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Abstract: In this paper, the Konopelchenko-Dubrovsky equation will be studiethbyaid of traveling wave hypothesis and Lie
symmetry analysis. The traveling wave hypothesis will extract the 1-sddidtution while the Lie symmetry approach will retrieve
other solutions to this equation.
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1 Introduction functions, while the independent variables arey andt
which represent the spatial and temporal variables. The
In the past few decades a lot of study has been conductesbatial variables are iwandy directions. The coefficients
in the area of nonlinear evolution equations (NLEES) thata, b, ¢, a and are real valued constant coefficients. KD
arise in various areas of Applied Mathematics andequation arise in Mathematical Physics in the context of
Mathematical Physics. Finding the exact analytical nonlinear waves with weak dispersion. This coupled
solution has been an ongoing challenge for these NLEEssystem cover the Gardner, KP, modified KP (mKP) and
There has been a lot of success in this direction. In fact, irKD equations, for different values of coefficierdsb, c,
the past decade, there has been a lot of analytical toolsr and 3. For r = 0, system reduces to the Gardner’s
developed that integrated several of these NLEES. Somequation 16,17]. For b = 8 = 0, system of equationd)
of them are variational iteration method, homotopy and @) become the KP equation&§, 19] which is used to
analysis method, Riccati's equation method, tanh-cothmodel the shallow water waves with weakly nonlinear
method, sine-cosine method, exp-function metf®dG  restoring forces and nonlinear waves in ferromagnetic
method and several others. In this paper, the travelingnedia, plasmas and super-fluids. Far= 0, system
wave hypothesis as well as the Lie symmetry analysis willreduces to mKP equation2(] which can describe the
be used to extract soliton and other solutions to thepropagation of ion-acoustic waves in a plasma with the
Konopelchenko-Dubrovsky (KD) equation. non-isothermal electrons. Foa = —6y, ¢ = —1,
b=1.56%, a = —3 andf = 38, equations reduces to KD
equations 21, 22] which have proposed by the inverse
2 Mathematical analysis scattering transformation method. So investigation of
coupled systeml) and @) will be of certain interest. In
The dimensionless form of the KD equation is given by  this paper, this coupled system of equation will be studied
by the traveling wave hypothesis and Lie symmetry

2 _
Gk +adi0x + 0470 + Choox + ATy + Bt =0 @ approach in the following two subsections.
Oy = I'x (2)

This is a coupled system of equation where the dependent
variables arg(x,y,t) andr(x,y,t) which are real valued
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2.1 Traveling wave where the amplitudé\ of the solitary wave is given by
given by
In order to solve equations (1) and (2) by traveling wave, 6ag
the starting hypothesis is A= ———m—— (15)
\/4a3 — 18aas
a(x,y,t) = g(Bix+ By — W), ®) _ .
while the constanD is
r(x,y,t) = h(Bix+ Bzy — w) 4 p= 18818733 _ (16)
: - (283 + 9aua3) /433 — 18aa
whereg andh are the wave profiles ands the velocity of 2 13 2 193

the wave. The parameteBs andB, represent the inverse These poses the constraint
width of the wave in the«- andy-directions. Substituting

these into (1) and (2) gives the following coupled system9a1as < 283 (17)
of ordinary differential equations (ODES). Finally, the wave profile for (x,y,t) is given by
v / 2/ 31 / B
VO +2Bgg +bBig°g + cBig” + Bl F(x.y.t) = (Bt Bay —vt) = “2q(x,.0) (18)
+BB1gh=0 (5) B:1
which is obtained from (6).
and
Bog' = Bih’ (6) |
2.2 r i
where’ denotes differentiation with respectsand Symmetry analysis
S=Bix+ By — vt @) In this subsection, we apply Lie symmetry approath, [

12] to find symmetries and we obtain some exact solutions
Integrating (5) and (6) once and eliminatiiigbetween  of equations) and @).
them while choosing the integration constant to be zero,
since the search is for a soliton solution, gives the ODE in

gas 2.2.1 Lie symmetry approach
g’ = a9’ — a9’ + asg (8)  In order to find the symmetry group of equation3 &nd
where (2), we apply the algorithms described in text books such
as [L3-15]. Setting the one-parameter Lie group of
a; — — b 9) infinitesimal transformations
3cB
! X— & =x+€&+0(e?)
2
aB; + BB y—{=y+e{+0(e)
= 127352 (10) t—T=t+er+0(e2) (19)
“C1 r—@=r+ep+0(e?)
and q—n=q+en+0(?),
- L‘JB% (11) where the infinitesimal€,,1,¢,n depend onx,y,t.r,
cB3 andq in general, with small parameter 1. We look for

_ . . . Igebra of vector fields of the f
Now, multiplying both sides of (9) by and integrating an aigebra ot vector fields ot the form

and once again choosing the integration constant to be zero V = &+ {0+ 16 + @0, + N0 (20)
yields
5 The coefficientsf, Z, 1,9, n are determined from the
n2_ 9 2 requirement that the third prolongation &f should
== (3 —4 6 12 o . .
(9) 6 (329 200+ 62) (12) annihilate the equations on the solution set of the
Separating variables and integrating gives equations. ,
The invariance of equationsl)( and @) under the
Bux+Boy—vt _ ds (13) infinitesimal point transformationd.9) leads to following
V6 g \/Salgz — 4ayg+ 633 expressions for infinitesimals
which, after simplification, leads to the soliton solution n=-&2bc,
. 6b
given by _ f'(t) | a®—4bBr
Q= B + 6bg Cl
q(x,y.t) = g(Bux+Bzy—wt) T=Cit+C, (21)
A E=3C+1(t)
= 14
D + cosh(Bix+ Bay —wt) (14) (= %yClJrcs,
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wheref (1) is arbitrary function ot andC;,C,,Cs,C, are

arbitrary constants and primé denotes derivative with
respect ta. Associated with this Lie group, we have an =~ Vi — ) Vo —
infinite dimensional Lie algebra that can be represented b)s‘3 |90 % ap

the generators

(at2gb) 9 , & 4bBr 9 40 . x9N J
8 oq " ebB or Tlat T3ax T 39y

F
3 (22)

2.2.2 Similarity reductions and invariant solutions

To obtain the symmetry reductions of equatiof¥ §nd
(2), we have to solve the characteristic equation

dx_dy_dt_dr_dg

& ¢ 1t @ n’ @3)

whereé, ¢, T, ¢ andn are given by 21). To solve 3),
we consider three cases:

(I) Vo + UV, (II) V3 +Va and(iii) \/

Case (i) Vo + Vs

Solving characteristic equatior23), we have following
similarity variables

6=y

p—x—p [ f(t)dt (24)
q="F(6,p)
r=Ef(t)+G(6.p), (25)

where8, p are new independent variables aRrdG are
new dependent variables. Substituting equatif) &long
with equations Z4) into equations 1) and @), we
immediately obtain the reduced equations, which read

CFppp + bF2F, +aFF, + BGF, +aGg = 0.
Again apply Lie classical method on syste@6), we
obtain symmetries as follows:

171 =C1+26C3
1 =C+pCs
(pl _ —Zgll:)—ac3

2
1 ac—4bpG
= ZBbB C3,

(27)

wherety, T2, @*, n' are infinitesimals corresponding to

6, p, F, G, respectively.C;, C, and Cz are arbitrary

constants. Three dimensional Lie algebra admitted by
(26) is

0
) 0 20F+ad a’—4bBG o
Va=2055 P~ "2 aF | 2Bb  9G
(28)

The problem of deriving an optimal system of group

invariant solutions is equivalent to find an optimal system

of Lie symmetries (or subalgebras spanned by these
operators). The method used here is given by Olver
in [14]. For brevity we omit the details, and just state the

result that an optimal system of generators is

(i) V3

(if) Vo +1Vq

(iii) Vi,
wherel is arbitrary constant.

We use the method of characteristics to determine the
invariants and reduced ODEs corresponding to each
subalgebra given in20). Symmetry variables and the
invariants of the subalgebras of the Lie algelhrmare
given in tablel.

(29)

Table 1: Similarity variables of equatior2g)

Subalgebra] Symmetry variableg FunctionsF(6,p). G(6,p)
_P _Hlo) _a . 3o &
V3 0'—9 F= ) 2b,G— 02 +4bl3
Vo +1Vq o=0-1Ip F=H(o), G=J(0)
Vq ag=p F=H(o), G=J(0)

Now reduction of variable is performed to obtain ODE.
Exact solutions of ODE are discussed in each case.

Vector field V3
The reduced ODE system is

—0%H' —20) +23=0
—8co® — 2boH?H’ + bH® — 6coH’ + 6¢H

+a0?) —2BoH' I+ BHI =0, (30)
where(') denotes-derivative.
We obtain following solution of ODE syster3(@)
k

H=k0, J_—El 2 (31)

where
B++/B?%— 16ba
ki = N T (32)

Corresponding solution of main equatiorly énd @) is
given as

axyt) =k SHLTDA 2
wo D cusione @ @
r( 7y’t):Ef(t)_kléy—2+m7
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wherek; is given by 82). Corresponding solutions of main system of equations
(1) and Q) are
Vector field Vo +1V;

Corresponding reduced ODE system is 5 22
(i) a(xy,t) = B —= klsech(c4+ “cky

13cH” +1bH?H’ +laHH' +-1BH'J —ad =0 (34) ” cp®
H 410 =0,  (35) (y— (X_“af ® )))
where prime denotes derivative with respect ¢o a2 6 a2
Integrating 85) with respect tar, we have r(x,yt) = Al klseCh<C4+ B2 —Ckg
H B (x—p [f(t)dt)
J=-T+Cy, (36) y a
fit)u
whereC, is arbitrary constant. + 3 +C1 (42)
Using 35)-(36) in (34) and integrating twice with
respect tas, we have
6 a?
6l4cH’? +12bH* + 21 (al — B)H3 + 6(ar + Cy12B)H?2 (i) q(x,y,t) = B —bklcsc<C4—CBZ\/ckl
+CH+C3=0 (37)
( CBXx=p ff(t) )))
whereC, andCs are arbitrary constants. Taking a
a2 \/7 ( a2
rex,yt) = —— kicsc|{ Cs — —51/ ¢k
|=g,c2=c3=0 Byt =g\ gl cp?
(y B(x—u f f(t)d )>
and substituting
H(a)2=X(0) (38) +f(tﬁ)“ ) (43)
in (37), we have
3cl4X/? 4+ 2012X3 +12(a +C1BIHX2 =0.  (39) 2kga?
Solutions of equation3Q) are as follows: .
2
(arcipi?) (a+C:p17) ""6%? (s +Cq0,my, my)
. a+Cy 81 —cla+ly, g
(i) X(o)= —BTsecH <C4+ cI2> ( | a e
r vaat = T\~ 2
2 cB12 b
(i) X (0) = —6 (@97 s (¢, - VATEe )a> g 213
C4cf3?
a +CyBI12 - —6 425 [0(Cs+Cs0,my,np)
(iif) X (0) = =2 =3 =— " a
b2 O +C, (44)
—6C4 FD (C5+C4U my, mz), B
(40) f(t)dt B3
where where 0 = y—%a“” L ki = o+ ;—E and
| B 4 (a2+zaClB|2+012BZI4) mg, Mp IS given by @-1)
=, Mm= )
a’ 3 Cyic?I8 Vector field V;
8 (a+CiB12) (a2+2aCyBI12+C%pA4 Corresponding reduced ODE system is
18 18 1B
T 27 11263C,° )
cH” +bH?H’ + aHH’ + BJH’ =0, (45)
and C4, Cs are arbitrary constant$) is Weierstrass P
function. where prime denotes derivative with respectto
@© 2014 NSP
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Consequently, solution of system of equatiotisgnd ~ where 11, 1, andn? are infinitesimals corresponding to
(2) is given as 6, p andF, respectively. Corresponding vector fields are

given as
la 1
= —_——— - 2
q T v —12bB k+ 3a

0 (p 2a2016>d F o
7]

tanh( /—2bc(—4bp k:baz) (x—p [f (t)dt)> Vi=05g+ 3B2 30F
¢ J
Vo= — (54)
po KO L (46) ade
& Va= 5.
ap

wherek is arbitrary constant.

Following the same way as in Case (i), similarity variables
N and invariant functions o) are given in Table.
Case (ii) V3 +Vs

Corresponding similarity variables are

p=x—f(ty Table 2: Similarity variables of equatiorb@)
0=t Subalgebral Symmetry variables| FunctionF (6, p)
= 47 2
9=F (60 “n Vi o=p6*%—2—§6§ F= G’EH(U)
r=pgy+G(8.p), Vo+AV3 o=p-Ab H(o)
V3 o=20 H(o)

wherep, 6 are new independent variables &n¢ are new
dependent variables. Dot denotes t-derivative. Us#tiy (
in system of equationd) and @), we have

f(O)Fp+Gp =0 (48)
_ _ 2k _ Vector field V;
CBFopp —DBFFp —apFFy ﬁdee The reduced ODE is
+aff(0)Gp — B*F,G— agg =0 (49)

3cH"” +3bH?H’ — (Ho)' =0, (55)
Integrating 48) with respect top and taking function of

integration equal to zero, we have where prime denotes derivative with respeatit@olution

G=—f(O)F. (50) of ODE (55) is given as
Using @8) and 60) in (49), we have
/%
—CBFppp — bBF2F, — aBFF, — BFg — aB t2(0)F; H(0)=+"——. (56)
df
2 _
+B f(G)FFp—a@ =0, (51) Consequently, solution of main system of equatiof)s (

and @) is given as
which is difficult to solve for generaﬁ( ). So to simplify @isg

equation §1) we take f(6) = &, so that, equation5()

reduces to - B, -%
q= iib (57)
aza
2 a’a X+ By Bt
Cﬁ Fppp + bBF Fp + BFQ +— B FT O (52)
6c
a )
Again applying Lie classical method 063), we obtain = T8 ay_@a; (58)
following infinitesimals X+py—"pt
L =60C+C Vector field Vo + AV
2a°a 0 The reduced ODE is
=2+ ¢ 1c (53)
3" 738
1_ F cBH” + bBH?H' + a—az—)\ﬁ =0. (59
n-= *gcl, B
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Solutions of B9) are given as Vector field V3
Corresponding to this vector field we get constant solution
\/—Sb(—c[32032+aa2—)\ B?) of KD equations {) and @).
(HH(o) ==+
bp
C”(‘sztc Cs0,m) ©0)  case (iii) V4
" LV 3
(i) H(0) =+ b dn(Cz+Cs0. 1) (61) Corresponding similarity variables are
2_ 132
(iii) H () = Y3 =AB%) 6=y
_ 2_ 2 _
tan<Cl+ v (2aa2C32A/3 )C"). 62 "7 F(e P)
V= 7x+ G(8.p), (63)
where B
Y 5 5 where dot denotes derivative with respectttd, p are
\/_20(_03 Cs"+aa—Ap ) new independent variables afgG are new dependent
N = 2cBCs ’ variables. Using 3) in KD equations {) and @), we
have following two dimensional PDE
\/c (2cB2C2 + aa® — A B2) i
no =
2 cBCs Bf( ) =0 (64)
andC,,C,,C3 are arbitrary constants.
Consequently, solutions of KD equation is given as Fp+0aGe =0. (65)
General solution of equation64) and ©5) is
_ \/—Sb(—cB2C32+aa2—)\ B2) 4i(o)
(I) q(X,y,t) =+ b “dp
B F(6.p) = Bt (o )6+g(p) (66)
a
cn( Co+C3(X+ sy — At ,n1> d2f(p)
( bergy =AY 0.0 = — Pl ar 62 dap)O o
a\/~3b(~cB2C2 + a2~ A ?) apf*p) 2 dp «a
r(xyt) = iﬁ b3 wheref, g, h are arbitrary functions gb.
a Consequently, solution of KD equation is
cn (Cz +C3 (x+ By—)\t),m) i
a= gyt a(t)
v/6bcCs

(”) q(X,y,t) ==+ ( _ f2
z Lty
dnlc,+c a A Bf" apfz 2 «
( 2+ Calx+ By ) 2) where dot denotes derivative with respect tand f,g,h
a v/6bcCs are arbitrary functions df

r(xyt) = iE b

h(t), (68)

dn(C2+C3 (X+ Zy_M)’n2> 3 Conclusions
This paper shined some light on the KD equation from
3b(aaz—AB2) the perspective of its integrability. The traveling wave
(i) a(x,y.t) = bB hypothesis was applied to retrieve a solitary wave solution
to the equation. Subsequently, a much more powerful
— (2082 =2 B?)c(x+ gy —At) integration tool was implemented to extract more
tan| Cy + 203 solutions to the equation. This is the Lie symmetry
analysis. This second tool retrieved solitons, periodic
Fyt) = ay/3b(aaz—AB?) singular waves as well as cnoidal and snoidal waves.
e B bB These solutions are going to be immensely helpful in
a further future analysis to this equation.
tan <C1+ V- (2a@®-2ApZolx+ By_M)) The future research for this equation holds on a strong
2cp footing. The perturbation terms will be added and the
© 2014 NSP
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quasi stationary soliton solutions will be obtained. = ' = Sachin Kumar is

Additionally, the stochastic perturbation term will be a postdoctoral fellow
added and the corresponding mean free velocity of the —— in the Department of
solitons will be retrieved after formulating the Mathematics at  Panjab
corresponding Langevin equation. The equation will be University, Chandigarh, India.
further analyzed with time dependent coefficients. These He received his Ph.D from
form just the tip of the iceberg. Thapar University, Patiala,
India. His area of interest

Remarks 3.1We feel worth mentioning that the solutions is symmetries and exact

(33), (42), (43), (44), (46) and ©8) obtained are such that B solutions of nonlinear partial
one can choose the arbitrary functidit) in a suitable differential equations. He has published a number of
manner to obtain variety of solutions of KD equation. research papers in peer reviewed journals.

Amadou Hama Amadou
Hama earned his B.S
degree in Mathematics from
University of Jos in Nigeria.
Subsequently he obtained his
M.Sc degree in Mathematics
from University of Jos and
Louisiana State University,
USA. Currently, he is

References

[1] B. Cao, Acta Appl. Math112 181 (2010).

[2] L Ji, L Sen-Yue and W Ke-Lin, Chinese Phys. Lét8 1173
(2001).

[3]B. Li and Y. Zhang, Chaos Solitons Fracta®8, 1202
(2008).

[4] S. Li-Na and Z. Hong-Qing, Comm. Theoret. Ph{§, 769

(2006). _ enrolled in Ph.D program at
[S] N. Taghizadeh and M. Mirzazadeh, Appl. Appl. Ma®h.  Delaware State University, USA. His research area of
1893 (2011). interest is Theory of Solitons.
[6] Y. Wang and L. Wei, Chaos Solitons Fractas216 (2010).
[7]1 A.M. Wazwaz, J. Nat. Sci. Matfi, 1 (2007). Anjan Biswas earned

[8]Y. Zhang and S. Lai, Dynam. Contin. Discrete Impuls.
Systemsdl 6, 559 (2009).
[9] H. Zhao, J.G. Han, W.T. Wang and H.Y. An, Czechoslovak
J. Phys56, 1381 (2006).
[10] L. Zhi-Fang and R. Hang-Yu, Comm. Theoret. P4.385
(2005).
[11] K. Singh, R.K. Gupta and S. Kumar, Appl. Math. Comput.
17,7021 (2011).
[12] S. Kumar, K. Singh and R.K. Gupta, Commun. Nonlinear

his B.Sc (hons) degree
in Mathematics from
St.  Xavier's College in
Calcutta, India. Subsequently,
he earned his M.Sc and
M.Phil degrees from the
University of Calcutta. After
that he further earned his MA

)

Sci. Numer. Simul17, 1529 (2012). o ~and Ph.D. degrees from the
[13]L.V. Ovsiannikov, Group Properties of Differential University of _NeW Mex'CQ n Albuquerque. NM, USA.
Equations (Novosibirsk, Moscow, 1962). Currently, he is an Associate Professor in the Department

[14] P.J. Olver, Applications of Lie Groups to Differential Of Mathematical Sciences at Delaware State University in
Equations (Springer-Verlag, New York, Heidelberg, Berlin, Dover, DE. His research interest is on Theory of Solitons
Tokyo, 1993). applicable to Physics, Engineering and Biosciences.

[15] G.W. Bluman and J.D. Cole, Similarity Methods for
Differential Equations (Springer-Verlag, New York,

Heidelberg, Berlin, 1974).

[16] E.V. Krishnan, H. Triki, M. Labidi and A. Biswas, Nonlinear
Dyn. 66, 497 (2011).

[17] X.G. Xu, X.H. Meng, Y.T. Gao and X.Y. Wen, Appl. Math.

Comput.210 313 (2009).

[18] A.M.Wazwaz, Appl.Math. Compuil90, 633 (2007).

[19] C. M. Khalique & A. R. Adem.Appl. Math. Compuit.
Volume 216, 2849. (2010).

[20] Z.Y. Sun, Y.T. Gao, X. Yu, X.H. Meng and Y. Liu, Wave
Motion 46, 511 (2009).

[21] B.G. Konopelcheno and V.G. Dubrovsky, Phys. Lettl@2,

15 (1984).
[22] H.Y. Zhi, Appl.Math. Comput210, 530 (2009).

© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

	Introduction
	Mathematical analysis
	Conclusions

