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Abstract: In this work impulsive diffusion operator with discontinuous coefficiertaasidered. Integral representation is derived and
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1 Introduction The diffusion equation or a quadratic pencil of Sturm-
Liouville equation is written as

Inverse problems of spectral analysis consist in : )
recovering operators from their spectral characteristics —Y' (X) +[2Ap(X)+a(X)]y(x) =A<y (x), x€ [0, 71
Such problems often appear in applied mathematics,
physics, and branches of natural sciences. Inverse 1
problems also play important role in solving nonlinear Wherep(x) € W"2(0, 71 , q(x) € W)"[0,71] (m> 0).
evolution equations in mathematical physics. Physical Direct and inverse problems for diffusion operators
applications of inverse problems can be found in thewere studied by several authors/#b— 37].
several workgl —7]. In this study, we consider a boundary value problem
First and most important results for inverse problemL (p,d,d,a,,y) of the form
of a regular Sturm-Liouville operator were given by
Ambarzumyan in 19298] and Borg in 19459]. In later ~ £&Y(X) == =Y’ (X) +[2Ap(x) +q(x)]y(X) =A%p () y(x), X € |
years, inverse problems for regular Sturm-Liouville (1)
operator are solved in refel0—15]. ) N
Inverse spectral problems for Sturm-Liouville With the boundary conditions
operators with discontinuous coefficient appear in some
physical problems. This kind of problems were U(y):=y(0,A) =0, V(y):=y(mA)=0 (2)
investigated in several work$6— 20] .
Generally, spectral problems for differential operators
with the discontinuity conditions like

and the discontinuity conditions

y(d+0)=By(d-0), 3)
y(d+0) =ay(d—0) Yy (d+0)=B"1Y (d—0)+yy(d—0)
y (d+0) =by (d—0)+cy(d—0)

where real valued functions
were well-studied in refg§21— 24], wherea,b andc are
real numbers. p(X) €W, (0,), q(x) € L2(0,7),
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m
A is a spectral parametdr= (0,d) U (d, ), y and3 are sz);a/[cos)\ [Xx—pt ()] —cosA [x—pu~ (1)]] x
real constants i.e| — 1>+ y? # 0 and q
= B O<a<l
P {az,d<x<n wherepu™® (x) = +axFad+d.

One can prove the following relations:
For the probleni, it is obtained a represantation for

are studicd. Moroouer, It & proven tht the cosfienis of  ¥(A) = { e

the probleh can be uniguely determined by Weyl O(exp(|t|a(m—x))),  x>d.

e o i S a2 ey - (ST xca

finite interval. O(|Alexp(|t|a (m—x))), x>d.
uniformly in x for [A| — o, wheret = ImA.

2 Preliminaries Theorem 2.1.1f q(x) € L2(0,7), p(x) € W3 (0,7),

then there are the functiors(x,t) andB(x,t) whose first
In this section, we derive integral representation for theCrder partial derivatives are summable (607 for each

solution of equatior(1) satisfying the condition2) and X € [0, 7] such that the representation
(3). Further some important properties of the spectrum of

the problenL will be learned. W0
Let the functionsS(x,A), ¢ (x,A), Y (x,A) be the ¢ (%A) = o(x,A)+ / A(xt)cosAtdt
solutions of the equatiofil) satisfy the initial conditions 0 %
S(0,A)=0, S(0,A)=1 M0 _
, + / B(x,t)sinAtdt
$(0.A)=1,¢'(0.A)=0 (@) A
Y(mA)=0, ¢ (mA)=1 1 1
: , . 1 1
and the discontinuity condition). ‘s provided,  where  fT = 5 (ﬁ * aB)’
It is clear that the functiony (x,A) satisfies the X
following integral equations uE(x) = £/p (X)x+d (1:F VP (x)), a(x)= /p(t) dt,
0
for x > d;
_sinda (x—m) do(x,A) :B+cos[)\u+ (X) — ”(XL}
P(xA)= g P
17 +Bcos[)\u(x)+ () }
+/\—/sin)\a(tfx)[2/\p(t)+q(t)]l,u(t,/\)dt, Pl
a
i a(x) =xp(0)
for x < d; x
' 2p (x) (£)) sin_9E)
+ - ' / [A(E’“ (E)sin 76 @)
Y A) = -sind (x—p* (1) + 5 sinA (x— - (1) 0
-B + a(é) ]d
4 [60SA (x— " (1) —cOsA (x— ™ (1) T EDeos g %
1 n and in the following relations are satisfied :
— 5 [ 1B sinA (e (U] + B sinA [x— -~ (1)) x 5 = p(0)
d
Zp (X) sooa(x)
X [2Ap(t)+q(t)] @ (t,A)dt + B {A(x,t)smp(X) ©)
—17sin)\ (X—t)[2Ap(t) +q(t)] @ (t.A)dt Bt cosa® ||
h / ) +B(x, )cosm} o
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1
5 Ey(X,/\):j{*y/(X,A)+q(X)y(X,)\)}
qx — 2% ’
P 2%y ) -2 2y,
120 D At ()cos 2 (10) P
B+ dx ’ () we get
+B0xu* ()52 . .
. [pe0ty(x dn)y(x A dx= [ 00y (xAn) by (x. M) dx
- 0 0
P p(x) +q(x)] .
a(x A2y (%, An) — 22 2 ,/\} Ao d
~ 20 [At)cos 50 o | P |ARyx M)~ 24 By x.An) |y )
a) U= (x)+0 ( )
_ i X
B(x,t)sin A XJ o —/p [,\ka(x ) — 2)\k;’(x)y(x,/\k)} dx.
B(Xa 0) = A (th)|t=0 =0 (12) Thus

Moreover if we assume thaft(x) € Wy (0,71), p(X) €
W2 (0, ), the kernel#A (x,t) andB (x,t) satisfy the system

{ AXX(X’t) - C](X)A(X,t) - 2p(X) By (th) =p (X) At (th)
Byx (X, 1) — q(X) B(X,t) +2p(X) Ac (X, ) = p (X) Bt (X,1).
(13)

If the second order derivatives of functioA$x,t) and
B(x,t) are summable of®, 17 for eachx € [0, 71} and these
functions satisfy equalitie€l3) and relationg8) — (12),
then¢ (x,A) is a solution of equatioifl) satifying initial
conditions(2) and discontinuity condition§3) .

The functiong (x,A) is entire inA and the following
asymptotic relations are valid fok | — oo.

T

(A2 =22) [Py (xAn)y(x A dx
0

“2(An - A [ PO)Y (% An)y (X A dx=O.

o~——1n3

By virtue of A, # Ay,

s

(ot [ P 0Y(6 Ay (x. M) dx

If x<d,
2 / p(x y(xA) dx=0
9 (x.A) = O(exp(|7]x)), (14)
/ _
If x> d, Let us define the function
— _ i T
¢(x7)\):o(exp(|r|u+(x)))7 (15) AN) =W, 9] =g (x,A) @' (XA) ¢ (X’A)¢(X7(A1)6)
9 (xA) =0 (]A|exp(lt| 1" ().
_ Lemma 2.2. Let Ay and A (An#Ax) be the SinceA () is constant o € [0,d) U (d, 1], we get
eigenvalues with the eigenfunctiopsx, An) andy (x, Ax) ,
respectively. These functions are orthogonal in the sense AA)=—¢/' (0,A)=—¢ (mA). (17)
of
y A(A) is called the characteristic function of the
(An+Ak) /P (X)y (%, An) y (X, Ak) dx problemL. The functionA (A) is entire inA and it has at
0 most a countable set of zerpa, }.
n Lemma 2.3. The zeros{_)\n} of the characteristic
—Z/p(x)y(x,)\n)y(x,)\k)dx:0 function coincide with the glgenvalugs of the boundary
value problemL and for eigenfunctionsp (x,A,) and
0 Y (x,An) there exists a sequenciB,}, such that the
Proof. relations
Definely(x,A) by Y (%,An) = B (X, An) (18)
© 2014 NSP
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Since¢ = ¢ (x,A) andy = Y (x,A) are the solutions
holds. of the equatior{1), the equalities
Proof.

Let Ap be a zero of the functiod (A). ThenA (Ag) =
0. So, we gety (x,Ag) = Bod (X, Ap) for some constarfly.
HenceAg is an eigenvalue ang (x,Ap) and ¢ (x,Ag) are
eigenfunctions related ty.

Let Ap be an eigenvalue of the probldmand show that
A (Ap) = 0. Suppose thatt (Ag) # 0. Then the functions
¢ (X,A0) andy (x,Ag) are linearly independent. Thus

Y(X,A0) = C14 (X, Ao) +C26 (X, Ao)

is a general solution of the probleimHence

Lp (X7)‘0) - ay(XaAO) - 61¢ (Xa)\o) )
whereC; # 0.
The equality

< LI"(X’)\O)’¢ (XaAO) >=0

contradicts withA (Ag) # 0.
Since function ¢ (x,An) and ¢ (x,An) are linearly
dependent, there exists sequefigsuch that

Y (X, An) = Bnd (X, An) -
Let

80(3) = cos| A (m) - ©7

a(m)

+ﬁcos[)\ u(m+ a

and{AQ} are zeros of\g(A).

From([36], the roots of the equatiafyy (A?) = 0 have
the form

nrt
A0 —
ot (m

Moreover, denote

a(m)

(
(m)

+

h h )
ol +n,sgp|n\<+°° (20)

s

= /p (X)Y2 (% An)

x5 [PV (x An) . (22)
0 0

The numberq ap} are called normalizing numbers of
problemL.
Lemma 2.4.Eigenvalues of the problemare simple,

i.e., A (An) # 0 and the eigenvalues of the boundary value
problemL are real.(A (A) = dAdg\)\)>
Proof.

¢"+[2Ap(X)+q(x)] ¢ =A%p(X) ¢,
—¢" +12Ap(X)+a(X)] 9 =A%p(X) b +{2Ap(X) —2p(x)} ¢
Y+ 2ApX)+aX)] P =A% ()Y
—"+2Ap(X) +aX)] P =A% (X) P+ {2Ap(X) —2p(X)} @
hold.

If the first equation is multiplied byy, the last
equation is multiplied by and substracting them side by
side, and if the second equation is multiplied ¢y the
third equation is multiplied byp and substracting them
side by side the equalities

—{22p(x)—2p(x)} ¢y

3 Low o) =
%{Wu 'w}={2Ap(x)~2p(x)} by

are obtained. Finally, integrating above equations over
[x, 1, [0,X], respectively, we get

~{BENYEN -9 ENBEN}]

s
X
T

— [122p(8)~2p(9)] (5. M) Y(§.A)dg

X

and

{pENwEN-9 ENWEN]]
= [122p(&)~2p(£)19 (£.1) w(E. M) dE.
0

If the last equations are added them side by side, the
equality

is obtained. Hence,

AA)=—[[2Ap (&) —2p(&)]$ (£,A) Y(E,A)dE.

o~——3

Writing A = A, and by virtue of(21) , we get
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AA) = f/[Z)\np(E) —2p(&)] Bt (&, An) dE function A (A) in y,(9). By virtue of the arbitrariness of
6 0 > 0, we have
- n 1" A=A2+¢&n, en=0(1), n— o (23)
2
_ZA”B”{/p(EW (&,An )T/ df} By virtue of A (A,) = 0, we get
0 0
— — 2By, wrm
Do (AD+&n) + / A(mrt)cos(AJ + &n) tdt
It is obviously thatA (A,) # O for A, # 0. L0 (24)
On the other hand, the conditions H(m
L + / B(m,t)sin(AJ+&y)tdt=0
y (0)y(0) -y (m)y(m) =0 0
From(19),
and
- .
) Do (A0 +&1) = |Ao(AD) +0(1)| &1, N— 0.
J{ly 0P+alyx?}ax>o, O3+ &) = 2030 +o(w) o
0 Thus(24) can be rewritten as form of
imply that the eigenvalues of the boundary value problem ()
L are real, wherg(x) # 0 andy (x) € W2 ([0,d) U (d, 1)) © 0 0
Theorem 2.5.Eigenvalues of the problein have the Ao(An)én+ / A(11,t) cos(Ap + &n) tdt
asymptotic behaviour 0 (25)
d K, pt(m
An=A; +)\8 +5g0 N, (22) + / B(m,t)sin(AQ+&n)tdt+0(&,), n— .
" 0
wheredy, is a bounded sequende, < Iz, Further we know that sincéo(A) is type of "Sine
type” [40], there exists y3 > 0 such that
A= 37(17_[) + aai () ™ + hp, sup|hn| < oo, ‘AO()\,?)‘ > ys > O is satisfied for alh.
H H Substituting(20) into (25), we obtained
Proof. NS ; { B~ sm{ + (A +&n) (n)}
Let us denote G5 = {A:[A—A%>6} and 2000 (A9) LL @
Mm=<A:A=]A0 +B}, where & is a sufficientl + y 2
" { M=l Y +[;sm[“f,")—(/\,?+£n)u+(n)H/[q(t)+(p§>) }dt
small positive numbed < E Using Theorem 12.441], 0
it is easy to show that [B‘ cos[ m (A9t en) p (n)}

|80 (A)] = Coe"™ KD > A (A) — o (M)

ﬁ+ ) 0 :| }
+7COS A =+ & + s TT) — 0
for A € M. [ — (A +&n) 1t ( )] [p(m) — p(0)]
On the other hand, by virtue of lemma 1.3.148] and ()
from [39], we obtain Lot / A (TL1)sin (A9 + &) tt
: 3 94 g,
ImA |t ( )\r?Ao()\r?) o
AA)=Lo(A) = O<e g ) A] = .
pt(m

function {A (A) — Ao (M)} + Ao(A) = A(A) inside the By (m,t)cos(Aq + en) talt

contourl, coincides with the number of zeros of function

Ao (A). Further, applying the Rouéttheorem to the circle

W(d) = {A:|]A—A2| <8}, we conclude that for Since for & — 0, coseut(m ~ 1,
sufficiently largen, there exists only one zerd, of the  singnu™ (1) ~ gyu™ (11), we obtain

Then by Rouck theorem, number of zeros of the /
0
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%sm {)\ p-(m+ M}

£~ ,1{
22040 (A9)
B+

T[

sm{)\,?u

a

2|/
_ [5_003[;\3“ +M}
2| oem

B %Smww(m - “g")H Z {q(t)+ ("fj))z] dt
- (B coslagu (m -+ 42

+E cos[agu’ (- 221 (o - pe01}

B* n is a bounded sequence.
+7COS{/\ Consequently, theorem is proved.
1 u(m pr(m
— / A (m1,t) sinA ftdt — / Bt (77,t) cosA dtdt
ABo(AR) | o 0 3 Main Result
+o(e(;1) ,N— o0, In this section the uniqueness theorem of inverse problem
An according to Weyl function is pr0~ved.
Moreover by the virtue of We consider a second probldm
- () =~y (9 +[2Ap(X) +AK]Y() =A% (y(x), xe T
/ A (L) sin(AQ + ) tdt b € I y(0.4)=0, y(mA)=
0 y( +O)=ﬁy(5—0)
and y(d+o):[§*1y(d~—o)+7y(d~—o)
HT(m where §(x) has the same properties aj(x) and
/ Bt (T1,t) cos(AL + &) tdt o € 2, I = (O,cf) U (J, n) . We agree that if a certain symbdl
0 denotes an object related tg then 5 will denote an
we get analogous object related ko
Let @ (x,A) be the solution of(1) under the
1 B~ conditionsU (®) = 1, V(&) = 0 and under the jump
& . = sin[A%u~ (1) + 952 ditions. Denot
ZAOAO()\R){ o { n a } conditions er(lo; o
0
N ™ ) o xA)i=— 5N anam () = o 0,1) = — LA
- B—sm{)\ou*(n) - “EX")H / {q(t)Jr (%t)) ] dt A(A) A (?2)6)
0 The functions® (x,A) andM (A) are called the Weyl
B~ 0, a(m) solution and the Weyl functiof88] of the boundary value
N [02 COS[A”“ (m) + T} problem L, respectively. It is clear thaM(A) is a
N meromorphic function with poles ifAn} -
+Bi COSP O+ (1) a(n)H (p(m) — p(O)]} Lemma 3.1.The following equation is valid except for
a . a the eigenvalue$An}, - :
+% ®(xA)=SXA) +MM)$(xA)  (27)
n
Proof.
wheljgl:]nci l2- One can prove in a direct calculation that
A= A +%+:‘5’ e W[4, S0 =1#0. (28)
So the functionsg (x,A) and S(x,A) are linearly
where independent. Thus, the functiai(x,A) can be written as
1 5 follows:
th = — {[ sin|A%u +2m
" 20(A0) ke + 25t WXA)=ARA)$(xA)+BA)S(XA).
@© 2014 NSP
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From the initial conditiong4) , we calculate
A(A)=y(0,A =y (0,A)=-A(A).

This completes the proof.
Theorem 3.2 If M(A)

) andB(A)

value probleni.

Proof:

Let us define the matrixP(x,A) = [Pj,k(X,)\)],
(j,k=1,2) by the formula
$(xA) P(xA) $(x 1) ®(xA)
§(xA) P (xA)| 9/ (xA) @ (xA)

(29)
Rewrite(29) in the form

P(x,/\)[

Pii(A) =0 (XA) P (x,A)—
)= (xA)@(xA)—
)= 9" (xA) @ (xA)—
) =9 (xA) @' (xA)—

P’ (X A)@(xA)
O (X A) D (xA)
¢’ (x,A) @' (x,A)

9’ (xA) D (x.A)
(30)

Po1 (X,

A
A
A
Poz (X, A

(
Pr2(X,

(

(

or

It follows from (3)

Pii(A) =0 (A)S (XA)—§ (X, A)S(X,A)

+[MO)-MA)] 6 2)F (x.A)
Pr2(xA) =B (62) S(xA) — ¢ (6.2) S(x.A)

+[MA) =MO)] 6 x2) 8 (x2)

=M (A), thenL = L. Thus,
given the Weyl function uniquely determines the boundary

Thus if M(A) = M (A) then the function®,  (x,A ),
(j,k=1,2) are entire in  A. Denote
Ns :={A|]A —=An| > 0}, whered is sufficiently small
number. Taking5) — (6) and(14) — (15) into account we
get

Cs
|P11(XA)\<C5and\P12(x)\)\ |)\| [07’11

for A in AsNAs.
According to the last inequalities and Liouville’s
theorem, we obtain forx € [0, 71] \ {d,cT}

Pi1(x,A) = A(x) andPi2(x,A) =0. (32)

It follows from (30) and(32)
¢'(x.A)

d (XA) D (X,A)— d(xA)=A(X)  (33)

and

POCA) D (XA)— @ (XA) D (x)\) 0. (34)

Multiplying (33) by ¢ (x,A), (34) by ¢’ (x,A) and
subtracting them by side, we obtain

BOAAC = (M) [§ (1) D (xA) = (x 1) B (x2)].
Sincew [zﬁ, 5} —1,
¢ (XA) =9 (XA)A(X). (35)
Similarly sinceW [¢p, @] =1,
D(XA) =D (X,A)A(X). (36)

By virtue of (35) and(36) we getA? (x) = 1, for all x
in [0,77] \ {d,oT} and for all.
On the other hand, the asymptotic expressions

¢ (X,A) Cexp(i (,\;ﬁ(x) j%)) <1+O(;>)

(37)

¢ (x,A) 6exp<i (,\;ﬁ(X) aﬁ(,x)x>)> <1+O(;>)

(38)

Pr(XA) = ¢I(X’)‘)§(X”\) — ¢ (xA)S(xA) are valid for sufficiently largel on the imaginary axis,
+[M@) M| ¢ 62) 8 (x.A) where
1 1 . ~
, = =, ifx<d > if x<d
Po2(XA) =@ (X, A)S(X,A) =" (x,A)S(x,A) C= 2+ andC=<{ ~
+ ~
F[MA) )] ¢/ (A FxA). P itx>d B ifx>d
© 2014 NSP
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