn is nonempty. Observe that

T(D)=T(∩n∈NTn(K))⊆̃∩n∈N Tn+1(K)⊆̃∩n∈N Tn(K)=D.

Now we show thatD⊆̃T(D). For this, suppose that there
existsFe∈̃D such thatFe is not a fuzzy soft element of
T(D). PutEn = T−1(Fe)∩̃Cn. Let us observe thatEn 6= Φ̃
and En⊆̃En−1 for eachn ∈ N. By Proposition6, there
exists nonempty fuzzy soft element̥e

′
∈̃T−1(Fe)∩̃D and

thus Fe = T(̥e′)∈̃T(D), a contradiction. Therefore,
T(D) = D. Hence the result follows using Proposition6.

6 Conclusion

In this paper we put forward the notion of fuzzy soft
mappings based on the theory of fuzzy soft element of
fuzzy soft set and fuzzy soft topological space. We study
fixed points of fuzzy soft mappings. Employing these
results, we can further study fixed point theory in the
framework of fuzzy soft set theory.
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