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Abstract: The goal of this paper is to determine the bulk acoustic wave (BAW) propagation velocities (quasi-longitudinal, quasi-shear
vertical and quasi-shear horizontal) in two important piezoelectric smartmaterials, Lithium Niobate(LiNbO3) and Lithium Tantalate
(LiTaO3). To determine the BAW propagation velocities, the BAW elemental equations are deduced. The BAW velocities are calculated
for each direction by solving the Christoffel’s equation systematically based on the theory of acoustic waves in anisotropic solids
exhibiting piezoelectricity. The modification of the BAW velocities by the piezoelectric effect are calculated and graphically compared
with the velocities in the corresponding non-piezoelectric materials. Furthermore, the electromechanical coupling factors are defined
and investigated. The results obtained in this study can be applied to signal processing, sound systems and wireless communication in
addition to the improvement of surface acoustic wave (SAW) devices andmilitary defense equipment.
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1 Introduction

The class of engineering materials known as ”smart
materials” or ”intelligent materials” has become a major
focus of attention. In particular, piezoelastic
(piezoelectric) materials have great promise for use in
smart structural systems. When an external force acts on a
piezoelastic material, the mechanical stresses produce an
electric potential within the material. Conversely, when an
electric field is applied to a piezoelastic material, stresses
are induced. The possibility exists to not only determine
the stresses in a piezoelastic material by measuring the
electric potential but also control the stresses by the
action of an appropriate applied electric field [1].

Waves propagating in an unbounded, homogeneous
medium are called bulk acoustic waves (BAW). For
higher symmetry crystals, if the propagation direction
coincides with the principal axis direction, then the phase
velocities can be easily calculated. Nevertheless, for an
arbitrary propagation direction, which requires solving
the characteristic equation to find the phase velocities
(i.e., the corresponding eigenvalues of Christoffel’s
equation), the computations become complex and
cumbersome. So, the theoretical description of bulk

elastic waves in anisotropic bodies involves solving
algebraic equations of degree three or higher, and
obtaining explicit results is only possible for simplified
situations due to symmetry or special relations between
the material parameters in the model medium.
Nevertheless many fundamental properties of bulk waves
in anisotropic media became understood through the
explicit analysis of various particular illuminating
situations that are described by direct calculations (see,
e.g. [2,3,4] and [5]).

There is increasing interest in the theory of
electroacoustic waves in piezoelectric materials poses
numerous challenging problems [2]. Much of the interest
in the subject is directed towards applications in the areas
of signal processing, transducers, radio-frequency
resonators, band-pass filters and frequency control [6,7,8,
9,10] and [11]. From the viewpoint of wave propagation,
the piezoelectric problem is closely related to the purely
acoustic problem. In fact, it can be shown that, in an
infinite homogenous medium, piezoelectric waves
propagate in the form of plane waves. Because the
velocity of acoustic waves is much smaller than that of
electromagnetic waves, in a ratio of 105, the
electromagnetic field is assumed to propagate
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instantaneously and the electric field can be derived from
a potential, which is called the quasi-static approximation
[8].

The theory of acoustic axes in anisotropic materials
(crystals) has many different aspects. The main activity in
this field was initiated by Khatkevich [12], who derived
the general equations determining the directions of
degeneracy for crystals of unrestricted anisotropy. The
theory developed by Khatkevich was not invariant and the
form of its basic equations depended on the choice of
coordinate system. So, different versions of the invariant
criteria for degeneracy of the phase speeds of bulk waves
in crystals were later introduced in [13,14], and [15].

Zhou et al. [16] discussed the acoustic anisotropy of
the crystals, and the slowness curves of three bulk waves
and surface waves for different planes considering
piezoelectric effects were calculated. Alshits et al. [17]
presented a short survey of some basic results in the
theory of bulk elastic waves in anisotropic media and a
series of general properties of phase speed branches was
deduced. Ting [18] described some of the properties of
anisotropic elastic materials such as orthotropic and
hexagonal materials. Additionally, Ting [19] proved that a
necessary and sufficient condition exists for the presence
of longitudinal and transverse waves in anisotropic elastic
materials. Sharma [20,21] studied the propagation of
plane harmonic waves in anisotropic elastic and
piezo-poroelastic media and presented a new procedure to
study the reflection in anisotropic media. Langer and
Selberherr [22] developed an analysis and computer
program for acoustic wave generation in piezoelectric
materials, which takes into account the second-order
effects of bulk wave anisotropic materials. Mah and
Schmitt [23] demonstrated that many rocks may be
considered to exhibit orthorhombic symmetry; they
experimentally determined the nine independent elastic
coefficients required for their case of study. Recently,
Cristini et al. [24] presented a review of wave propagation
at the surface of anisotropic media (crystal symmetries).
The physics for media of cubic and hexagonal
symmetries has been extensively studied based on
analytical and semi-analytical methods. Mauritsson et al.
[25] derived a hierarchy of dynamic plate equations for a
fully anisotropic elastic plate, and the explicit plate
equations were presented and compared analytically and
numerically to other approximate theories given in the
literature. Ostrosablin [26] obtained the general form of
the displacement vectors of plane transverse waves in
elastic isotropic and anisotropic media, and he determined
the eigenmoduli, eigenstates, and engineering constants:
bulk moduli, Youngs moduli, Poisson coefficients, shear
moduli, and Lame’s constants of the closest isotropic
materials. The calculations of quasi-longitudinal,
quasi-shear vertical and quasi-shear horizontal waves in
anisotropic piezoelectric smart materials have been used
in studying the phenomena of reflection and refraction
wave propagation in many papers, such as: [27,28,29,30]
and [31].

In this paper, we attempt to build a mathematical
model based on the partial differential equation system in
three spatial dimensions consisting of the equations of
motion and Poisson’s equation. The derivation of this
system from the fundamental equations describing
acoustic wave propagation in arbitrary piezoelectric
materials is described in [8]. By solving the system of
equations, we obtained the bulk acoustic wave (BAW)
propagation velocities (quasi-longitudinal, quasi-shear
vertical and quasi-shear horizontal) for Lithium Niobate
(LiNbO3) and Lithium Tantalate (LiTaO3). The
modification of the velocities of wave propagation caused
by the piezoelectric effect in those materials is calculated
and compared with the corresponding non-piezoelectric
materials. These results are presented graphically for
comparison. Furthermore, the electromechanical coupling
factors are defined and investigated.

2 The basic equations for the wave motion in
piezoelectric media

The basic wave equation for displacements in an elastic,
homogeneous, anisotropic medium is expressed as

σi j, j = ρ üi, (1)

whereρ is the mass density of the elastic medium,σi j is
the stress tensor andui is the displacement tensor.

In a piezoelectric material, the mechanical equations of
motion and Maxwells equations for the electrical behavior
are coupled through two constitutive equations given by:

σi j = ci jklSkl − eki jEk, (2)

Di = εi jEk + eiklSkl , (3)

whereci jkl(i, j,k, l = 1,2,3) is the stiffness tensor,Skl is
the strain tensor (second rank),eikl is the third rank
piezoelectric tensor,Ei is the electric field,Di is the
component of electric displacement andεik is the
symmetric permittivity matrix.

The components of strain displacement are given by:

Si j =
1
2
(ui, j +u j,i). (4)

Because the velocity of acoustic waves are five times
smaller in magnitude compared to the velocity of
electromagnetic waves, the frequency of the electric field
waves can be considered to be small enough to categorize
them as quasi-static. In such a case, the curl of the electric
field can be assumed to vanish, thereby reducing one of
Maxwell’s equations to
−→
∇ ∧

−→
E =

−→
0 (5)
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thus enabling us to describe the electric field as the
negative gradient of the scalar potential given by the
following equation:

Ei =−ϕ,i. (6)

Magnetic fields are rarely of interest in bulk or surface
acoustic wave problems and hence the Maxwells
equations concerning them are disregarded. The
piezoelectric materials are almost perfect insulators,
thereby reducing the remaining Maxwell’s equation to:

Di,i = 0. (7)

Substituting the relations for and given by equations (4)
and (6), respectively, into the piezoelectric constitutive
equations (2) and (3) and henceforth into the wave
equation and Maxwell’s equation provides a system of
coupled wave equations given by:

ci jklul, jk + ek jiϕ jk = ρ üi, (8)

e jklul, jk − ε jkϕ jk = 0. (9)

3 Propagation of bulk waves in anisotropic
piezoelectric elastic media

The general solution of the coupled equations of
piezoelectricity (8) and (9) for an arbitrary piezoelectric
medium may be expressed for the potentialϕ(x j, t) and
the displacement vectoruk(x j, t) in the form:

uk(x j, t) =Uk exp[i
n jx j

v
−ωt], (10)

ϕ(x j, t) = Φ exp[i
n jx j

v
−ωt]. (11)

In (10) and (11), plane monochromatic waves are
propagated in the direction of vectorn j, which is
perpendicular to the wave front,v is the phase velocity of
the wave andk, j = 1,2,3.

Substituting (10) and (11) into (8) and (9), we obtain
a system of linear homogeneous equations with respect to
the peak values ofΦ andUk :

(ckl psnlnp −ρv2δks)Us + esk jn jnsΦ = 0, (12)

esk jn jnsUk − ε jkn jnkΦ = 0. (13)

The system (12) and (13) may be written as follows:

(Γks −ρv2δks)Us + γkΦ = 0, (14)

γkUk − εsΦ = 0, (15)

where

Γks = ckl psnlnp,

γk = esk jn jns,

εs = ε jkn jnk. (16)

Eliminating the peak value of the potentialΦ from the
system (14) and (15), we have
[
Γks +

γkγs

εs )−ρv2δks
]
Us = 0, k = 1,2,3. (17)

A non-trivial solution of system (17) exists if its
determinant (which is so-called Christoffel’s equation) is
equal to zero. Taking into account tensorΓks, this
condition may be written in the form

∆ =

∣∣∣∣∣∣

Γ̃11−ρv2 Γ̃12 Γ̃13

Γ̃21 Γ̃22−ρv2 Γ̃23

Γ̃31 Γ̃32 Γ̃33−ρv2

∣∣∣∣∣∣
= 0, (18)

where

Γ̃ks = Γks +
γkγs

εs . (19)

Equation (18) allows to determine the velocity of the
plane waves propagating along the directionn j. As
equation (18) is an equation of the third power with
respect to (ρv2), in the general case for the given
direction in a piezoelectric crystal, we have three
velocitiesρv2

j where( j = 1,2,3), which are determined
by the positive roots of equation (18). Substituting each of
the values v j into system (17), we obtain

U ( j)
s ,Φ ( j) = γkU(k)

s
εs . Due to the homogeneity of equation

(17), the quantitiesU ( j)
s ,Φ ( j) are determined up to the

multiplication by an arbitrary constant. Thus, the problem
of determining the velocity of plane waves propagating
along an arbitrary directionn j in a piezoelectric medium
is reduced to finding the Eigenvaluesρv2

j and

eigenvectorsU ( j)
s of tensor Γ̃ks. Note that due to the

symmetry of tensorΓ̃ks its Eigenvalues will be real
quantities, and because the quadratic form ofΓksUkUs is
positive, the Eigenvalues̃Γks are also positive. For any of
the three plane waves propagating in directionn j, the
vector of displacementU ( j) in the general case will not be
parallel or perpendicular to the direction of propagation.
However, the wave with vectorU (1) forming the smallest
angle with the direction n j is usually called
quasi-longitudinal, and the two elastic waves with vectors
U (2),U (3) are called quasi-transverse. In addition, the
vectorsU (1),U (2),U (3) are perpendicular to each other.
Before we address propagation along the direction linked
to the symmetry elements, we first establish the
expressions for theΓks tensor components. Expanding the
sum overk ands in the system (16), one can find:

Γil = ci11ln
2
1+ ci22ln

2
2+ ci33ln

2
3+(ci12l + ci21l)n1n2

+(ci13l + ci31l)n1n3+(ci23l + ci32l)n2n3 (20)
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In detail, the six components ofΓil are:

Γ11 = c11n2
1+ c66n2

2+ c55n2
3+2c16n1n2

+2c15n1n3+2c56n2n3,

Γ12 = c16n2
1+ c26n2

2+ c45n2
3+(c12+ c66)n1n2

+(c14+ c56)n1n3+(c46+ c25)n2n3,

Γ13 = c15n2
1+ c46n2

2+ c35n2
3+(c14+ c56)n1n2

+(c13+ c55)n1n3+(c36+ c45)n2n3,

Γ22 = c66n2
1+ c22n2

2+ c44n2
3+2c26n1n2

+2c46n1n3+2c24n2n3,

Γ23 = c56n2
1+ c24n2

2+ c34n2
3+(c46+ c25)n1n2

+(c36+ c45)n1n3+(c23+ c44)n2n3,

Γ33 = c55n2
1+ c44n2

2+ c33n2
3+2c45n1n2

+2c35n1n3+2c34n2n3, (21)

where

Γ21 = Γ12, ; Γ31 = Γ13, ; Γ32 = Γ23. (22)

Similarly, the components of the piezoelectric tensorγl
may be written as:

γl = e11ln
2
1+ e22ln

2
2+ e33ln

2
3+(e12l + e21l)n1n2

+(e13l + e31l)n1n3+(e23l + e32l)n2n3 (23)

In detail, Eq. (23) may be written in the form:

γ1 = e11n2
1+ e26n2

2+ e35n2
3+(e16+ e21)n1n2

+(e15+ e31)n1n3+(e25+ e36)n2n3,

γ2 = e16n2
1+ e22n2

2+ e34n2
3+(e12+ e26)n1n2

+(e14+ e36)n1n3+(e24+ e32)n2n3,

γ3 = e15n2
1+ e24n2

2+ e33n2
3+(e14+ e25)n1n2

+(e13+ e35)n1n3+(e23+ e34)n2n3. (24)

Similarly, based on Eq. of (16)3, one can find:

εs = ε11n2
1+ ε22n2

2+ ε33n2
3+(ε13+ ε31)n1n2

+(ε21+ ε12)n1n3+(ε23+ ε32)n2n3. (25)

The modification of the propagation velocity due to the
effect of piezoelectricity can be expressed by changing the
stiffness coefficients: the Christoffel tensor can be written
in this case as:

Γ il = ci jkln jnk, (26)

where

ci jkl = ci jkl +
(epi jnp)(eqklnq)

εi jkln jnk
(27)

The termsci jkl, known as ”stiffened” constants, and they
depend on the propagation direction.

To study the propagation of waves along the
directions connected with the elements of symmetry of a
piezoelectric crystal, we must represent the expressions

for the components of tensor̃Γks in case of the system
(19) as:

Γ̃11 = Γ11+
γ2
1

εs , Γ̃12 = Γ12+
γ1γ2

εs ,

Γ̃22 = Γ22+
γ2
2

εs , Γ̃13 = Γ13+
γ1γ3

εs ,

Γ̃33 = Γ33+
γ2
3

εs , Γ̃23 = Γ23+
γ2γ3

εs . (28)

4 Relationship between stress and strain
(Elastic constants)

The coefficientsci jkl , which describe the most general
linear relationship between the two second rank tensors
Ti j and Skl are the components of a fourth rank tensors
called the elastic stiffness tensor. This proportionality
between stress and strain was first enunciated in the
stretched string.

A fourth rank tensor has 81 components. However,
becauseTi j and Skl are symmetric tensors, the elastic
constantsci jkl remain unchanged under a permutation ofi
and j or k andl:

ci jkl = c jilk; ci jkl = ci jlk.

Taking the above symmetries into account, we are left
with 36 independent elastic constants, instead of 81. An
unordered pair of indices(i, j) takes on only six distinct
values, which we number from 1 to 6 in the following
way:

(11)↔ 1, (22)↔ 2, (33)↔ 3,

(23)↔ (32)↔ 4, (13)↔ (31)↔ 5,

(12)↔ (21)↔ 6. (29)

The independent elastic moduli are thus labeled by only
two indicesα and β , ranging from 1 to 6, and can be
arranged in a(6×6) table:

cαβ = ci jkl with (α)↔ ( jk),(β )↔ (kl).

So the(6×6) table of the coefficientscαβ is symmetric
with respect to the main diagonal.

(cαβ ) =

∣∣∣∣∣∣∣∣∣∣∣

c11 c12 c13 c14 c15 c16
c21 c22 c23 c24 c25 c26
c31 c32 c33 c34 c35 c36
c41 c42 c43 c44 c45 c46
c51 c52 c53 c54 c55 c56
c61 c62 c63 c64 c65 c66

∣∣∣∣∣∣∣∣∣∣∣

. (30)

The above property reduces the number of independent
components to 21 constants, which represents crystals of
the triclinic system.
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5 Tensor formulation of piezoelectricity

If the strain tensor is symmetric, i.e.,S jk = Sk j, then the
tensorei jk is symmetric with respect to its last two indices:

ei jk = eik j.

The number of independent piezoelectric constants is thus
reduced from 27 (ordinary third rank tensor) to 18; the pair
( j,k) has only 6 distinct values, denoted by the indexα
according to the convention of equation (1)

eiα = ei jk, ; (i = 1,2,3), ; α = (i, j) = 1,2,3· · ·6.

The piezoelectric moduli are arranged in a 3× 6 table
(three columns, six rows):

(eiα) =

∣∣∣∣∣∣

e11 e12 e13 e14 e15 e16
e21 e22 e23 e24 e25 e26
e31 e32 e33 e34 e35 e36

∣∣∣∣∣∣
. (31)

6 Electromechanical Coupling Factor

There are several ways to define the quantity of the
piezoelectric coupling effect. In this section, the
electromechanical coupling constants used in this
research for bulk acoustic waves and for guided waves are
introduced. The phase velocity of a pure elastic
unbounded medium is:

Vα =

√
C
ρ
, (32)

and the stiffened phase velocity of a piezoelectric
unbounded medium is

V ′
α =

√
C
ρ
=

√
C+(e2/εs)

ρ
, (33)

whereC is the piezoelectrically stiffened elastic constant
and is, in general, calculated from (27). Rewriting (33)
yields

V ′
α =Vα

√
1+K2, (34)

where

K2 =
e2

Cεs =
V ′

α
2+V 2

α

V ′
α

2 (35)

is the coefficient of piezoelectric coupling, which shows
the change in acoustic wave propagation due to the effect
of piezoelectricity in an unbounded media, and 06 K 6 1.

Fig. 1: (1-a), (1-b) and (1-c) represent the velocities of the BAW,
denoted by(Va1,Va2,Va3), as function ofθ for LiNbO3 compared
with their counterparts when the piezoelectric constants are zero,
denoted by(V ′

a1,V
′

a2,V
′

a3).

7 Applications to trigonal symmetry
piezoelectric materials (Crystals)

A Trigonal symmetry crystal hasthree-fold symmetry
around thex3−axis. This class includes Lithium Niobate
(LiNbO3) and Lithium Tantalite(LiTaO3). These types
of crystals are considered as the most widely used
piezoelectric materials, especially for high frequency
devices. By using the physical constants of(LiNbO3) and
(LiTaO3) from Table 1 in [9], one may calculate the
velocities of BAW propagation (qP,qSV andqSH), which
are denoted by (Va1,Va2,Va3),(Vb1,Vb2,Vb3) and
(Vc1,Vc2,Vc3), respectively. Additionally, in the special
case of neglecting the piezoelectric effect of these
materials, the velocities are described as
(V ′

a1,V
′

a2,V
′

a3),(V
′

b1,V
′

b2,V
′

b3) and (V ′

c1,V
′

c2,V
′

c3). These
velocities are shown graphically in Figures (1) and (2).
The electromechanical coupling factors are presented in
Figures (3) and (4).
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Fig. 2: (2-a), (2-b) and (2-c) represent the velocities of the BAW,
denoted by(Vb1,Vb2,Vb3), as function ofθ for LiTaO3 compared
with their counterparts when the piezoelectric constants are zero,
denoted by(V ′

b1,V
′

b2,V
′

b3).

8 Discussion and the numerical results

Because of the anisotropy of the trigonal symmetry of
crystals, the arbitrary choice of the wave propagation
direction, which is required for solving the characteristic
equation, is used in Christoffel’s equation shown in (18).
The corresponding eigenvalues and eigenvectors are the
phase velocities of three acoustic modes that are
propagating in each direction, one with longitudinal (or
quasi-longitudinal) polarization as theqP wave and two
with transverse (or quasi-shear vertical and quasi-shear
horizontal) polarization as theqSV and qSH waves.
Because the corresponding Christoffel’s matrix is
symmetric, these three eigenvalues are positive real
numbers and the acoustic polarizations are mutually
orthogonal. The use of a computer-based technique
makes it significantly easier to determine the eigenvalues
and some of the other acoustic properties. Usually, the
first root is the largest one, corresponding to the
longitudinal mode, and the other two roots correspond to
the fast and slow shear modes. Table (1) lists the physical

constants of the anisotropic piezoelectric materials:
(LiNbO3), (LiTaO3) for which the velocities of bulk
wave propagation (BAW) are calculated. From Figures
(1)-(4), one may conclude the following remarks. In
Figures (1-a), (1-b) and (1-c), we show the calculated
BAW velocities iny− z plane of piezoelectric(LiNbO3)
crystal as functionθ (solid curves), which are denoted by
(Va1,Va2,Va3), compared with their counterparts when the
piezoelectric and dielectric constants are zero, which are
denoted by(V ′

a1,V
′

a2,V
′

a3) (dot curves). From Fig. (1-a), it
is clear that the greatest influence of the piezoelectric
effects on theqP−wave occurs atθ = 45◦, where
Va1 = 3.34×103 Km/sec, andV ′

a1 = 6.241×103 Km/sec.

Furthermore, there is no influence of the piezoelectric
effect atθ = 105◦, whereVa1 = V ′

a1 ≈ 6.7×103 Km/sec.
From Fig. (1-b), for theqSV wave, the greatest influence
of the piezoelectric effects occurs atθ = 100◦, where
Va2 = 4.56×103 Km/sec, andV ′

a2 = 3.528×103 Km/sec.
In addition, there is no influence of the piezoelectric
effect atθ = 55◦, whereVa2 =V ′

a2 ≈ 4.001×103 Km/sec,
as well as over the range ofθ = 145◦ : 180◦.

In Figures (2-a), (2-b) and (2-c), the BAW velocities
are calculated in they− z plane of piezoelectric(LiTaO3)
crystal as functionθ (solid curves), which are denoted by
(Vb1,Vb2,Vb3),and compared with their counterparts when
the piezoelectric and dielectric constants are zero, which
are denoted by(V ′

b1,V
′

b2,V
′

b3) (dot curves).

From Fig. (2-a), it is obvious that the greatest influence
for the piezoelectric effects in the velocity of theqP wave
occurs atθ = 51◦, whereVb1 = 6.32× 103 Km/sec, and
V ′

b1 = 6.016×103 Km/sec, while there is no influence of
the piezoelectric effect atθ = 107◦, whereVb1 = V ′

b1 ≈

5.527×103 Km/sec.

From Fig. (2-b), for theqSV−wave, larger differences
betweenVb2 andV ′

b2 occur for propagation directionsθ
ranging from 48◦ : 150◦, where (Vb2)max = 3.964× 103

Km/sec, and (V ′

b2)max = 3.609 × 103 Km/sec for
θ ≈ 104◦.

For theqSH wave in both of the materials, there is no
influence of the piezoelectric and dielectric constants, so
the curves are coincide, as shown in Figures (1-c) and (2-
c).

In Figure (3), the maximum electromechanical
coupling factor for the quasi-longitudinal mode (0.494) is
shown to be along (60◦ ), and for the quasi-shear vertical
mode (0.633) the maximum is along the approximately
100◦ direction. The most attractive point is that only one
mode is excited, with relatively high coupling values
compared with the maximum, at(55◦) and(148◦) for the
quasi-longitudinal mode and at(105◦) for the quasi-shear
mode. Figure (4) shows that the electromechanical
coupling factor for the material(LiTaO3) has the
maximum values for the quasi-longitudinal mode along
(60◦) and the maximum for the quasi-shear vertical mode
is approximately along(105◦). Additionally, one mode is
excited at (45◦) and (160◦) for the quasi-longitudinal
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Fig. 3: Represents the electromechanical coupling factors of the
BAW, denoted by(Ka1,Ka2), for the Quasi-longitudinal wave
and quasi-vertical waves, respectively, forLiNbO3 as function
of θ .

Fig. 4: Represents the electromechanical coupling factors of the
BAW, denoted by(Ka1,Ka2), for the Quasi-longitudinal wave
and quasi-vertical waves, respectively, forLiTaO3 as function of
θ .

mode and at(105◦) for the quasi-shear vertical mode.

Finally, the results show that the electromechanical
coupling coefficient of theqP wave is less than that of the
qSV wave in both of the two trigonal materials(LiNbO3)
and(LiTaO3).

9 Conclusions

The directional dependence of the velocities of bulk wave
propagation (BAW) in anisotropic piezoelectric materials
was calculated. The velocities were determined for the
materials(LiNbO3), (LiTaO3). In general, the velocities
of qP andqSV waves are sensitive to the piezoelectric and
anisotropic constants, but the velocity of theqSH wave is
not. For the anisotropic case however, there are three
general surfaces, that is, one for a quasi-longitudinal wave
and two for quasi-shear waves. This property means that
the incident and the reflected waves in an anisotropic
media can no longer be thought of as purely longitudinal
or shear with the appropriate directionally independent

Table 1: Appendix (1)

Lists the physical constants of
LiNbO3 andLiTaO3 [9]

Material Lithium Lithium
constants Niobate tantalate

LiNbO3 LiTaO3
Trig-3 m Trig-3 m

Stiffiness c11 20.3 23.3
(1010N/m2) c12 5.3 4.7

c13 7.5 8.0
c33 24.5 27.5
c44 6.0 9.4
c14 0.9 −1.1

Mass density ρ 4.7 7.45
(103kg/m3)
Piezoelectric e22 2.5 1.6

constant e31 0.2 0.0
(C/m2) e33 1.3 1.9

e15 3.7 2.6
Permittivity ε11 38.9 36.3

(10−11C/V m) ε33 25.7 38.2

wave speeds. This effect in anisotropic materials also
implies that the direction of energy flow (i.e., group
velocity) does not, in general, coincide with the normal to
the wave front. A computer program was developed to
simplify the process of determining the eigenvalues and
some of the other acoustic properties of BAW. Such
waves are decomposed into finite plane waves
propagating along an arbitrary direction in solid. The
properties of these waves are determined by the
dependence between the propagation direction and the
constitutive properties of the medium. Three types of
such waves can be distinguished in connection to the
three displacement vectors, which determine the acoustic
polarization. The three polarization vectors are mutually
orthogonal, but in most cases, they are neither
perpendicular nor parallel to the propagation direction.
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