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Abstract: In this paper, we study the dynamics of the atomic inversion, scaled atoetid ¥htropy and marginal atomic Q-function
for a single two-level atom interacting with SU(1,1) quantum system. Wearotita wave function and system density matrix using
specific initial conditions. We examine the effects of different parameterthe scaled atomic Wehrl entropy, atomic Q-function and
their marginal distribution. We observe an interesting monotonic relationdeetihe different physical quantities for different values
of the initial atomic position and detuning parameter
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1 Introduction wherew is the frequency of the systeiimy is the energy
difference between the atomic levels ahds a coupling

The most important problems in quantum optics are theconstant,

studies of different systems interaction such as field-atom
atom-atom and the field-field interaction. These problems
have considered the subject of great deal of research Recently, much attention has been focused on
works during the last decades. In this way, there areinformation entropies as a measure or quantifier the
numerous papers on these problems. For example thentanglement in quantum informatioB89. In this way
atom-field interaction has been consideredJuiifLl1], but  the von Neumann entropy4()], linear entropy, and
field-field interaction 12-[24], while atom-atom Shannon information entropy]] have been frequently
interaction P5]-[37]. These interactions has been used in entanglement-discussions concerning a variety of
classified from the point of view of Lie algebra depending quantum systems. Some problem appear with some of
on the nature of the interaction. For example, thethese measures such as the SE involves only the diagonal
Hamiltonian which represents the interaction betweenelements of the density matrix so in can gives information
two fields is described in the form of the parametric similar to that obtained from the NE. On the other hand,
frequency converter is of SU(2) Lie algebra type. While there is an additional entropic quantity, namely, the
the Hamiltonian which represents the non-degeneratesemiclassical, atomic phase-space atomic Wehrl entropy
parametric amplifier is of SU(1,1) Lie algebra type. On (AWE) [42]. This measure has been successfully applied
the other hand, the degenerate parametric amplifier, whiclas entanglement quantifier in the JCM. For example,
contains in its interaction term the second harmonicAWE of the modes are initially prepared in a finite
generation, is of SU(1,1) Lie algebra type . In this contextdimensional trio-coherent state (FTCS) has discussed
a system which describes the interaction between SU(2)43]. Also, the dynamical properties of the AWE for a
and SU(1,1) Lie algebra has been considergd, [in single two-level trapped ion interacting with a laser field
which a Hamiltonian of the following from was treated ~ has been investigated4]. It is shown that the AWE gives

wo quantitative (qualitative) information on the entangleme
H= ﬁ{wkz+ — Ozt A (k0o + k+0—)} : of the bipartite system.
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In this article, we consider the extension of the
problem by considering which is called the scaled atomic

dk

Wehrl entropy associated with the reduced atomic densﬂyi [kz, H]
operator as an entanglement quantifier between SU(1, 1)
and SU(2) quantum system. We focus on the effect of the = —A (k-Si2—k:S1), (7)

excitation number, initial atomic state and detuning
parameter on the evolution of the atomic inversion, scaled

atomic Wehrl entropy and marginal atomic Q-function. d
2 dtz =-2A (k—slz_k+821)
The paper is organized as follows: In Sec. 2, the.dS; .dS$ dk;
system Hamiltonian of the interaction between SU(L,1) ~gi ~ ' gt "2 gt ~ °
and SU(2) is introduced, followed by a discussion of the 1 ]
method to calculate the scaled atomic Wehrl entropy and 5 (S11—$22) +k; = constant of motion 8

marginal atomic Q-function in Sec. 3. Numerical results
of the calculated scaled atomic Wehrl entropy arefrom the above equation, we can see that
presented and compared with the marginal atomicN = 3(Si1— S2) +k; is constant of motion, therefore, the
Q-function in Sec. 4, We conclude in Sec. 5, with a Hamiltonian takes the following form
summary and an outlook.

H=wN+C, 9)

2 The System Hamiltonian where C = %(511 — S») + A(k-oy +kyoo) with

A = Q1 — Q. We note that[N,C] = 0, therefore
The Hamiltonian which describe the interaction between[N,H] = [H,C] = 0, i.e. N and C are the constants of
a single two-level atom and SU(1,1) quantum system takénotion, where the time evolution operator is defined as
the following form

U (t) = exp(—iHt), (20)
H = wk,+ Q1S114+ Q252+ A (K_Sio+ , () thus
2+ Q1811+ QS+ A (K-Si2+k S1), (1) U (t) — exp(—icoNt) exp(_iCt). (11)
wherew is the frequency of the syster; is the energy |\ here
and §; are elements of th&U(1,1) group obeying the
following commutation relation exp(_ioNt) — exp[—iw (k+ 3)t] 0
P B 0 exp[—iw(k,— 3)t] ]’
(S, Sa] = Si o — &, 2 (12)
while k. andk; satisfy the following commutation relation A 2
5 andk; satisfy 9 C:{ 2 ’”‘A-},czz |:/Jl 02}7 (13)
Ak = 0 p3

ke ke] = ki, [k, k] =2k and [Sj, ke ] =0. (3)  where

2

The Heisenberg equation of motion for any oper&ds IJ,-Z _ Af v, =12 w — A%k, and vo =A%k k_

iven b
g y (14)
.dO we note that
5 = [OH], (A=1), 4) k_p2 = pu2k_ (15)
thus, the equations of motion &; andk; are given by also
Ky puf = pgk, (16)
dS_Ll B
=gt = [SuH] s [ 512 pirk Mt 0
Cc= 2 —A,,2 | C (17)
= A (K-S2—k:S1), (5) psAky =5 0 u3
. . 2 . 3
dS, exp(—iCt) = | + I?t + ( I?t) + ( I?t) + .o
i——= =[Sy, H] 1! 2! 3!
dt _ c2t2 c33
= A (k-Si2—k:Su), 6) S b T e TR (18)
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then, one can write the time evolution operator as

Fii F
v = [FrE). (19)
where
1 iA sinpuqt

Fi1= exp{ |w(kz+ 2>t} <cosult— > Iflll ) ,

1 smult
Fio = —idexp|—iw kz+§
For = —iA exp[ wo(kz— ;) ] smu2t

B 1 Esmuzt
ng_exp{ m(kz 2>t} (cosu2t+ 2 1 )( 0)

The time evolution for the expectation value of any
operator can be calculated through the following relation

(O) = (YoM [¥(1)
= (Y(0)|UT(1)O(Q)U (1) [+(0))-

(21)

Let us assume the initial state of the system can be

written as
1#¥(0)) = [¥(0))su2) ¥ (0))g1.)
= (cosg \e)+sing |9)) |m, k), (22)
where
kz|m k) = (m+Kk) mk),
ki Imk) = y/(m+1) (m+2K) [m+1,k),
ko mk) = v/m(m+2k—1)|m—1,k). (23)
|P(t) =U(1)|¥(0))
F11 Fi2] [cos?
= (R e m
(Fllcosz + F12sin 6) |m, k) |€)
(F21cos6 +Fosin— )|m K)|g) . (24)

Substituting from Eqgs.20) in Eq.@24), then the final
form of the wave function can be written as

> COS

.0

iA sinpat 0

W(t)) = eri@ler2)t { <cosu1t S

i sinpt

.0
ksmz} |m, k, e)

io(ke—3)t iA sinpit 6
+e 2 { (cosu t+ 2 sin 5
Sln“2tk+cos } Im,k, g). (25)

Then, the wave function can be written in the form

(W) =A(t)Imk) |e) +B(t) Imk)[g),  (26)
and consequently the density matrix
p(t) = |¥(t)) (¥(t)| becomes
p(t) = At)[m.k) ) (] (k, | A"(t) + B(t) [m k) |g)
® (gl (k,m|B*(t) +B(t) Im/k) |g) (e| (k, m[ A"(t)
+A(t) [m, k) [e) (gl (k,m|B"(t), (27)
where
_ ikt 14 sinpiat 0
At) = e +2)t{(cosult o )cos2
i S'”“lt K s Z } , (28)
 ioo(ke— iAsinuty . 8
B(t) = el é)t { <cosu2t+ 2 )sm2
_jp ikt cosz}, (29)
one can easily cheek that
A®)]?+B)]* =1 (30)

Thus, the expectation value for any operator can be
calculated through the following equation

(O()) = (#(0)|01)|#(0)) = (YIO(O)|¥ (1)),
where|¥(0)) and|W¥(t)) are defined by Eqs2@) and @6).

Therefore, the expectation values of the atomic
operatorsry andoy can be obtained as follows

(31)

(o(1) = 3 {

x coswt —4 (Sm(ulllios(uz[ +

(cos(ult)cos(uzt) 22 sm(uﬂ)sm(uﬂ))

HiH2
cos(ult)sm(uZt) sinwt ¢ sing,

2 5n<ult>sm<uzt>)
) coswt} sin@,

Now, we close this section by presenting the concept of
the atomic population inversiorp,(t) which is the
simplest important quantity to be calculated. It is related
to the difference between the probabilities of finding the
atom in the upper and lower state.

(0,(0) = 3 { (costpt) costet) -

[T
w sinct 4+ % <S'n(“1‘21‘3°5(#2t COS([Jlt sin(upt)
1 M2

(32)

cosfO
2

sifut . , 60
Z S|n2§

b

pA(t) = +A {m(m+2k1)

K
cod 0

2

(1) (mes 2 ST AL

33
2 (33)
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where

0.5

a)

0.5

b)

N2
pr =\ 5 FAZ(m+ 1)(me-2),

A2
Lo = \/4+/\2m(m+2k—1). (34)
Now, we are in a position to use the results obtained % oyl )
in this section to discuss the dynamical behavior of the o )
atomic inversion, marginal atomic Q-function and scaled
AWE in the following sections.

o0
(=}
0,0

2.1 Scaled atomic Wehrl entropy, marginal
distribution and entanglement quantifiers o 2 N

t

In this section: we investigate the marginal atomic Fig. 1: Time evolution of the atomic inversiop(t), for A =
Q-function and atomic Wehrl entropy AWE. We start our 0,A = 0.5, k = %and with different values of the excitation
investigation by defining the atomic Q-function 4 [ numbermm and initial atomic positior® and relative phase = g
where: Fig. (am, 8) = (10,0), Fig. (b)(m,8) = <10, g) Fig.

() (m.6) = (20,0) and Fig. (d(m.6) = (20 g)

1 o
QA(O, (‘b?t) = E_[ <@, @ |p11(t)| o, ¢’> s

wherep(t) is the density matrix which is given in equation
(27) and|©, @) is the atomic coherent state expressed as

(39)

|0, ®) = cos(0/2) |e) +sin(0/2)€?|g), (36) 2

where 0< © < 1,0 < @ < 21t the definition 85) means

that two different spin coherent states overlap unless the) ¢,

directed into two antipodal points on the sphetk [ <
The scaled atomic Wehrl entropy can be written in

terms of the atomic Q- function ag]| -05¢ n - -

SSult) = 1 gy (N(2Ve) | )

+ 5T ITQA(O, ®,1) INQa(O, CD,t)sinG)dG)dCD}
(37)
One can easily check that theaQs normalized. By o ! : 3 o s 10 s 200 2

t

0.0

integrating the atomic Q-function Qover the atomic  Fig. 2: Time evolution of the atomic inversiop(t), for A =
variable @, we obtain the marginal atomic Q-function as 20,4 = 0.5, k= 7 and with different values of the excitation

follows numbem and initial atomic positior and relative phase = -

where: Fig. (a\m, 8) = (10,0), Fig. (b)(m,6) = <10, g) Fig.
() (M, 8) = (20,0) and Fig. (d)(m, 8) = (20, g)

Qo = /O " Oasinedo. (38)

3 Numerical results

The population inversion of the atom is one of the 6 =0 to the superposition state i@~ 11/2 as well as on
important atomic dynamic variables of the system. This inthe excitation numbem, which is in analogy with the
fact would give us information about the behavior of the usual Jaynes—Cummings model, corresponding to the
atom state during interaction time. In figure (1), we havenumber of photons. Firstly, we consider that the system is
plotted the dynamical behavior for different values of the initially in the excited staté = 0 and the absence of the
involved parameters. We concentrate on the variation ofdletuning parameted = 0. It is observed that the atomic
the initial atomic position8 from the excited state i.e. population inversion has a regular and periodic osciltatio
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Fig. 3: Time evolution of the scaled atomic Wehrl entropy
SSw(t), for A =0,A =05k= ;11 and for different values of
the excitation numben and initial atomic positior® and relative

phasep = g where: Fig. (a\m,8) = (10,0), Fig. (b) (m,8) =

(10 lzT) Fig. (¢)(m,6) = (20,0) and Fig. (d)m.6) = (20 g)
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Fig. 4: Time evolution of the scaled atomic Wehrl entropy
SSw(t), for A =20,A =0.5 k= % and for different values of
the excitation numbenand initial atomic positior® and relative

phasep = g where: Fig. (am, 8) = (10,0), Fig. (b) (m,0) =
(107 g) Fig. (c)(m. 8) = (20,0) and Fig. (dYm, 8) = (20, g)

c) . . d) .

B
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Fig. 5: The surface plot of the marginal atomic Q-functi@g (t)
versus the timéand the phase space parama®dor A =0,A =
0.5 k= %and with different values of the excitation number

and initial atomic positiorf and relative phase = g where:
Fig. (a) (m,8) = (10,0), Fig. (b) (m,8) = (10, g) Fig. (c)
(m, 8) = (20,0) and Fig. (d)(m, 8) = (20, g)

quantum field is plotted in Fig. 3,4. As seen from Fig. 3
SSw(t) has a periodic behavior and regular oscillation.
The system returns to its separable st&8y((t) = 0) at

ts = 0.45m wherem = 0,1,2,... On the other hand the
system is maximally entangled sta@3w(t) = In(2)) at

the middle of the time interval & t < ts. Fig. 3 (d),
depicts that the entanglement is gradually decreases by
increases the number of photon excitation when the atom
is initially in the superposition state.

Now, we are going to answer the question “What is
the impact of the detuning parameter on the atom-SU(1,1)
field entanglement for different values of the number of
photon excitation and initial atomic position?” As
presented in Fig. 4, where tf&Sw(t) was plotted as a
function of the time when the atom is initially in the
excited and superposition state. It is interesting to note t
high amount of the quantum entanglement can be
obtained in the presence of the detuning parameter during
the time evolution.

In Figure (5) depicts the evolution of £Jt) as a
function of the time and atomic phase space paramgter
for different modes of excitations. It is interesting to

where the amplitude of oscillation is decrease bymention here that the behavior @o(t) for different
increasing the number of photon excitation. The structureyalues of the non_ﬂuctuating components of Rabi
of the atomic inversion oscillations is changed when thefrequency. It is observed thae(t) oscillates between
atom is initially in the superposition state see Fig. 1(b,d) minimum and maximum peaks. The distribution of the
The number of oscillation is increased when the effect Ofmargina| atomic Q-function peaks in depending the initial

the atomic inversion is taken into account (see Fig. 2).

state setting of the two-level atom. On the other hand the

The scaled atomic phase space entropy as a quantifisrumber of peaks in increased by increasing the atomic
of the entanglement between two-level atom and SU(1,1)Q-function peaks.
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It is well known that the study of the physical properties ~ (1974).
of the atom—field interaction is a central and important[19] M. S. Abdalla, Phys. Rev. /35, 4160 (1987).
problem in the field of quantum information. In this [20]M.S. Abdalla, S. S. Hassan, A.-S. F. Obada, Phys. Rev. A,
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obtained analytically. Using the scaled atomic phas 24] M. S. Abdalla. Phys. A179, 131 (1991).
space entropy the system entanglement have beepg i s abdalla, M. M. A. Ahmed, S. Al-Homidan, J. Phys.
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number of photon excitation. Firstly, when the deteuning[27]p. Loss, D. P. Divincenzo, Phys. Rev. A7, 120 (1998).
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