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Abstract: This paper presents a three level large scale linear programming praobighich the objective functions at every level are
to be maximized. A three level programming problem can be thought &sia \#ersion of the Stackelberg strategy. An algorithm for
solving a three planner model and a solution method for treating this prasleisuggested. At each level we attempt to optimize its
problem separately as a large scale programming problem using Dantz\y@lfe decomposition method. Therefore, we handle the
optimization process through a series of sub problems that can be saiéegebndently. Finally, a numerical example is given to clarify
the main results developed in this paper.
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1 Introduction solution based on first order Taylor’s series is formed.

In large scale programming which closely describes and
Multilevel optimization problems have attracted represents the real world decision situations, various
considerable attention from the scientific and economicfactors of the real system should be reflected in the
community in recent years. The multilevel system hasdescription of the objective function and constraints.
extensive existences in management fields. Usually, thifNaturally these objective function and constraints ingolv
kind of problems can be solved by using different many parameters and the experts may assign them
mathematical programming techniqueg]([11]). different values (1,2, 3,4]).
Most studies in multilevel field are focused on bi-level After the publication of the Dantzig and Wolfe
problem ([L0,13,14,15,16,17)). In [10], Emam proposed decomposition method7], there have been numerous
an algorithm for solving bi-level integer multi-objective subsequent works on large scale linear and nonlinear
fractional programming problem. At the first phase of the programming problems with block angular structurg, ([
solution algorithm, it begin by finding the convex hull of 6,12)).
its original set of constraints then simplifying the Abo Sinna et al. 4] extended the technique for order
equivalent problem by transforming it into a separatepreference by similarity ideal solution (TOPSIS) to solve
multi-objective decision-making problem and finally multi-objective large scale non-linear programming
solving the resulted problem by using tlseconstraint  problem. Compromise (TOPSIS) control minimizes the
method. measure of distance. The concept of a membership
Pramanik and Banerjee presented an approach to de#linction of fuzzy set theory was used to represent the
with fuzzy goal programming approach to solve chancesatisfaction level for both criteria. El-Sawy et ab] [
constrained quadratic bi-level programming probldi][  introduced an algorithm for decomposing the parametric
The presented approach convert the chance constraingpace in large scale linear vector optimization problems
into equivalent deterministic constraints with prescdibe under fuzzy environment.
distribution functions and confidence levels. Then aRecently, notable studies have been done in the area of
quadratic membership function by using individual bestmulti-level and multi-objective large scale programming
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problems (B,4,6,12)). In the above problem (1)-(4%; € R, (j=1,2,...,m) be a
Benzi et al. f] developed and compared multi-level real vector variables; is the large scale linear constraint
algorithms for solving large scale bound constrainedset where,b = (bo,...,bm)" is (m+ 1) vector, and
nonlinear problems via interior point methods. It show ag;,...,aum,d1,dm are constants. Therefore
how a multilevel continuation strategy can be used toF : R™ — R/ (i = 1,2,3) be the first level objective
obtain good initial guesses for each nonlinear iteration. Afunction, the second level objective function, and thecthir
minimal surface problem is used to illustrate the variouslevel objective function, respectively. Moreover, thetfirs
approaches. level decision maker (FLDM) hag,x, indicating the
Osman et al.12] presented a method for solving a special first decision level choice, the second level decision
class of large scale fuzzy multi-objective integer proldem maker (SLDM) and the third level decision maker
depending on the decomposition algorithm. FurthermorgTLDM) have x3,x4 and xs,Xs indicating the second
Abo-Sinna and Abou-Elenin extended TOPSIS for decision level choice and the third decision level choice,
solving large scale multiple objective programming respectively.

involving fuzzy parameters3]. These fuzzy parameters .

are characterized as fuzzy numbers, tlePareto Definition 1. For any (xi,x2 € G1 = {Xx1,%|
optimality is introduced by extending the ordinary Pareto (Xt,---»Xn) € G}) given by FLDM  and
optimality on the basis of thex-level sets of fuzzy (X3:X4 € G2 = {X3,x4|(xa,...,Xm) € G}) given by SLDM,
numbers. if the decision-making variable (xs,xs € Gz =
This paper is organized as follows: we start in Section 2{Xs:Xs|(X1,...,Xm) € G}) is the Pareto optimal solution of
by formulating the model of a three level large scale the TLDM, then (x,....xm) is a feasible solution of
linear programming problem. In Section 3, the TLLSLPP.

decomposition method of large scale three level "nearDefinition 2 If x* ¢ R" is a feasible solution of the

programming problem is presented. An algorithm ¢ | ) pp. 1o other feasible solutione G exists, such

followed by a flowchart for solving a three level linear . . i ; ;
= . ! . thatF < F1(x); sox* is the Pareto optimal solution of
programming is suggested in Section 4 and Section 5. INhe TL(Ii(S)LBP.l(X) x| Pl Ui

addition, a numerical example is provided in Section 6 to
clarify the results and the solution algorithm. Finally,
conclusion and future works are reported in Section 7.

3 Decomposition algorithm for the three level

2 Problem Formulation and Solution large scale linear programming problem
Concept
The three level large scale linear programming problemThe three level large scale linear programming problem is
(TLLSLPP) may be formulated as follows: solved by adopting the leader-follower Stakelberg
_ strategy combine with Dantzig and Wolf decomposition
[First Level method (B,7,9]). One first gets the optimal solution that
MaxF+(x) = Maxcr: X: 1 is acceptable to FLDM using the_ decomposition method
%2 1 xafp 7 @) to break the large scale problem into n-sub problems that
Wherexs, . .., Xn solves can be solved directly.
[Second Levél The decomposition principle is based on representing the
TLLSLPP in terms of the extreme points of the sets
MaxFa(x) = Maxczjxj, ) djxj < bj,x; > 0,j =1,2,...,m. To do so, the solution

space described by eadix; < bj,x; >0,j=1,2,....m
[Third Level must be bounded and closed .
Then by inserting the FLDM decision variable to the
MaxFs(x) = Maxcsjxj, (3)  SLDM for him/her to seek the optimal solution using
Dantzig and Wolf decomposition method], then the
decomposition method break the large scale problem into

Wherexs, . .., Xn solves

Wherexz, . .., Xm solves

Subject to n-sub problems that can be solved directly.
x € G. (4) Finally the TLDM do the same action till he obtains the
optimal solution of his problem which is the optimal

Where solution to TLLSLPP.
G= X X Xm < by, . . . )
{agiXiJr Bo2Xz o - bol Theorem 1.The decomposition algorithm terminates in a
oxo < b27 finite number of iterations, yielding a solution of the large
A < bm’ scale problem.
X1, Xm > 0}. To prove theorem 1 above, the reader is referredto [
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3.1 The First-Level Decision-Maker (FLDM)
Problem

The first-level decision-maker problem of the TLLSLPP
is as follows:

[First Leve|
m
MaxFy(x) = Max Z C1jXj, (5)
=1
Subject to
xeG.

To obtain the optimal solution of the FLDM problem;
suppose that the extreme pointsdykj < bj,xj > 0 are
defined axji, k = 1,2, 3, wherex; defined by:

K

Xj =% BjXj, j=1,....m (6)
k=1

andpjk > 0, for allk and Z Bijk = 1.

Now, the FLDM problem |n terms of the extreme points
to obtain the following master problem of the FLDM are
formulated as stated irT[:

ke ko
Max z Cr1XakBk + Z CroRo ok + -+ + Z C1nRnkBrk,

(7
Subject to

k . ko ~ kn .
kZlalekBlk + kzl agoXokBok + -+ - + kZZ aonXnkBnk < bo,

ki

z Blk = 1)
k=1

ko

Z B =1,
Z Bnk =

BJk > 0,for all jandk.

The new variables in the FLDM problem afig which
determined using Balinski’s algorithnB][ Once their
optimal values3;} are obtained, then the optimal solution

to the original problem can be found by back substitution

as follow:
kg

X] = Z Brk),z]kaj = 17 27 3. (8)
K=1

It may appear that the solution of the FLDM problem

requires prior determination of all extreme poirjg. ~

To solve the FLDM problem by the revised simplex

method,

entering variables.

Given Cg and B~1 of the current basis of the FLDM
problem, then for non-basj8;y:

Zjk — Cjk = CaB Pk — Cjk ©)
Where R
ajXjk
. 0
Cjk = Cijk and ij = 1 (10)
0

Now, to decide which of the variabl¢y should enter the
solution it must determine:

z}‘k—c*j‘k = min{zjk — Cjx} (12)

Consequently, ifZJ!‘k —Cx <0, then according to the
maximization optimality condition,Bj*k must enter the
solution; otherwise, the optimal has been reached.

3.2 The Second-Level Decision-Maker (SLDM)
Problem

Secondly, according to the mechanism of the TLLSLPP,
the FLDM variables< , x5 should be given to the SLDM;
hence, the SLDM problem can be written as follows:
m
MaxF,(x) = Max Z C2jXj, (12)
=1
Subject to

(X[,%5,...,Xm) € G.

To obtain the optimal solution of the SLDM problem; the
SLDM solves his master problem by the decomposition
method [/] as the FLDM.

3.3 The Third-Level Decision-Maker (TLDM)
Problem

Finally, according to the mechanism of the TLLSLPP, the

SLDM variables X ,x5,x3,x§ should be given to the
TLDM; hence, the TLDM problem can be written as

follows:

Subject to
(X x5 XS XS, ... Xm

Max F3(x (13)

) €G.

To obtain the optimal solution of the TLDM problem; the
TLDM solves his master problem by the decomposition
method [13] as the FLDM and SLDM.

it must determine the entering and leaving
variables at each iteration. Let us start first with the Now the optimal solutior(xf,xg ,

X3, X3 X, X - - Xin) OF

the TLDM is the optimal solution of the TLLSLPP.
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4 An algorithm for solving TLLSLPP
Step 12.
A solution algorithm to solve three-level large scale linea  set (x;,xp,x3,%1) = (3,35 ,55x5) to the TLDM
programming problem (TLLSLPP) is described in a constraints, go to Step 13.
series of steps. This algorithm overcome the complexity
nature of the three level large scale linear programmin
problem, and uses the constraint method of the three leve
optimization to facility the large scale linear constraint
nature. Inserting the variables value of every higher level
decision maker to his lower level decision maker breakStep 14.
the difficulty faces the TLLSLPP. (X x5 xS )G, xI x ... xT) is as an optimal solution
for three-level large scale linear programming problem,
The suggested algorithm can be summarized in thghen stop.
following manner:

tep 13.
The TLDM formulate his problem, go to Step 2.

Step 1. 5 A flowchart for solving TLLSLPP
Start with the FLDM problem and go to Step 2.
A flowchart to explain the suggested algorithm for
Step 2. solving a three-level large scale linear programming

Convert the master problem in terms of extreme pointsProblem is described as shown in figure 1.
of the SetEdej < bj, Xj >0, j=123.

Step 3.
kj .
Determine the extreme pointx; = 3 BjXjk, 6 Numerical example
k=1
J =1,2,3 using Balinski's algorithm [5]. To demonstrate the solution for (TLLSLPP), let us
consider the following problem:

Step 4.
Setk = 1. [First Level
MaxF1(x) = Maxoxy + 4x2 + X5 + X6,
Step 5. Wherexs, X, X5, Xg Solves

Computezjy — Cjk = CgB~1Pjx — Cj, go to Step 6.
[Second Levél
Step 6. I;él}ngz(x) = M.)%X8X3+4X4+X5+X5,
If z]-‘k — c’j‘k < 0, then go to Step 7; otherwise, the Wherexs, xg solves
optimal solution has been reached, go to Step 8.

[Third Level
Step 7. l;él_%x_Fg(x) = M axBxs + 6,
Setk =k+1, go to Step 4. Subject to
X1+ X2 + X3+ X4 + X5 + X6 < 50,
Step 8. gﬁlixz E i’g
If the SLDM obtain the optimal solution go to Step 11 x5ix5X4<_20 '
, otherwise go to Step 9. e+ 5Xe_§ 80,
X1, X2, X3, X4, X5, X6 > 10.
Step 9. . Firstly, the FLDM problem formulation as follows :
Set(x1,%2) = (X{,%; ) to the SLDM constraints, go t0  MaxFy (x) = Max5xy + 4%z + X5 + X,
Step 10. Subject to
xe G.
Step 10. 1. Convert the FLDM problem in terms of extreme points
The SLDM formulate his problem, go to Step 2. of the setsljx; <bj,x; >0,j=1,2,3.
Kj
Step 11. 2. Determine the extreme pointg; = kZlBijjk,
If the TLDM obtain the optimal solution go to Step 14 j = 1, 2,3 using Balinski’s algorithm4].
, otherwise go to Step 12. 3. Setk = 1, so the slack variablg; convert common
@© 2014 NSP
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[ End

Fig. 1: Algorithm for solving a three-level large scale linear programming prable

constraint into equatiomg, xg, X19 are artificial variables Thus, the corresponding linear programming is

as: Minw; = —5bx3 —4x13 — M,
X1+ X2 + X3+ Xq + X5+ Xg + X7 = 50. Subject to
Let us identify Iteration O as:
Xg = (X7,Xg,%9,%10)", X = (50,1,1,1)7,
Cs=(0,—M,—-M,—M),B=1,B1=1.
Now iteration 1 for sub problem 1 where j=1 is : 24+% < 40,
ArXq
_ 1
0
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%11 = (0,40),w; = —160— M. 7 Conclusion
For sub problem 2 wherg= 2
In this paper, we presented a three level large scale linear

AxX2 programming problem in which the objective functions at
_ -1 _ 0 _ every level are to be maximized. A three level
Z2=C =GB =1 4 | -GXe=-M programming problem can be thought as a static version
0 of the Stackelberg strategy. An algorithm for solving a
o o three-planner model and a solution method for treating
Thus, the corresponding linear programming is this problem were suggested. At each level we attempted
Minw; = —M, to optimize its problem separately as a large scale
Subject to programming problem using Dantzig and Wolfe
Sx3+Xx4 <12, decomposition method. Therefore, we handle the
X3,X4 > 0, optimization process through a series of sub problems
%21 = (0,0),w; = —M. that can be solved independently. Finally, a numerical
For sub problem 3 wherg= 3 example was given to clarify the main results developed
in this paper. However, there are many other aspects,
AsXa which should by explored and studied in the area of a
Z3—C3=CgB 1= 8 — CaXg = X5 — Xg— M. large scale multi-level optimization such as: _
1- Large scale multi-level non-linear programming
1 problem with fuzzy parameters in the objective functions
o . and in the constraints and with integrality conditions.
Thus, the corresponding linear programming is 2- Large scale multi-level non-linear programming
Minws = —X5 — X6 — M, problem with stochastic parameters in the objective
Subject to functions and in the constraints and with integrality
X5 +Xp < 20, conditions.
X5 + 5% < 80, 3- Large scale multi-level non-linear programming
X5, X6 > 0. problem with rough parameters in the objective functions
X31 :_(20’ 0),ws = *20_* M. and in the constraints and with integrality conditions.
Now, to determine new basic variabig < w; & w; < wj
& wj < 0, sopi; associated with1 should enter basic
solution andxg will leave basic solution. References
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