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Abstract: In this paper, the Konopelchenko-Dubrovsky equation will be studied bythe aid of traveling wave hypothesis and Lie
symmetry analysis. The traveling wave hypothesis will extract the 1-solitonsolution while the Lie symmetry approach will retrieve
other solutions to this equation.
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1 Introduction

In the past few decades a lot of study has been conducted
in the area of nonlinear evolution equations (NLEEs) that
arise in various areas of Applied Mathematics and
Mathematical Physics. Finding the exact analytical
solution has been an ongoing challenge for these NLEEs.
There has been a lot of success in this direction. In fact, in
the past decade, there has been a lot of analytical tools
developed that integrated several of these NLEEs. Some
of them are variational iteration method, homotopy
analysis method, Riccati’s equation method, tanh-coth
method, sine-cosine method, exp-function method,G′/G
method and several others. In this paper, the traveling
wave hypothesis as well as the Lie symmetry analysis will
be used to extract soliton and other solutions to the
Konopelchenko-Dubrovsky (KD) equation.

2 Mathematical analysis

The dimensionless form of the KD equation is given by

qt +aqqx +bq2qx + cqxxx +αry +βqxr = 0 (1)

qy = rx (2)

This is a coupled system of equation where the dependent
variables areq(x,y, t) and r(x,y, t) which are real valued

functions, while the independent variables arex, y and t
which represent the spatial and temporal variables. The
spatial variables are inx andy directions. The coefficients
a, b, c, α andβ are real valued constant coefficients. KD
equation arise in Mathematical Physics in the context of
nonlinear waves with weak dispersion. This coupled
system cover the Gardner, KP, modified KP (mKP) and
KD equations, for different values of coefficientsa, b, c,
α and β . For r = 0, system reduces to the Gardner’s
equation [16,17]. For b = β = 0, system of equations (1)
and (2) become the KP equations [18,19] which is used to
model the shallow water waves with weakly nonlinear
restoring forces and nonlinear waves in ferromagnetic
media, plasmas and super-fluids. Fora = 0, system
reduces to mKP equations [20] which can describe the
propagation of ion-acoustic waves in a plasma with the
non-isothermal electrons. Fora = −6γ, c = −1,
b = 1.5δ 2, α =−3 andβ = 3δ , equations reduces to KD
equations [21, 22] which have proposed by the inverse
scattering transformation method. So investigation of
coupled system (1) and (2) will be of certain interest. In
this paper, this coupled system of equation will be studied
by the traveling wave hypothesis and Lie symmetry
approach in the following two subsections.
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2.1 Traveling wave

In order to solve equations (1) and (2) by traveling wave,
the starting hypothesis is

q(x,y, t) = g(B1x+B2y− vt), (3)

r(x,y, t) = h(B1x+B2y− vt) (4)

whereg andh are the wave profiles andv is the velocity of
the wave. The parametersB1 andB2 represent the inverse
width of the wave in thex- andy-directions. Substituting
these into (1) and (2) gives the following coupled system
of ordinary differential equations (ODEs).

−vg′+aB1gg′+bB1g2g′+ cB3
1g′′′+αB2h′

+βB1g′h = 0 (5)

and

B2g′ = B1h′ (6)

where′ denotes differentiation with respect tos and

s = B1x+B2y− vt (7)

Integrating (5) and (6) once and eliminatingh between
them while choosing the integration constant to be zero,
since the search is for a soliton solution, gives the ODE in
g as

g′′ = a1g3−a2g2+a3g (8)

where

a1 =−
b

3cB1
(9)

a2 =
aB1+βB2

2cB3
1

(10)

and

a3 =
vB1−αB2

2

cB3
1

(11)

Now, multiplying both sides of (9) byg′ and integrating
and once again choosing the integration constant to be zero
yields

(

g′
)2

=
g2

6

(

3a1g2−4a2g+6a3
)

(12)

Separating variables and integrating gives

B1x+B2y− vt√
6

=
ds

g
√

3a1g2−4a2g+6a3
(13)

which, after simplification, leads to the soliton solution
given by

q(x,y, t) = g(B1x+B2y− vt)

=
A

D+cosh(B1x+B2y− vt)
(14)

where the amplitudeA of the solitary wave is given by
given by

A =
6a3

√

4a2
2−18a1a3

(15)

while the constantD is

D =
18a1a2a3

(

2a2
2+9a1a3

)

√

4a2
2−18a1a3

. (16)

These poses the constraint

9a1a3 < 2a2
2 (17)

Finally, the wave profile forr(x,y, t) is given by

r(x,y, t) = h(B1x+B2y− vt) =
B2

B1
q(x,y, t) (18)

which is obtained from (6).

2.2 Symmetry analysis

In this subsection, we apply Lie symmetry approach [11,
12] to find symmetries and we obtain some exact solutions
of equations (1) and (2).

2.2.1 Lie symmetry approach

In order to find the symmetry group of equations (1) and
(2), we apply the algorithms described in text books such
as [13–15]. Setting the one-parameter Lie group of
infinitesimal transformations

x → ξ = x+ εξ +O(ε2)
y → ζ = y+ εζ +O(ε2)
t → τ = t + ετ +O(ε2)
r → φ = r+ εφ +O(ε2)
q → η = q+ εη +O(ε2),

(19)

where the infinitesimalsξ ,ζ ,τ ,φ ,η depend onx,y, t,r,
andq in general, with small parameterε ≪ 1. We look for
an algebra of vector fields of the form

V = ξ ∂x +ζ ∂y + τ∂t +φ∂r +η∂q. (20)

The coefficientsξ ,ζ ,τ ,φ ,η are determined from the
requirement that the third prolongation ofV should
annihilate the equations on the solution set of the
equations.

The invariance of equations (1) and (2) under the
infinitesimal point transformations (19) leads to following
expressions for infinitesimals

η =− (a+2qb)
6b C1

φ = f ′(t)
β + a2−4bβ r

6bβ C1

τ =C1t +C2
ξ = x

3C1+ f (t)
ζ = 2y

3 C1+C3,

(21)
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where f (t) is arbitrary function oft andC1,C2,C3,C4 are
arbitrary constants and prime(′) denotes derivative with
respect tot. Associated with this Lie group, we have an
infinite dimensional Lie algebra that can be represented by
the generators

V1 =− (a+2qb)
6b

∂
∂q +

a2−4bβ r
6bβ

∂
∂ r + t ∂

∂ t +
x
3

∂
∂x +

2y
3

∂
∂y

V2 =
∂
∂ t

V3 =
∂
∂y

V4 =
f ′(t)
β

∂
∂ r + f (t) ∂

∂x .

(22)

2.2.2 Similarity reductions and invariant solutions

To obtain the symmetry reductions of equations (1) and
(2), we have to solve the characteristic equation

dx
ξ

=
dy
ζ

=
dt
τ

=
dr
φ

=
dq
η
, (23)

whereξ , ζ , τ , φ andη are given by (21). To solve (23),
we consider three cases:

(i) V2+µV4, (ii) V3+V4 and(iii) V4

Case (i) V2+µV4

Solving characteristic equation (23), we have following
similarity variables

θ = y
ρ = x−µ

∫

f (t)dt (24)

q = F(θ ,ρ)
r = µ

β f (t)+G(θ ,ρ), (25)

whereθ , ρ are new independent variables andF, G are
new dependent variables. Substituting equation (25) along
with equations (24) into equations (1) and (2), we
immediately obtain the reduced equations, which read

Fθ = Gρ
cFρρρ +bF2Fρ +aFFρ +βGFρ +αGθ = 0.

(26)

Again apply Lie classical method on system (26), we
obtain symmetries as follows:

τ1 =C1+2θC3
τ2 =C2+ρC3

φ1 = −2bF−a
2b C3

η1 = a2−4bβG
2βb C3,

(27)

whereτ1, τ2, φ1, η1 are infinitesimals corresponding to
θ , ρ , F, G, respectively.C1, C2 and C3 are arbitrary

constants. Three dimensional Lie algebra admitted by
(26) is

L3 =

[

V1 =
∂

∂θ
, V2 =

∂
∂ρ

,

V3 = 2θ
∂

∂θ
+ρ

∂
∂ρ

−
2bF +a

2b
∂

∂F
+

a2−4bβG
2βb

∂
∂G

]

(28)

The problem of deriving an optimal system of group
invariant solutions is equivalent to find an optimal system
of Lie symmetries (or subalgebras spanned by these
operators). The method used here is given by Olver
in [14]. For brevity we omit the details, and just state the
result that an optimal system of generators is

(i) V3
(ii) V2+ lV1
(iii) V1,

(29)

wherel is arbitrary constant.
We use the method of characteristics to determine the

invariants and reduced ODEs corresponding to each
subalgebra given in (29). Symmetry variables and the
invariants of the subalgebras of the Lie algebraL3 are
given in table1.

Table 1: Similarity variables of equation (26)
Subalgebra Symmetry variables FunctionsF(θ ,ρ), G(θ ,ρ)

V3 σ =
ρ2

θ
F =

H(σ)

ρ
−

a
2b

, G =
J(σ)

ρ2 +
a2

4bβ
V2+ lV1 σ = θ − lρ F = H(σ), G = J(σ)

V1 σ = ρ F = H(σ), G = J(σ)

Now reduction of variable is performed to obtain ODE.
Exact solutions of ODE are discussed in each case.

Vector field V3
The reduced ODE system is

−σ2H ′−2σJ′+2J = 0

−8cσ3−2bσH2H ′+bH3−6cσH ′+6cH

+ασ2J′−2βσH ′J+βHJ = 0, (30)
where(′) denotesσ -derivative.
We obtain following solution of ODE system (30)

H = k1σ , J =−
k1

2
σ2, (31)

where

k1 =
β ±

√

β 2−16bα
4b

. (32)

Corresponding solution of main equations (1) and (2) is
given as

q(x,y, t) = k1
x−µ

∫

f (t)dt
y

−
a
b

r(x,y, t) =
µ
β

f (t)− k1
(x−µ

∫

f (t)dt)2

2y2 +
a2

4bβ
,

(33)
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wherek1 is given by (32).

Vector field V2+ lV1
Corresponding reduced ODE system is

l3cH ′′′+ lbH2H ′+ laHH ′+ lβH ′J−αJ′ = 0 (34)

H ′+ lJ′ = 0, (35)

where prime denotes derivative with respect toσ .
Integrating (35) with respect toσ , we have

J =−
H
l
+C1, (36)

whereC1 is arbitrary constant.
Using (35)-(36) in (34) and integrating twice with

respect toσ , we have

6l4cH ′2+ l2bH4+2l(al −β )H3+6(α +C1l2β )H2

+C2H +C3 = 0 (37)

whereC2 andC3 are arbitrary constants. Taking

l =
β
a
, C2 =C3 = 0

and substituting

H(σ)2 = X(σ) (38)

in (37), we have

3cl4X ′2+2bl2X3+12(α +C1β l2)X2 = 0. (39)

Solutions of equation (39) are as follows:

(i) X (σ) =−6
(α+C1β l2)

l2b
sech2

(

C4+

√

−c(α+C1β l2)σ
cl2

)

(ii) X (σ) =−6
(α+C1β l2)

l2b
csc2

(

C4−
√

c(α+C1β l2)σ
cl2

)

(iii) X (σ) =−2
α +C1β l2

l2b

−6C4
2 cl2

b
℘(C5+C4 σ , m1, m2) ,

(40)
where

l =
β
a
, m1 =

4
3
(α2+2α C1β l2+C1

2β 2l4)

C4
4c2l8

,

m2 =
8
27

(

α +C1β l2
)(

α2+2α C1β l2+C1
2β 2l4

)

l12c3C4
6

(41)

and C4, C5 are arbitrary constants.℘ is Weierstrass P
function.

Corresponding solutions of main system of equations
(1) and (2) are

(i) q(x,y, t) =
a
β

√

−
6
b

k1sech

(

C4+
a2

cβ 2

√

−ck1

(

y−
β (x−µ

∫

f (t)dt)
a

))

r(x,y, t) = −
a2

β 2

√

−
6
b

k1sech

(

C4+
a2

cβ 2

√

−ck1

(

y−
β (x−µ

∫

f (t)dt)
a

))

+
f (t)µ

β
+C1 (42)

(ii) q(x,y, t) =
a
β

√

−
6
b

k1csc

(

C4−
a2

cβ 2

√

ck1

(

y−
β (x−µ

∫

f (t)dt)
a

))

r(x,y, t) = −
a2

β 2

√

−
6
b

k1csc

(

C4−
a2

cβ 2

√

ck1

(

y−
β (x−µ

∫

f (t)dt)
a

))

+
f (t)µ

β
+C1 (43)

(iii) q(x,y, t) =

√

−
2k1a2

β 2b
· · ·

· · ·−6
C4

2cβ 2

a2b
℘(C5+C4 σ ,m1,m2)

r(x,y, t) = −
a
β

√

−
2k1a2

β 2b
· · ·

· · ·−6
C4

2cβ 2

a2b
℘(C5+C4 σ ,m1,m2)

+
f (t)µ

β
+C1, (44)

where σ =
(

y− β (x−µ
∫

f (t)dt)
a

)

, k1 = α + C1β 3

a2 and

m1, m2 is given by (41).

Vector field V1
Corresponding reduced ODE system is

J′ = 0

cH ′′′+bH2H ′+aHH ′+βJH ′ = 0, (45)

where prime denotes derivative with respect toσ .
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Consequently, solution of system of equations (1) and
(2) is given as

q = −
1
2

a
b
−

1
2b

√

−12bβ k+3a2

tanh

(

√

−2bc(−4bβ k+a2)(x−µ
∫

f (t)dt)
4bc

)

r =
µ f (t)

β
+ k, (46)

wherek is arbitrary constant.

Case (ii) V3+V4

Corresponding similarity variables are

ρ = x− f (t)y
θ = t
q = F(θ ,ρ)
r = ḟ

β y+G(θ ,ρ),

(47)

whereρ ,θ are new independent variables andF,G are new
dependent variables. Dot denotes t-derivative. Using (47)
in system of equations (1) and (2), we have

f (θ)Fρ +Gρ = 0 (48)

−cβFρρρ −bβF2Fρ −aβFFρ −βFθ

+αβ f (θ)Gρ −β 2Fρ G−α
d f
dθ

= 0, (49)

Integrating (48) with respect toρ and taking function of
integration equal to zero, we have

G =− f (θ)F. (50)

Using (48) and (50) in (49), we have

−cβFρρρ −bβF2Fρ −aβFFρ −βFθ −αβ f 2(θ)Fτ

+β 2 f (θ)FFρ −α
d f
dθ

= 0, (51)

which is difficult to solve for generalf (θ). So to simplify
equation (51) we take f (θ) = a

β , so that, equation (51)
reduces to

cβFρρρ +bβF2Fρ +βFθ +
a2α
β

Fτ = 0, (52)

Again applying Lie classical method on (52), we obtain
following infinitesimals

τ1 = θC1+C2

τ2 =

(

ρ
3
+

2a2αθ
3β 2

)

C1+C3 (53)

η1 = −
F
3

C1,

whereτ1, τ2 and η1 are infinitesimals corresponding to
θ , ρ andF , respectively. Corresponding vector fields are
given as

V1 = θ
∂

∂θ
+

(

ρ
3
+

2a2αθ
3β 2

)

∂
∂ρ

−
F
3

∂
∂F

V2 =
∂

∂θ
(54)

V3 =
∂

∂ρ
.

Following the same way as in Case (i), similarity variables
and invariant functions of (54) are given in Table2.

Table 2: Similarity variables of equation (52)
Subalgebra Symmetry variables FunctionF(θ ,ρ)

V1 σ = ρθ− 1
3 −

a2α
β 2 θ

2
3 F = θ− 1

3 H(σ)

V2+λV3 σ = ρ −λθ F = H(σ)
V3 σ = θ F = H(σ)

Vector field V1
The reduced ODE is

3cH ′′′+3bH2H ′− (Hσ)′ = 0, (55)

where prime denotes derivative with respect toσ . Solution
of ODE (55) is given as

H(σ) =±

√

−6c
b

σ
. (56)

Consequently, solution of main system of equations (1)
and (2) is given as

q =±

√

−6c
b

x+ a
β y− a2α

β t
(57)

r =∓
a
β

√

−6c
b

x+ a
β y− a2α

β t
. (58)

Vector field V2+λV3
The reduced ODE is

cβH ′′′+bβH2H ′+

(

αa2

β
−λβ

)

H ′ = 0. (59)
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Solutions of (59) are given as

(i) H (σ) = ±

√

−3b
(

−cβ 2C3
2+α a2−λ β 2

)

bβ
cn(C2+C3 σ ,n1) (60)

(ii) H (σ) = ±
√

6bcC3

b
dn(C2+C3 σ ,n2) (61)

(iii) H (σ) =

√

3b(α a2−λ β 2)

bβ

tan

(

C1+

√

−(2α a2−2λ β 2)cσ
2cβ

)

. (62)

where

n1 =

√

−2c
(

−cβ 2C3
2+α a2−λ β 2

)

2cβ C3
,

n2 =

√

c
(

2cβ 2C3
2+α a2−λ β 2

)

cβ C3

andC1,C2,C3 are arbitrary constants.
Consequently, solutions of KD equation is given as

(i) q(x,y, t) = ±

√

−3b
(

−cβ 2C3
2+α a2−λ β 2

)

bβ

cn

(

C2+C3 (x+
a
β

y−λ t),n1

)

r(x,y, t) = ±
a
β

√

−3b
(

−cβ 2C3
2+α a2−λ β 2

)

bβ

cn

(

C2+C3 (x+
a
β

y−λ t),n1

)

(ii) q(x,y, t) = ±
√

6bcC3

b

dn

(

C2+C3 (x+
a
β

y−λ t),n2

)

r(x,y, t) = ±
a
β

√
6bcC3

b

dn

(

C2+C3 (x+
a
β

y−λ t),n2

)

(iii) q(x,y, t) =

√

3b(α a2−λ β 2)

bβ

tan

(

C1+

√

−(2α a2−2λ β 2)c(x+ a
β y−λ t)

2cβ

)

r(x,y, t) =
a
β

√

3b(α a2−λ β 2)

bβ

tan

(

C1+

√

−(2α a2−2λ β 2)c(x+ a
β y−λ t)

2cβ

)

Vector field V3
Corresponding to this vector field we get constant solution
of KD equations (1) and (2).

Case (iii) V4

Corresponding similarity variables are

θ = y

ρ = t

u = F(θ ,ρ)

v =
ḟ

β f
x+G(θ ,ρ), (63)

where dot denotes derivative with respect tot. θ ,ρ are
new independent variables andF,G are new dependent
variables. Using (63) in KD equations (1) and (2), we
have following two dimensional PDE

Fθ −
d f (ρ)

dρ

β f (ρ)
= 0 (64)

Fρ +αGθ = 0. (65)

General solution of equations (64) and (65) is

F(θ ,ρ) =
d f (ρ)

dρ

β f (ρ)
θ +g(ρ) (66)

G(θ ,ρ) = −
f (ρ) d2 f (ρ)

dρ2

αβ f 2(ρ)
θ 2

2
−

dg(ρ)
dρ

θ
α
−h(ρ), (67)

where f ,g,h are arbitrary functions ofρ .
Consequently, solution of KD equation is

q =
ḟ

β f
y+g(t)

r =
ḟ

β f
x−

f f̈ − ḟ 2

αβ f 2

y2

2
−

y
α

ġ−h(t), (68)

where dot denotes derivative with respect tot and f ,g,h
are arbitrary functions oft.

3 Conclusions

This paper shined some light on the KD equation from
the perspective of its integrability. The traveling wave
hypothesis was applied to retrieve a solitary wave solution
to the equation. Subsequently, a much more powerful
integration tool was implemented to extract more
solutions to the equation. This is the Lie symmetry
analysis. This second tool retrieved solitons, periodic
singular waves as well as cnoidal and snoidal waves.
These solutions are going to be immensely helpful in
further future analysis to this equation.

The future research for this equation holds on a strong
footing. The perturbation terms will be added and the
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quasi stationary soliton solutions will be obtained.
Additionally, the stochastic perturbation term will be
added and the corresponding mean free velocity of the
solitons will be retrieved after formulating the
corresponding Langevin equation. The equation will be
further analyzed with time dependent coefficients. These
form just the tip of the iceberg.

Remarks 3.1We feel worth mentioning that the solutions
(33), (42), (43), (44), (46) and (68) obtained are such that
one can choose the arbitrary functionf (t) in a suitable
manner to obtain variety of solutions of KD equation.
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