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Abstract: The goal of this paper is to determine the bulk acoustic wave (BAW) patfagvelocities (quasi-longitudinal, quasi-shear
vertical and quasi-shear horizontal) in two important piezoelectric smaterials, Lithium Niobat¢LiNbO3) and Lithium Tantalate
(LiTaO3). To determine the BAW propagation velocities, the BAW elemental equatierdegluced. The BAW velocities are calculated
for each direction by solving the Christoffel's equation systematically dasethe theory of acoustic waves in anisotropic solids
exhibiting piezoelectricity. The modification of the BAW velocities by the pieztteleeffect are calculated and graphically compared
with the velocities in the corresponding non-piezoelectric materials. Fuontirer the electromechanical coupling factors are defined
and investigated. The results obtained in this study can be applied to signabping, sound systems and wireless communication in
addition to the improvement of surface acoustic wave (SAW) deviceslitdry defense equipment.
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1 Introduction elastic waves in anisotropic bodies involves solving
algebraic equations of degree three or higher, and
The class of engineering materials known as “smartobtaining explicit results is only possible for simplified
materials” or "intelligent materials” has become a major situations due to symmetry or special relations between
focus of attention. In particular, piezoelastic the material parameters in the model medium.
(piezoelectric) materials have great promise for use inNevertheless many fundamental properties of bulk waves
smart structural systems. When an external force acts on# anisotropic media became understood through the
piezoelastic material, the mechanical stresses produce axplicit analysis of various particular illuminating
electric potential within the material. Conversely, when a situations that are described by direct calculations (see,
electric field is applied to a piezoelastic material, steess €.9. [2,3,4] and [5]).
are induced. The possibility exists to not only determine  There is increasing interest in the theory of
the stresses in a piezoelastic material by measuring thelectroacoustic waves in piezoelectric materials poses
electric potential but also control the stresses by thenumerous challenging problem&.[Much of the interest
action of an appropriate applied electric field. [ in the subject is directed towards applications in the areas
Waves propagating in an unbounded, homogeneousf signal processing, transducers, radio-frequency
medium are called bulk acoustic waves (BAW). For resonators, band-pass filters and frequency coréy@| §,
higher symmetry crystals, if the propagation direction 9,10] and [L1]. From the viewpoint of wave propagation,
coincides with the principal axis direction, then the phasethe piezoelectric problem is closely related to the purely
velocities can be easily calculated. Nevertheless, for aracoustic problem. In fact, it can be shown that, in an
arbitrary propagation direction, which requires solving infinite homogenous medium, piezoelectric waves
the characteristic equation to find the phase velocitiepropagate in the form of plane waves. Because the
(i.e., the corresponding eigenvalues of Christoffel's velocity of acoustic waves is much smaller than that of
equation), the computations become complex andelectromagnetic waves, in a ratio of °10 the
cumbersome. So, the theoretical description of bulkelectromagnetic field is assumed to propagate
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instantaneously and the electric field can be derived from In this paper, we attempt to build a mathematical
a potential, which is called the quasi-static approxinatio model based on the partial differential equation system in
[8]. three spatial dimensions consisting of the equations of
The theory of acoustic axes in anisotropic materialsmotion and Poisson’s equation. The derivation of this
(crystals) has many different aspects. The main activity insystem from the fundamental equations describing
this field was initiated by KhatkevichlP], who derived acoustic wave propagation in arbitrary piezoelectric
the general equations determining the directions ofmaterials is described ir8[. By solving the system of
degeneracy for crystals of unrestricted anisotropy. Theequations, we obtained the bulk acoustic wave (BAW)
theory developed by Khatkevich was not invariant and thepropagation velocities (quasi-longitudinal, quasi-shea
form of its basic equations depended on the choice ofvertical and quasi-shear horizontal) for Lithium Niobate
coordinate system. So, different versions of the invariant(LiNbO3) and Lithium Tantalate (LiTaO3). The
criteria for degeneracy of the phase speeds of bulk wavemodification of the velocities of wave propagation caused
in crystals were later introduced i3, 14], and [15]. by the piezoelectric effect in those materials is calculate
Zhou et al. L6] discussed the acoustic anisotropy of and compared with the corresponding non-piezoelectric
the crystals, and the slowness curves of three bulk wavematerials. These results are presented graphically for
and surface waves for different planes consideringcomparison. Furthermore, the electromechanical coupling
piezoelectric effects were calculated. Alshits et 4l7][  factors are defined and investigated.
presented a short survey of some basic results in the
theory of bulk elastic waves in anisotropic media and a
series of general properties of phase speed branches wgsThe basic equations for the wave motion in
deduced. Ting 18] described some of the properties of . . .
anisotropic elastic materials such as orthotropic an<)p|e2()e|ectr|(:medla
hexagonal materials. Additionally, Tind9] proved that a
necessary and sufficient condition exists for the presenc
of longitudinal and transverse waves in anisotropic efasti
materials. Sharma2p,21] studied the propagation of
plane harmonic waves in anisotropic elastic and . = .
: . ; 0ij,j = Pui, (1)
piezo-poroelastic media and presented a new procedure to

study the reflection in anisotropic media. Langer a”dwherep is the mass density of the elastic mediumy, is
Selberherr 22] developed an analysis and computer the stress tensor anglis the displacement tensor.
program for acoustic wave generation in piezoelectric  |n a piezoelectric material, the mechanical equations of
materials, which takes into account the second-ordeimotion and Maxwells equations for the electrical behavior

effects of bulk wave anisotropic materials. Mah and are coupled through two constitutive equations given by:
Schmitt R3] demonstrated that many rocks may be

considered to exhibit orthorhombic symmetry; they

experimentally determined the nine independent elastiaij = Cjj Sq — &ijEx, (2)
coefficients required for their case of study. Recently,
Cristini et al. R4] presented a review of wave propagation ~ _ .
at the surface of anisotropic media (crystal symmetries).D' = 8Bt @S, )
The physics for media of cubic and hexagonal wherecij (i, .k, | = 1,2,3) is the stiffness tenso§ is
symmetries has been extensively studied based othe strain tensor (second ranlgy is the third rank
analytical and semi-analytical methods. Mauritsson et alpiezoelectric tensorF; is the electric field,D; is the

[25] derived a hierarchy of dynamic plate equations for acomponent of electric displacement argk is the

fully anisotropic elastic plate, and the explicit plate symmetric permittivity matrix.

equations were presented and compared analytically and The components of strain displacement are given by:
numerically to other approximate theories given in the

literature. OstrosablinZe] obtained the general form of

the displacement vectors of plane transverse waves i = - (u;j+uUj;). 4)
elastic isotropic and anisotropic media, and he determined 2

the eigenmoduli, eigenstates, and engineering constants: Because the velocity of acoustic waves are five times
bulk moduli, Youngs moduli, Poisson coefficients, shearsmaller in magnitude compared to the velocity of
moduli, and Lame’s constants of the closest isotropicelectromagnetic waves, the frequency of the electric field
materials. The calculations of quasi-longitudinal, waves can be considered to be small enough to categorize
quasi-shear vertical and quasi-shear horizontal waves ifhem as quasi-static. In such a case, the curl of the electric
anisotropic piezoelectric smart materials have been usefleld can be assumed to vanish, thereby reducing one of
in studying the phenomena of reflection and refractionmaxwell’s equations to

wave propagation in many papers, such a%;28,29,30]

and B1]. TAE=T 5)

he basic wave equation for displacements in an elastic,
omogeneous, anisotropic medium is expressed as
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thus enabling us to describe the electric field as the
negative gradient of the scalar potential given by the

following equation: I'ks = Cidpsni Np,
I 4)7' ( ) eS= EjkNjNk. (16)

Magnetic fields are rarely of interest in bulk or surface
acoustic wave problems and hence the Maxwells Eliminating the peak value of the potenti@lfrom the
equations concerning them are disregarded. Thesystem {4) and (L5), we have

piezoelectric materials are almost perfect insulators,

thereby reducing the remaining Maxwell’s equation to: [l + %) —pVPs|Us=0, k=123, (17)
Dii =0. (7) A non-trivial solution of system 17) exists if its

Substituting the relations for and given by equatiof)s ( determinant (which is so-called Christoffel's equatios) i
and @), respectively, into the piezoelectric constitutive equal to zero. Taking into account tensoks, this
equations 2) and @) and henceforth into the wave condition may be written in the form

equation and Maxwell’'s equation provides a system of

; ; . ’:11* PV2 1:12 1:13

coupled wave equations given by: - - g

P g N g y A= I'21 rzz - sz I_23 = 0, (18)
Gijki U jk + &ji ik = P, (8) la1 Fs2  [a3—pV2
€k U jk — EjkPjk = 0. (9) where

I:ks:rker%- (19)

3'Propagat'ion of pU”( W?-V%in anisotropic Equation (8) allows to determine the velocity of the
piezoelectric elastic media plane waves propagating along the directiop As

equation 18) is an equation of the third power with
The general solution of the coupled equations ofrespect to(pv?), in the general case for the given
piezoelectricity 8) and @) for an arbitrary piezoelectric direction in a piezoelectric crystal, we have three
medium may be expressed for the potentiak;,t) and  velocities pv§ where(j = 1,2,3), which are determined
the displacement vectok(xj,t) in the form: by the positive roots of equatiod§). Substituting each of

njX; the values v; into system {7), we obtain
Ui (X}, t) = Ucexpli——— — wt], (10) () iy yuld : ,
v Us", @) = %= Due to the homogeneity of equation
nix (17), the quantitiesUd”), @) are determined up to the
o (xj,t) = dJexp[i# — wt]. (11)  multiplication by an arbitrary constant. Thus, the problem

of determining the velocity of plane waves propagating
In (10) and (1), plane monochromatic waves are along an arbitrary direction; in a piezoelectric medium
propagaf[ed in the direction pf vectar;, which. is is reduced to finding the Eigenvaluepv]z and
fhegr\),\?:\fgc;ﬂ Eo:thlegv gve fronts the phase velocity of eigenvectorsué‘) of t~ensorI:ks. Note that due to the
Substitutin’g 10 7ar’1d (1) into (8) and @), we obtain symmetry of tensorlys its Eigenvalues will be real

a system of linear homogeneous equations with respect tguantities, and because the quadratic fornfigthUs is
the peak values ob andUy : positive, the Eigenvalues are also positive. For any of

the three plane waves propagating in directign the
vector of displacemerid () in the general case will not be
(Cd psi Np — PV*&s)Us + €xjNjNs® = 0, (12) " parallel or perpendicular to the direction of propagation.
However, the wave with vectds D forming the smallest
angle with the direction n; is wusually called
esjNjnsUy — gjknjng® = 0. (13)  quasi-longitudinal, and the two elastic waves with vectors
U@ U® are called quasi-transverse. In addition, the
vectorsU® U@ U® are perpendicular to each other.
Before we address propagation along the direction linked
(I'ks—pv25ks)Us+ Ww® =0, (24) to the symmetry elements, we first establish the
expressions for thfs tensor components. Expanding the
sum ovelk andsin the system16), one can find:

The system12) and (L3) may be written as follows:

_ ¢S —
WUy — 7@ =0, (15) Fii = CizuNg + CizzN3 + Ciza M3 + (Cizzl + Ciza N1z

where +(Ci1a + Cizn )Mz + (Ciz3 + Ciza )N2N3 (20)
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In detail, the six components 6 are:

l1 = C1aN% + CegNs + Cs5N3 + 2C16M N
+2C15N1N3 + 2C56N2N3,

I2 = C16M2 + Co63 + CasN + (C12 + Co) N1
+(C14+ Cs6)MN3 + (Cag + C25)N2Ng,

I3 = C15Ng + Cag5 + Cas3 -+ (C14+ Csg)MMz
+(C13+ Cs5)N1N3 + (C36 + Ca5)N2N3,

22 = CegN? + Coong + c44n% + 2CoeN1 Ny
+2C46N1N3 + 2C24N2N3,

I3 = Cs6Nd + C24M5 + C3a3 + (Cag + Co5)MMy
+(C36+ Ca5)N1N3 + (Co3+ C44)N2N3,

I33 = Cs5N3 + C44n3 + C33n3 + 2C45N1 Ny

+2C35N1N3 + 2C34M2N3, (21)

where
21 ="T12,; [30="I%3.

[31=T13,; (22)

Similarly, the components of the piezoelectric tengor
may be written as:

Y = e1uns + €N+ e33n3 + (€12 + €21 )N1Mp

+(€13 + €31 )NN3 + (€23 + €32 )23 (23)
In detail, Eqg. 23) may be written in the form:
Vi = €11ns + €26N3 + €35N3 + (€16 + €21)N1M2

+(e15+ €31)N1nz + (€25 + €36)N2N3,
Vo = €16N5 + €22N3 + €34M3 + (€12 + E26) MMy

+ (€144 €36)N1N3 + (€24 + €32)N2N3,
V5 = €15N2 + €24N3 + €33N + (€14 + €25)N1 Ny

+(e13+ €35)N1N3 + (€23 + €34)N2N3. (24)
Similarly, based on Eq. ofl)3, one can find:
€5 = £11N% + £20M3 + £33N5 + (€134 £31)N1N2

+(€21+ E12)N N3 + (£23+ E32)N2N3. (25)

for the components of tensdis in case of the system
(19) as:

~ ~ 1

/_11=’_11+§7 /_1221_12—&-%7

/:22:/'22+§, /:13:/_13+y%37

Pzt B, Fae s 28 28
s=let 5 la=lat5. (28)

4 Relationship between stressand strain
(Elastic constants)

The coefficientsc;j, which describe the most general
linear relationship between the two second rank tensors
Tij and §¢ are the components of a fourth rank tensors
called the elastic stiffness tensor. This proportionality
between stress and strain was first enunciated in the
stretched string.

A fourth rank tensor has 81 components. However,
becauseTj and Sq are symmetric tensors, the elastic
constants;jq remain unchanged under a permutatiom of
andj orkandl:
Cijki = Cjilks Cijki = Cijlk-

Taking the above symmetries into account, we are left
with 36 independent elastic constants, instead of 81. An
unordered pair of indice§, ) takes on only six distinct
values, which we number from 1 to 6 in the following
way:

(1)« 1, (22«2, (33«3,
(23) <> (32) <> 4, (13) > (31) +» 5,

(12) ¢+ (21) <> 6. (29)

The independent elastic moduli are thus labeled by only
two indicesa and 3, ranging from 1 to 6, and can be
arranged in 46 x 6) table:

The modification of the propagation velocity due to the ¢,z =cjjy  with (o) <+ (jk), (B) <> (KI).
effect of piezoelectricity can be expressed by changing the

stiffness coefficients: the Christoffel tensor can be emitt
in this case as:

i = Gijunjng, (26)
where

o Epiin kN

Gk = Cik Jr( pijNp) (€gki Ng) 27)

Eijli NjNK

The termsG;j, known as "stiffened” constants, and they
depend on the propagation direction.

So the(6 x 6) table of the coefficients, g is symmetric
with respect to the main diagonal.

C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 Cp5 C26
C31 C32 C33 C34 C35 C36
C41 C42 C43 Ca4 C45 Ca6 |
Cs1 Cs52 C53 Cs4 Cs5 Cs6
Ce1 Co2 C63 Co4 Co5 Co6

(CaB) = (30)

To study the propagation of waves along the The above property reduces the number of independent
directions connected with the elements of symmetry of acomponents to 21 constants, which represents crystals of
piezoelectric crystal, we must represent the expressionghe triclinic system.
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5 Tensor formulation of piezoelectricit AT
P y ‘---/‘\ e
10— . 7 -
If the strain tensor is symmetric, .65 = &, then the Vv, — \ |/
tensorgjx is symmetric with respect to its last two indices: Vf 10—t —— \_'/_ | N—
AT 1 -
3 £.5x10° . :
QJk - ak] ’ 61st€) 30 60 éﬁ 120 150 130
The number of independent piezoelectric constants is thus a0’ —
reduced from 27 (ordinary third rank tensor) to 18; the pair Fig. 1-b
(j,k) has only 6 distinct values, denoted by the index doma—— T
according to the convention of equatidl) ( Vo, —— ‘ //\
4:5)(;“-’ _— N TE—T S - O N S—
. - F! seses
=gik,; (=123),, a=(,j)=1,23---6. a —t? \
8a = 8jk,; ) (i,]) it Py _\\
The piezoelectric moduli are arranged in a8 table - /
(three columns, six rows): R R » T w w

€11 €12 €13 €14 €15 €16
(Bia) = | €21 €22 €23 €24 €25 €26 | - (31)
€31 €32 €33 €34 €35 €36

6 Electromechanical Coupling Factor

There are several ways to define the quantity of the
piezoelectric coupling effect. In this section, the N
electromechanical coupling constants used in thisFio- 1: (1-a), (1-b) and (1-c) represent the velocities of the BAW,

research for bulk acoustic waves and for guided waves ard€n0ted byVai, Va2, Vag), as function o for LiNbO; compared
introduced. The phase velocity of a pure elasticw'th their counterparts when the piezoelectric constants are zero,

! /! !
unbounded medium is: denoted by(Vz;,Vzo, Vas)-

C
Vo =14/—, 32
a 5 (32)
and the stiffened phase velocity of a piezoelectric7_Appllcatlonstot”gonaj symmetry

unbounded medium is piezoelectric materials (Crystals)

Vg = § = 67—’_ (92/55) (33)
’ P P ’ A Trigonal symmetry crystal hashree-fold symmetry

B around thexgs—axis. This class includes Lithium Niobate
whereC is the piezoelectrically stiffened elastic constant (LiNbO3) and Lithium Tantalite(LiTaO3). These types
and is, in general, calculated fror27). Rewriting 33) of crystals are considered as the most widely used

yields piezoelectric materials, especially for high frequency
devices. By using the physical constantglafNbO3) and
Vg =VaV1+K2, (34) (LiTaO3) from Table 1 in P], one may calculate the
velocities of BAW propagationgf, qgSv andqSH), which
where are denoted by (Vai,Vaz,Va3), Vo1, Vo2, Vbs) and
, (Ve1,Ve2,Ve3), respectively. Additionally, in the special
Kzzi:VA +VZ (35) case of neglecting the piezoelectric effect of these
Ces VéZ materials, the velocities are described as

(Vi1 Vio Vi), (Vi Mo Vis) and (VEy, VEp V). These
is the coefficient of piezoelectric coupling, which shows velocities are shown graphically in Figures (1) and (2).
the change in acoustic wave propagation due to the effecthe electromechanical coupling factors are presented in
of piezoelectricity in an unbounded media, and & < 1. Figures (3) and (4).
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6.4<10° T T constants of the anisotropic piezoelectric materials:

__//“\ Fig. 2.3 (LiNbO3), (LiTaOg) for which the velocities of bulk
Lol e — me— wave propagation (BAW) are calculated. From Figures
\ / (1)-(4), one may conclude the following remarks. In

Figures (1-a), (1-b) and (1-c), we show the calculated
BAW velocities iny — z plane of piezoelectri¢LiNbOs3)
crystal as functior® (solid curves), which are denoted by
(Va1, Va2, Vaz), compared with their counterparts when the
piezoelectric and dielectric constants are zero, which are
denoted by(V};,V/,,V/)s) (dot curves). From Fig. (1-a), it

is clear that the greatest influence of the piezoelectric
effects on theqP—wave occurs atf = 45°, where

Va1 = 3.34 x 10° Knv/sec, andV; = 6.241x 10° Knvsec.

Furthermore, there is no influence of the piezoelectric
effect até = 105, whereVy = V), ~ 6.7 x 10° Kn/sec.
From Fig. (1-b), for thegSv wave, the greatest influence
of the piezoelectric effects occurs 8t= 100°, where
Vaz = 4.56 x 10° Knvsec, andV, = 3.528x 10° Knv'sec.

In addition, there is no influence of the piezoelectric
effect atf = 55°, whereVa, = V., ~ 4.001x 10> Knvsec,
as well as over the range 6f= 145 : 180°.

In Figures (2-a), (2-b) and (2-c), the BAW velocities
are calculated in thg— z plane of piezoelectri¢LiTaOs3)

crystal as functior® (solid curves), which are denoted by
3425107 N B S ! (Vb1, Vb2, Vbz),and compared with their counterparts when
{ M ‘ the piezoelectric and dielectric constants are zero, which
e b 30 ) 93 120 150 180 are denoted le;17Vt;27Vl;3) (dot curves).

From Fig. (2-a), itis obvious that the greatest influence
Fig. 2: (2-a), (2-b) and (2-c) represent the velocities of the BAW, for the plezoele(ztrlc effects in the velocity of tq wave
denoted by, Vi, Vi), as function of for LiTaOz compared ~ OCCUrS atd = 51°, whereVi = 6.32x _103 Knvsec, and
with their counterparts when the piezoelectric constants are zeroVpy = 6.016x 193 Km/sec, while there is no influence of
denoted by, Viip, Viig)- the piezoelectric effect & = 107, whereVy =V, ~
5.527x 10° Knvsec.

From Fig. (2-b), for theiSV —wave, larger differences
betweenVy; andVy, occur for propagation directiond

8 Dlg:uﬁon and the numerlcaj reg'llts ranging from 48 : 150), where (Vbz)max = 3.964 x 103
Kmysec, and (V{p)max = 3.609 x 10° Km/sec for
0 ~104.

Because of the anisotropy of the trigonal symmetry of ) ) )
crystals, the arbitrary choice of the wave propagation, For theqSH wave in both of the materials, there is no
direction, which is required for solving the charactedsti influence of the piezoelectric and dielectric constants, so
equation, is used in Christoffel's equation shown18)(  the curves are coincide, as shown in Figures (1-c) and (2-

The corresponding eigenvalues and eigenvectors are tHe-

phase velocities of three acoustic modes that are In Figure (3), the maximum electromechanical
propagating in each direction, one with longitudinal (or coupling factor for the quasi-longitudinal mode (0.494) is
quasi-longitudinal) polarization as thlg® wave and two  shown to be along (60), and for the quasi-shear vertical
with transverse (or quasi-shear vertical and quasi-sheamode (0.633) the maximum is along the approximately
horizontal) polarization as th@Sv and qSH waves. 100 direction. The most attractive point is that only one
Because the corresponding Christoffel’'s matrix is mode is excited, with relatively high coupling values
symmetric, these three eigenvalues are positive reatompared with the maximum, é65°) and(148) for the
numbers and the acoustic polarizations are mutuallyguasi-longitudinal mode and 6t05) for the quasi-shear
orthogonal. The use of a computer-based techniquenode. Figure (4) shows that the electromechanical
makes it significantly easier to determine the eigenvaluesoupling factor for the material(LiTaO3) has the
and some of the other acoustic properties. Usually, themaximum values for the quasi-longitudinal mode along
first root is the largest one, corresponding to the(60°) and the maximum for the quasi-shear vertical mode
longitudinal mode, and the other two roots correspond tais approximately along105’). Additionally, one mode is
the fast and slow shear modes. Table (1) lists the physicaéxcited at(45°) and (160°) for the quasi-longitudinal
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Table 1: Appendix (1)
Lists the physical constants of
LiNbO3 andLiTaOg3 [9]

Kq, Material Lithium | Lithium

K constants Niobate | tantalate

4 LiNbO3 | LiTaO3

y — Trig-3m | Trig-3m

‘ \/ E Stiffiness | c11 20.3 233

| [l [ o

) 30 60 Y 120 150 180 (1010N/rr12) C12 53 4.7

¢ Ci3 75 8.0

. . . C33 245 275

Fig. 3: Represents the electromechanical coupling factors of the Cas 6.0 9.4

BAW, denoted by(Ka1,Ka2), for the Quasi-longitudinal wave Cla 0.9 11

and quasi-vertical waves, respectively, faNbO3 as function Mass density | p a7 745
of 6. (10%kg/m?)

Piezoelectric | ey 2.5 1.6

constant €31 0.2 0.0

05 (C/mz) €33 1.3 1.9

Figd €15 3.7 2.6

] ] Permittivity | €11 38.9 36.3

- 3 . (107 HCc/Vm) | e33 25.7 38.2

by

Pt . N I O

e \/ " wave speeds. This effect in anisotropic materials also
. Poppnes implies that the direction of energy flow (i.e., group
Q 30 60 90 120 150 180 . . . . .
e velocity) does not, in general, coincide with the normal to
the wave front. A computer program was developed to
Fig. 4: Represents the electromechanical coupling factors of thesimplify the process of determining the eigenvalues and
BAW, denoted by(Kai,Kap), for the Quasi-longitudinal wave  some of the other acoustic properties of BAW. Such
and quasi-vertical waves, respectively, 6T aO3 as function of waves are decomposed into finite plane waves
. propagating along an arbitrary direction in solid. The
properties of these waves are determined by the
dependence between the propagation direction and the
constitutive properties of the medium. Three types of
such waves can be distinguished in connection to the
three displacement vectors, which determine the acoustic
Finally, the results show that the electromechanicalPolarization. The three polarization vectors are mutually
coupling coefficient of theP wave is less than that of the ©rthogonal, but in most cases, they are neither
gSv wave in both of the two trigonal materialsiNbO3) perpendicular nor parallel to the propagation direction.
and(LiTaOs3).

mode and af105°) for the quasi-shear vertical mode.
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