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1 Introduction on the collection of soft sets ovet. Consequently, they
defined basic notions of soft topological spaces such as
open soft and closed sets, soft subspace, soft closure, soft
nbd of a point, soft separation axioms, soft regular spaces
and soft normal spaces and established many of their
properties. Hussain and Ahmad)][investigated the
roperties of open (closed) soft, soft nbd and soft closure.
hey also defined and discussed the properties of soft
interior, soft exterior and soft boundary which are

The concept of soft sets was first introduced by
Molodtsov [L9] in 1999 as a general mathematical tool
for dealing with uncertain objects. 119, 18], Molodtsov
successfully applied the soft theory in several directions
such as smoothness of functions, game theory, operatio
research, Riemann integration, Perron integration,

probability, theory of measurement, and so on. After .
i £ th " ¢ soft setdl] th fundamental for further research on soft topology and will
presentation of the operations of soft set][ the strengthen the foundations of the theory of soft

properties and applications of soft set theory have been

o : topological spaces. Kandil et al.lf] introduced a
studied increasingly3 13,18,22]. In recent years, many P ) .
) . o unification of some types of different kinds of subsets of
interesting applications of soft set theory have been

. . soft topological spaces using the notion ybperation.
expanded by embedding the ideas of fuzzy skt f,14, polog P >ng | yobpet
The purpose of this paper is to introduce the notion of soft
15,16,17,18,20,27]. To develop soft set theory, the . . .
. , .. ideal in soft set theory. The concept of soft local function
operations of the soft sets are redefined and a uni-int . . )
L . . Is also introduced. These concepts are discussed with a
decision making method was constructed by using these. ) . -
) view to find new soft topologies from the original one.
new operationst].

The basic structure, especially a basis for such generated
Recently, in 2011, Shabir and Na2j initiated the study . P . Y . 9 .
) , soft topologies also studied here. Finally, the notion of
of soft topological spaces. They defined soft topolagy
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compatibility of soft ideals with soft topologies is

this topic are established here.

introduced and some equivalent conditions concerning F(e),
H(e) = ¢ G(e),

2 Preliminaries

Definition 2.1.[19] Let X be an initial universe anf be
a set of parameters. L&(X) denote the power set of

andA be a non-empty subset &. A pair (F,A) denoted
by Fa is called a soft set oveX , whereF is a mapping
given byF : A — P(X). In other words, a soft set ovet

is a parametrized family of subsets of the univexXsé-or
a particulare € A, F(e) may be considered the set &f
approximate elements of the soft €t A) and ife & A,

thenF(e)=o@i.e

Fa={F(e):ec ACE, F:A— P(X)}. The family of all
these soft sets denoted Bg(X)a.

Definition 2.2[16] Let Fa, Gg € SS(X)e. ThenF, is soft
subset ofGg, denoted byFaC G, if

(LACB, and
(2)F(e) C G(e), Vec A

In this caseF, is said to be a soft subset 6 andGg is
said to be a soft superset £, Gz OFa.

Definition 2.3[16] Two soft subsetFy and Gg over a
common universe s are said to be soft equalHy is a
soft subset 0Gg andGg is a soft subset dfa.

Definition 2.4[3] The complement of a soft s€F,A),
denoted by (F,A), is defined by (F,A) = (F',A),
F’: A— P(X) is a mapping given b§’'(e) = X — F(e),
Ve e A andF’ is called the soft complement function of
F.

Clearly (F’)" is the same a6 and((F,A)') = (F,A).
Definition 2.5[23] The difference of two soft setd E)
and (G,E) over the common universX, denoted by
(F,E) — (G,E) is the soft se{H,E) where for alle € E,
H(e) =F(e) — G(e).

Definition 2.6 [23] Let (F,E) be a soft set oveX andx €
X. We say thak € (F,E) read asx belongs to the soft set
(F,E) wheneveix € F(e) forallec E.

Definition 2.7 [16] A soft set(F,A) overX is said to be a
NULL soft set denoted by or gn ifforall ec A F(e)=¢
(null set).

Definition 2.8[16] A soft set(F,A) overX is said to be an
absolute soft set denoted Byor X, if for all ec A, F(e) =
X. Clearly we haveX, = ga and @, = Xa.

Definition 2.9[16] The union of two soft setéF, A) and
(G, B) over the common universé is the soft setH,C),

whereC = AUB and for allee C,
ec A-B,
ecB-A

F(e)UG(e), ec ANB.
Definition 2.10[16] The intersection of two soft sets
(F,A) and(G,B) over the common universg is the soft
set (H,C), where C = AnB and for all e € C,
H(e) = F(e) N G(e). Note that, in order to efficiently
discuss, we consider only soft s¢fs E) over a universe
X in which all the parameter s& are same. We denote
the family of these soft sets 85X )e.

Definition 2.11[28] Let | be an arbitrary indexed set and
L= {(F,E),i €1} be a subfamily 08S(X ).

(1)The union of L is the soft set(H,E), where
H(e) = Ui Fi(e) for eache € E . We write
Uiei (FL.E) = (H.E).

(2)The intersection ol is the soft set(M,E), where
M(e) = Nig F(e) for eache ¢ E . We write

ﬁiel(FiaE) = (M’E)

Definition 2.12[23] Let T be a collection of soft sets over
a universeX with a fixed set of parameteis, thent C
SS(X)g is called a soft topology oK if

(L)X, @ € T, whereg(e) = p andX(e) = X, Vee E,
(2)the union of any number of soft setsiibelongs tor,
(3)the intersection of any two soft setsiirbelongs tor.

The triplet(X, 7, E) is called a soft topological space over
X.

Definition 2.13[9] Let (X,7,E) be a soft topological
space. A soft setF, A) over X is said to be closed soft set
in X, if its relative complementF, A)’ is an open soft set.
Definition 2.14[9] Let(X,7,E) be a soft topological
space. The members ofare said to be open soft sets in
X. We denote the set of all open soft sets oXerby
OS(X,1,E), or OS(X) and the set of all closed soft sets
by CS(X, 1,E), orCS(X).

Definition 2.15]23] Let (X,7,E) be a soft topological
space andF,E) € SS(X)e. The soft closure of F,E),
denoted bycl (F,E) is the intersection of all closed soft
super sets ofF,E) i.e

c(F,E) A{(H,E)

(H,E) isclosed soft set and (F,E)C(H,E)}).

Definition 2.16[28] Let (X,7,E) be a soft topological
space andF,E) € SS(X)e. The soft interior of(G,E),
denoted byint(G, E) is the union of all open soft subsets
of (G,E) i.e int(G,E) = U{(H,E)

(H,E) isan open soft set and (H,E)C(G,E)}).
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Definition 2.17]28] The soft se{F,E) € SS(X)g is called
a soft point inXg if there existx € X ande € E such that
F(e) = {x} andF(¢) = @ for eache € E — {e}, and the
soft point(F, E) is denoted bye.

Proposition 2.1[24] The union of any collection of soft

(1)The functionfp, is called continuous soft (cts-soft) if
foi(G,B) €TV (G,B) e 1.

(2)The function fy, is
fou(G,A) € TV (G,A) € T.

called open soft if

Definition 2.23]5] Let (X,7,E) be a soft topological

points can be considered as a soft set and every soft sgpace ana,y € X such thai #y. Then(X, 1,E) is called
can be expressed as union of all soft points belonging to itsoft Hausdorff space or sofb space if there exist open

Definition 2.18[28] The soft pointx. is said to be
belonging to the soft s€iG,A), denoted by&(G,A), if
for the elemenec A, F(e) C G(e).

Definition 2.19]28] A soft set(G,E) in a soft topological
space X, 1,E) is called a soft neighborhood (briefly: nbd)
of the soft pointxeEXe if there exists an open soft set
(H,E) such thate& (H,E)C(G,E).

A soft set(G,E) in a soft topological spacéX,1,E) is
called a soft neighborhood of the s¢R E) if there exists
an open soft setH, E) such that(F,E)&(H,E)C(G,E).
The neighborhood system of a soft pokat denoted by
Nr (Xe), is the family of all its neighborhoods.

Theorem 2.1[25] Let (X,7,E) be a soft topological
space. A soft poing&cl (F,E) if and only if each soft
neighborhood o0& intersect{F, E).

Definition 2.20[21] Let (X, 1,E) be a soft topological
space and (F,LE) € SSX)e. Define
Tre) = {(GE)N(FE) : (GE) € 1}, which is a soft
topology on (F,E). This soft topology is called soft
relative topology ofr on (F,E), and [(F,E), Trg)] is
called soft subspace 0K, 1,E).

Definition 2.21]28] Let SS(X)a and SS(Y)g be families
of soft setsu: X — Y andp: A— B be mappings. Then
the mappingfpy : SS(X)a — SS(Y)g is defined as:

(D)If (F,A) € SS(X)a. Then the image offF, A) underfpy,
written as fpu(F,A) = (fou(F), p(A)), is a soft set in
SS(Y)g such that

fpu(F)(b) =
Usep-1byna U(F()), P H(b)NA# g,
o, otherwise.

forall b e B.

(2)If (G,B) € SS(Y)g. Then the inverse image ¢f5, B)
under fp,, written asf,'(G,B) = (f5,}(G), p~*(B)),
is a soft set irBS(X) such that

u~1(G(p(a))),
fﬁjl(G)(a) :{(p ( (p( )))

forallacA.

p(a) € B,
otherwise.

)

Definition 2.22[28] Let (X,1,A) and (Y,7*,B) be soft
topological spaces andip, : SS(X)a — SS(Y)g be a
function. Then

soft setyF,E) and(G, E) such thax € (F,E),y € (G,E)
and(F,E)"(G,E) = ¢

Definition 2.24]10]. A non-empty collectiorl of subsets
of asetX is called an ideal oiX, if it satisfies the following
conditions

(1)AclandBel = AuBel,
(2)AelandBCA=Be<l,
i.e.l is closed under finite unions and subsets.

3 Soft ideal, soft local function and generated
soft topology

In this section We generate a soft topological space finer
than the given soft topological spac¢, 7,E) on the same
setX with a fixed set of parameteis by using the soft

ideal notion. We denotéX, 1,E,l) as a soft topological
space with soft idedion X.

Definition 3.1. Let I be a non-null collection of soft sets
over a univers& with the same set of parameté&sThen

I C SS(X)g is called a soft ideal oX with the same sef

if

(1)(F,E) € i and(G,E) e I = (F,E)J(G,E) €1,
(2)(F,E) e i and(G,E)C(F,E) = (G,E) T,
i.e.iis closed under finite soft unions and soft subsets.

Example 3.1.Let X be a universe set. Then each of the
following families is a soft ideal oveX with the same set
of parameterg,

(W = {9},
@ = sSXe = {FE)
(F,E)isasoft set over X withthe fixed set of parametersg},
()it = {(F,E) € SS(X)e : (F,E) isa finite soft set},
called soft ideal of finite soft subsets Xf
(4)ic = {(F,E) € SS(X)g : (F,E) isacountable soft set},
called soft ideal of countable soft subsetsXof
B)ire) = {(G,E) € SS(X)e : (G,E)C(F.E)}.
(6)ln={(G,E) € S§X)e : int(cl(G,E)) = ¢}, called soft
ideal of nowhere dense soft setg K, 7,E).

Theorem 3.1.Let i be a soft ideal over a univer¥e Then
The collectionle = {F(e) : (F,E) € i’} defines an ideal on
X for eache c E.

@© 2014 NSP
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Proof. Let F(e),G(e) € le. Then3 (F,E), (G,E) €.
Since (F,E)0 (G E) € I from Definiton 3. Then
F(e) UG(e) € le. Now, letF(e) € i andG(e) C X such
that G(e) C F(e). Then 3 (F,E),(G,E) € | such that
(G,E)C(F,E). It follows that(G,E) € I. ThusG(e) € Ie.
This means thate = {F(e) : (F,E) € i} defines an ideal
on X for eache € E.

Corollary 3.1. A soft ideal over a universg with the same
set of parameters is a parameterized collection of crisp
ideals onX.

Proof. Obvious from TheorerS.

Remark 3.1. The converse of theorer® is not true in
general, as shown in the following example.

Example 3.2.Let X = {hs,hp,hs}, E = {e1,e2} and
[ = {0, (FL,E),(R,E),(Fs,E), (Fs, E)} where
(F1,E), (R, E), (Fs,E), (Fs,E) are soft sets overX
defined as follows:

Fi(er) = {hz}, Fi(€) = {h1},

Fa(e1) = {m,ha}, F2(e2) = {hs},

Fs(er) = {h2}, Fs(e2) = {1, hs},

Faer) = {m},  F(e) = {hs}.  Then
le, = {@.{hi},{h2},{hy,h2}} and

le, = {@, {h1},{h3},{hs,h3}} are ideals orX. However,
I'is not soft ideal orX becauséFy, E)J(F, E) = (G,E),
whereG(e;) = {hy,hy}, G(e2) = {hy,h3} and(G,E) ¢1.
Definition 3.2. Let (X, T,E) be a soft topological space
andi be a soft ideal oveX with the same set of parameters

(12)H,E) el =
(H,E))*.
Proof.

(1)Obvious from DefinitiorB.

(2)Let xe&(F,E)*. ThenOy A(F,E) ¢V Oy, € 1. Since
O N(F,E)CON(G,E) and Oy A(F,E) ¢ I. Then
O (G,E) ¢ 'V Oy, € T from Definition 3.1. Hence
%e&(G,E)*. Thus(F,E)*C(G,E)".

(3)Let Xe€(F,E)*(J). Then Ox(F,E) ¢ JV Oy, € T.
Sincel C J. Then O, A(F,E) ¢ 'V Oy, € 1. Hence
¥e&(F,E)*(I). Thus(F,E)*(J)C(F,E)* ().

(4)Assume thab<e¢cl(F E) Then 3 Oy, € T such that

((F,E)O(H,E))" = (F.E)" = ((F.E) -

O N(F.E) = @ € I. Hence x&(F,E)*. Thus
(F,E)*Cd(F,E).
(5)Clearly (F,E)*Ccl (F,E)*. So letxe&cl ((F,E)*). Then

OxN(F,E)*) # @V O, € T from Theorem 2.1. Hence
Yy EOxN(F,E)*. Thusye € Oy, andyy € (E,E)*. It
follows thatOy/ AF,E) ¢l V Oy, € T. Thisimplies that
Oy N(F,E) gZI V Oy, € T. SoXeE(F,E)*. This means
that (F,E)* = cl(F,E)* and consequentlgl (F,E)* =

(F,E)™.

(6)Since  ((F,E)*)*Ccl(F,E)* from (4). Then
((F,E)")*Ccl(F,E)* = (F,E)* from (5).

(7)Let Xe€((F,E)O(G,E))*. Then
O N((F.E)J(G,E)) =
(ON(F,E))0(0N(G.E)) ¢ VO er. Hence
either O, N(F.E) ¢ I or O A(G,E) ¢ iV Oy € T

from Definition 3.1. This means that eithes€ (F,E)*

E Then or Xe€(G,E)*. Thus xe&(F,E)*U(G,E)*. It follows
' ; L that ((F,E)J(G,E))*C(F,E)* U (G,E)*. For the
(F,E)*(I,1) (orFg) = O{xe € £ : O N(F,E)&I V Og, € T} reverse inclusion, since
is called the soft local function ofF, E) with respect td (F.E), (G,E)S((F.E)U(G,E)). Then
andt, whereOy, is aT-open soft set containing. (F,E)"C((F,E)O(G,E))" and
Theorem 3.2.Let i andJ be any two soft ideals with the ES;E)) (((G IIEE))*Q(?( ,)E))O( frEo)r)rl anc(jzi)t. s i:qz:g:
same set of parameteis on a soft topological space that ((F,E)J(G,E))* = (F.E)* U(G,E)",
(X,1,E). Let (F,E),(G,E) € SS(X)g. Then (8)Obvioué from (7) ’ '
L(9)* = ¢, (9)since  ((F,E)"\(G,E))C(F,E), (G,E). Then
(2)(F.E)S(G,E) = (F.E)" € (GE)", ((F.E)A(G,E))"<(F,E)" and((F,E)"(G,E))
@icd é( E)*(J) C (F,E)*(I), C(G,E)* from (2). Hence
(4)(F,E)*Ccl(F,E), wherecl is the soft closure w.r.t, ((F, E)ﬁ( E))*C(F,E)*A(G,E)*.
(5)(F,E)* sr -closed soft set. (20)We first prove that
6)(F.E)")"C(F.E)", (F.E)" = (GE)" = ((FE) - (GE))" — (GE)".
(M((F,E)J(G, )) = (F,E)*U(G,E)*, Since (F,.E) — (G,E)C(FE). Then
(8)J;(F,E)* = (J;(F,E))*, (FE) -  (GE)C(FE). Hence
O)(F,E)A(G,E))* € (FE)"N(G,E)*, ((EE)—(G,E))*—(G,E)*i(F E)* — (G,E)". For
(10)(F,E)* — (G,E)* = the reverse inclusion, since
((F.E)=(G,E))" = (G.E)"C((F,E) - (G,E))", (F.E) = [(F.E) - (G,E)0[(F.E)"(G,E)]. Then
(11GE) € 1 = (GENAFE)" = (FE)" = [[(FE) — (GE)U [(F E)AGE)". It
(G,E)A((G,E)N (F,E))*C((G,E)A(F,E))*, follows that
@© 2014 NSP
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E) — (GE)0[(F.E
,me£>@£>
from
“C[(FE) - (G
) ;] (G.E)"0(G,
- (Gv ((FvE) - 7E))* - (GaE)*'
if X£((F,E) — (G,E))* — (G,E)*. Then
- (G,E))* and consequently

- (G7E)*
~(G,E))" ~ (G,E)'C((F.E)  (G,E))".
Xe€(G,E)N(F,E)*. Then x&(G,E) and
xe&(F,E)*. Hence(Ox N(F,E)) ¢ [V Oy, € T. Since
G,E) is 1- open soft set containinge. Then
F,E)A(G,E)) ¢ I. Hence(Ox,N(G,E))A(F,E) &1,

Oxeﬂ(G E) € Tt It  follows
)(FE))grvoxeer.

N(F,E)* This implies

N

—
~

—

m

m
I

* =

*
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m m
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m ~—"
=

—
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m
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A *ern
m

m=0m
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m
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m
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that
Thus
that

*:ﬂ
m -
~—
\_/

\_//—\

the reverse inclusion, since
Then
Hence
Thus

. Also, if
Then

from (2).
,E)A(F,E)*.
= LE)N(F,E))*
F.E
FDV
that(F,E)J(H,E))* = (F,E)*. So let
JE))*. Then
E) ¢ IV O, € 1. Hence
W (F,E)) ¢ 1I. It follows that either
I or ONFE) ¢ I. But
[ gives (H,E) € I which is a
ThusOy N(F,E) ¢ TV Oy, € T. So
For the reverse inclusion, since
(F.E)C((H.E)O(F.E)). Then
(F,E)*C((H,E)U(F,E))* from (2).
Now we prove that(F,E)* = (
Since ((F7E) - (
inclusion, Ietxegz((F ) ( ,
such thaO,,"((F,E) — (H,E)) e I. Since(H,E) e .
Then (H,E)O(Oxem((F,E) (H,E))) € I. Hence
(H,E)0(0 N(F,E)) € I. Thus O N(F,E)) € I for
someOy, € T. It follows thatxe¢Z(F, E)*. This means
that (F,E)*C((F,E) — (H,E))*. This completes the
proof.

contradlct
Xe€ (F,E)*.
(H,

= ((F.E) - (H.E))".
E))C(F,E). Then
om (2). For the reverse
)) Then30,, € 1

Theorem 3.3.Let (X, T, E) be a soft topological space and
i be a soft ideal oveX with the same set of parametéts
Then the operatarl* : SS(X)g — SS(X)e defined by:

c*(F,E) = (F,E)O(EE)*. Q)

is a soft closure operator.

Proof. cl*(¢) = @J(@)* = @0 = @ from Theorem
3.2 (1), and obviouslyF, E)Cdl*(F,E)
V(F,.E) € SSX)e. Now c*((F,E)J(G,E)) =
((F,E)O(G,E))0((F.E)O(G,E))" = ((F.E)D
(6 B By UGE)) =
((F,E)U(F,E)")U((G,E)U(G,E)") =
cl* ( ,E)Ucl*(G,E) from Theorem 3.2 (7). Also, for any
(F,E) € SS(X)g, cl*(cI*(F,E)) = c*((F,E)J(F,E)*) =
(R E)OEENO(F BIOFE)) -
((F,E)U(F,E)")O((F,E)* U
((F.E))"C ((F )O(F,E)*))0
((F,E)*U((F,E)*)) = cl*(F,E) from Theorem 3.2 (6).

Definition 3.3. Let (X, 7,E) be a soft topological spack,
be a soft ideal oveK with the same set of parametdfs
andcl* : SS(X)g — SS(X)e be the soft closure operator.
Then there exists a unique soft topology oXewith the
same set of parameteEs finer thant, called thex-soft
topology, denoted by*(l )orr given by

() = {(F.E) e SS(X)e : d*(F.E) = (F.E)'}. (2

Example 3.2.

(D)If | = {p}, then
(F,E)*(I,1) = cl(F,E) ¥(F,E) € SS(X)g. Hence
Cl*(F,E) =cl(F,E) andT* = T.

(2)If I = S3(X)g, then(F,E)*(i, T) = @V(F,E) € SS(X)E.
HenceCl*(F,E) = (F,E) and 7" = SS(X)g (the soft
discrete topology).

(3)If I€J, then(F,E)*(J,1)C (F E)*(I, 7). Hence thex-
soft topological spaceX, 7*(J), E) is finer than the--
soft topological spaceX, (1), E).

(4)Let X = {hy,hy,h3}, E = {e} and T = {X, ¢, (F,E)}
where (F,E) is a soft set oveX defined byF(e) =
{h2}. Thent defines a soft topology oX. Let | =
{@,(G,E)} be a soft ideal oveX where (G,E) is a
soft set overX defined byG(e) = {hy}. Thent* =
{X,,(F,E),(F,E)} where (F1,E), (F2,E) are soft
sets oveX whereF;(e) = {h2} andF,(e) = {hy,hs}.

(5)Let X {h1,hz,hs}, E {e} and
T = {X,,(F1,E), (F2,E)} where (F(,E), (R,E) are
soft sets oveK defined defined as follows:

Fi(e) = {hy}, Fx(e) = {h1,h2}. Thent defines a soft
topology onX. Leti = {@,(Gy,E), (G, E), (G3,E)}
be a soft ideal oveK where(Gy,E), (Gz,E), (Gs,E)
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are soft sets overX defined by Gi(e) = {hi},

Gy(e) = {hy} and Gs(e) = {hg,h}. Then
T*=$(X)E.
6)Let X = {hg,hy}, E = {e,e} and

T = {X,@,(F,E),(F2,E)} where (Fi,E), (F,E) are
soft sets oveK defined defined as follows:

Fier) = {hu}, Fu(ez) = {he},

F(e1) = X, R(e) = {h2}. Then t defines a soft
topology onX. Leti = {@, (G1,E), (G2, E),

(G3,E)} be a soft ideal over X where
(G1,E), (Gy,E),(Gs,E) are soft sets oveX defined
by Gi(e1) = ¢, Gi(e2) = {h1},

Ga(e1) = {1}, Ga(e2) = @,

and ~Gg~(e1) = {hl},Gg(EZ) = {hl} Then
1" = {X, 9. (FL.E), (R, E), (Rs.E), (Fa.E). (Fs, E),
(FG,E),(HJE),(F&E),(F97E),

(F10,E), (F11,E), (F12,E)} is a soft topology finer
thant, where(Fy,E), (F, E), (Fs,E), (F4, E),

(Fs.E), (Fe,E), (F7,E), (e, E). (Fo, E),

(F10,E), (F11,E) are soft sets oveX defined defined
as follows:

Fi(er) = {ho}, Fi(e) = X,
Fo(e1) = {h2}, Fa(e2) = {h2},
Fs(er) = {hi}, Fs(&2) = X,
Fa(er) = {1}, Fa(e2) = {ho},
Fs(er) = X, Fs(e2) = {hz},
Fe(er) = X, Fs(e2) = @,
Fr(e1) = @, F(e) =X,
Fe(er) = {h.}, Fs(&2) = @,
Fo(er) = @, Fo(e2) = {h2},
Fio(e1) = ¢, Fio(e2) = @,
Fii(er) = X, Fra(e2) = X.

Theorem 3.4.Let (X, T, E) be a soft topological space and
I be a soft ideal oveX with the same set of parametéts
Then

B(i,1)={(F.E)—(G,E): (F.E)eT, (GE) ¢

is a soft basis for the soft topology (I').
Proof. SinceX € 1,¢ € I. ThenX — @ € B. Hence
X e B and Uje;((F,E) — (G},E)) = X. Also, let

I}

((FL,E) — (G1,E)), ((F2,E) — (Gp,E)) € B such that
xeE((FLE) — (G1,E )) (F2,E) — (Gz,E)). Then
Xe€((F1,E) - (G2,E)) =

| (G1.E ))ﬁg E) - (C
((F]_,E)ﬂ(Fz,E)) ((Gla )U(627 )) € B(Iar) ThUSB

is a soft basis of*.

Corollary 3.2. Let (X, 1, E) be a soft topological space and
I be a soft ideal oveX with the same set of parametéts

Thent C B(i,1) C T*(I).

Proof. Immediate from Theorem 3.2 (3) and Theorem

3.4. Theorem 3.5. Let (X,7,E) be a soft topological

space and be a soft ideal oveK with the same set of
parameter&. If (F.E)Y, (F,E)9" are the derived soft sets
of (F,E) in (X,T,E) and (X, 7*(I),E) respectively, then
(FEN C(FEN.

Proof.

Let x&(F,E)" if and only if xe€cl*((F,E) — Xe) if
and only ifxe€[((F,E) —x¢)]0[((F,E) —xe)]* if and only
it (Ox, — xe)7i(F,E) ¢ 'V Oy, € T. Thenxeé (F, ).

4 Compatibility of soft ideals with soft
topology

Definition 4.1. Let (X, T,E) be a soft topological space
andi be a soft ideal oveX with the same set of parameters
E. We say that the soft topologyis compatible with the
soft ideali, denoted byr ~ I, if the following holds for
every(F,E) € SS(X)g:

if for every soft pointxe, X € (F,E) there exist©y, such
thatO,,"\(F,E) € I, then(F,E) e .

Theorem 4.1.Let (X, T,E) be a soft topological spacé,
be a soft ideal oveK with the same set of parametets
andt ~ I. Then the following are equivalent:

(1)For every(F,E) € SSX)g, (F,E)(F,E)" = ¢, then
(F,E) = 0.

(2)For every(F,E) € SS(X)g, ((F,E) — (F,E)*)* = @.

(3)For every (F,E) € SS(X)E,
((F,E)A(F,E)")* = (FE)"

Proof.

(1) = (2)Let (F,E) € SSX)k. Since
((F.E) — (F,E))A((F,E) — (FE)")* = . Then
(F,E)—(F.E)")" = @by (1).

(2) = (3)Let (F,E) € SSX)e. Since (F,E) =
((F,E) — ((F,E)A(F,E)*)O((F,E)A(F,E)*). Then
(F.E)" =
[(F.E) — ((RE)ARE)O((RE)AFRE))]" =
[(F.E)—(( ,E)ﬂ*(F?E)*)}*

[(F.E)A(F,E)*]" by (2 3

(3) = (1)Let (F,E) € SS(X)e and (F,E)A(F,E)* = @.
Then (F,E)* = [(F,E)A(F,E)*]* = (¢)* = ¢. Hence
(F,E)el.

Corollary 4.1. Let (X, T,E) be a soft topological spack,
be a soft ideal oveK with the same set of parametets
(F,E) € SS(X)g andt ~ I. Then((F,E)*)* = (F,E)*.
Proof. Let (F,LE) € SS(X)E. Since
(F,E)* = ((F,E)A(F,E)*)*C(F,E)*)* from Theorem 4.1
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(3). But we have((F,E)*)*C(F,E)* from Theorem 3.2
(6). Thus((F,E)*)* = (F,E)".

Theorem 4.2.Let (X,7,E) be a soft topological space
and | be a soft ideal overX with the same set of
parameter&. Then the following are equivalent:

(DT ~1.
(2)For every(F,E) € SS(X)e such that(F,E)"(F,E)* =
o (FE)el.

(3)For every(F,E) € SSX)g, (F,E) — (F,E)* €.
(4)For every t*-closed soft subset (F,E),
(F.E)—(F,E)* el.

(5)For every(F,E) € SS(X)g, if (F,E) contains no non-
null soft set(G, E) with (G,E)C(G,E)*, then(F,E) €
I,
Proof.

(1) = (2)Let (F,E) € SS(X)g such that
(F,E)A(F,E)* = @. Then V x&(F,E) and
e (F,E)*, we haveOy (\(F,E) e I for someOy, € T.

Thus(F,E) e I by (2).

(2) = (3)Let (FFE) € SSX)E. Since
(FE) — (REMA(RE) — (FRE)) =
<< E)A(F.E)" )N , )

,E) — (RE))"C((FE)N(FE))A(FE) = o.
Then(F, )— (F,E)* el by (2).
(3) = (4)Let (F,E) be art*-closed soft subset. Then

(F,E) € SS(X)e. Hence(F,E) — (F,E)* € I by (3).

(4) = (1)Let (F,E) € SS(X)e and assume that for every
xe&(F,E) there existsOy, such thatOy A(F,E) € .
Then xe&(F,E)*. Hence ((F,E)A(F,E)*) = ¢ and
since (F,E)J(F,E)* is t*-closed soft set, we have
(FE)O(F.E)) — (FEX(FE)) e T by (4).
Hence ((F,E)U(F,E)*) — ((F,E)*O((F,E)*)*) =
((F,E)0(F,E)*) — ((F,E)*) = (F,E) € I by Theorem
3.2(6,7). Thus ~ 1.

(3) = (5)Let (F,E) € SS(X)e such that(F, E) contains
no non-null soft set(G,E) with (G,E)C(G,E)*.
Since (F,E)A(F,E)*C(F,E)* = ((F,E)A(F,E)")*

from Theorem 4.1 (3). It follows that
(F,E)A(F,E)*C((F,E)A(F,E)*)*. By assumption,
(F.E)A(F.E)* = ®. Thus
(F,E) = (F,E) - (F,E)" € Tby (3).

(5) = (3)Let (F.E) € SYX)e _ Since
(F.E) — (RE))A(FE) — (FE)")" = ¢ and
(F,E) — ( ,E)*) contains no non-null soft SQG E)
with (G,E)C(G,E)*. Hence(F,E) — (F.E)* e I by
(5).

Theorem 4.3.1f (X,T,E) is a soft topological spacé be
a soft ideal oveX with the same set of parametétsand

compatible withr. Then a soft set is*-closed if and only
if it is the union of ar-closed soft set and a soft setiin

Proof.

Let (F,E) be a t1*-closed
c*(F,E) = (F,E) and (F,E)J(F,E)* = (F,E). Hence
(F,E)*C(F,E). Thus(F,E) = ((F,E) — (F,E)")J(F,E)*,
(F,E) — (F,E)* € I from Theorem 4.2 andF,E)* is
7-closed soft set from Theorem 3.2 (5). Conversely, let
(F,E) = (G,E)J(I,E), where(G,E) is 1-closed soft set
and (1,E) € I. Then (F,E)* = ((G,E) — (I,E))* =
(G,E)*Cdl(G,E) = (G,E)C(F,E) from Theorem 3.2
(4,12). Hence (F,E)U(F,E)* = (F,E). Thus
c*(F,E) = (F,E). It follows that (F,E) is a t*-closed
soft set.

soft set. Then

Theorem 4.4.Let (X, T,E) be a soft topological space,
be a soft ideal oveK with the same set of parametdts
If T ~T,thenB(l, 1) is a soft topology and hengg= 1*.

Proof. Let (G,E) € 1*. Then(G,E)" = (F,E)JU(l,E),
where (F,E) is 1-closed soft set andl,E) < i. Hence
(GE) = (XE) - (FE)J(E) = (XE) -
(F.EDAXE) — (1,E)) = (X.E) — (F.E)) — (1,E),
where (F,E) ¢ v and (I,E) € I. Thus
(G,E) = ((X,E) - (F,E)) — (I,E) € B(I, 7). This means
thatt* C B(I, 7). But B(i, 1) C (i) from Corollary 3.2.
It follows thatf = 1*.
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