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1 Introduction

Inverse problems of spectral analysis consist in
recovering operators from their spectral characteristics.
Such problems often appear in applied mathematics,
physics, and branches of natural sciences. Inverse
problems also play important role in solving nonlinear
evolution equations in mathematical physics. Physical
applications of inverse problems can be found in the
several works[1−7] .

First and most important results for inverse problem
of a regular Sturm-Liouville operator were given by
Ambarzumyan in 1929[8] and Borg in 1945[9]. In later
years, inverse problems for regular Sturm-Liouville
operator are solved in refs.[10−15] .

Inverse spectral problems for Sturm-Liouville
operators with discontinuous coefficient appear in some
physical problems. This kind of problems were
investigated in several works[16−20] .

Generally, spectral problems for differential operators
with the discontinuity conditions like

{
y(d+0) = ay(d−0)

y′ (d+0) = by′ (d−0)+cy(d−0)

were well-studied in refs.[21−24] , wherea,b andc are
real numbers.

The diffusion equation or a quadratic pencil of Sturm-
Liouville equation is written as

−y′′ (x)+ [2λ p(x)+q(x)]y(x) = λ 2y(x) , x∈ [0,π]

wherep(x) ∈Wm+1
2 [0,π] , q(x) ∈Wm

2 [0,π] (m≥ 0) .
Direct and inverse problems for diffusion operators

were studied by several authors in[25−37] .
In this study, we consider a boundary value problem

L(p,q,d,α,β ,γ) of the form

ℓy(x) :=−y′′ (x)+ [2λ p(x)+q(x)]y(x) = λ 2ρ (x)y(x) , x∈ I
(1)

with the boundary conditions

U (y) := y′ (0,λ ) = 0, V (y) := y(π,λ ) = 0 (2)

and the discontinuity conditions

y(d+0) = βy(d−0) , (3)

y′ (d+0) = β−1y′ (d−0)+ γy(d−0)

where real valued functions

p(x) ∈W1
2 (0,π) , q(x) ∈ L2 (0,π) ,
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λ is a spectral parameter,I = (0,d)∪ (d,π) , γ andβ are
real constants i.e.,|β −1|2+ γ2 6= 0 and

ρ (x) =

{
1, 0≤ x< d

α2, d < x≤ π
,0< α < 1.

For the problemL, it is obtained a represantation for
the solution and some important properties of eigenvalues
are studied. Moreover, It is proven that the coefficients of
the problem can be uniquely determined by Weyl
function. The obtained results are generalizations of the
similar results for the classical diffusion operator on a
finite interval.

2 Preliminaries

In this section, we derive integral representation for the
solution of equation(1) satisfying the conditions(2) and
(3) . Further some important properties of the spectrum of
the problemL will be learned.

Let the functionsS(x,λ ) , ϕ (x,λ ) , ψ (x,λ ) be the
solutions of the equation(1) satisfy the initial conditions

S(0,λ ) = 0, S′ (0,λ ) = 1

ϕ (0,λ ) = 1, ϕ ′ (0,λ ) = 0

ψ (π,λ ) = 0, ψ ′ (π,λ ) = 1

(4)

and the discontinuity conditions(3).
It is clear that the functionψ (x,λ ) satisfies the

following integral equations

for x> d;

ψ (x,λ ) =
sinλα (x−π)

λα

+
1

λα

π∫

x

sinλα (t −x) [2λ p(t)+q(t)]ψ (t,λ )dt,

for x< d;

ψ (x,λ ) =
β+

λ
sinλ (x−µ+ (π))+

β
λ

−
sinλ (x−µ− (π))

+
γ

2λ 2α
[cosλ (x−µ+ (π))−cosλ (x−µ− (π))]

− 1
λ

π∫

d

[β+ sinλ [x−µ+ (t)]+β− sinλ [x−µ− (t)]]×

× [2λ p(t)+q(t)]ψ (t,λ )dt

− 1
λ

d∫

x

sinλ (x− t) [2λ p(t)+q(t)]ψ (t,λ )dt

− γ
2λ 2α

π∫

d

[cosλ [x−µ+ (t)]−cosλ [x−µ− (t)]]×

× [2λ p(t)+q(t)]ψ (t,λ )dt,

whereµ± (x) =±αx∓αd+d.
One can prove the following relations:

ψ (x,λ ) =

{
O(exp(|τ |(π −x))) , x< d

O(exp(|τ |α (π −x))) , x> d.
(5)

ψ ′ (x,λ ) =

{
O(|λ |exp(|τ |(π −x))) , x< d

O(|λ |exp(|τ |α (π −x))) , x> d.
(6)

uniformly in x for |λ | → ∞, whereτ = Imλ .

Theorem 2.1. If q(x) ∈ L2 (0,π) , p(x) ∈ W1
2 (0,π) ,

then there are the functionsA(x, t) andB(x, t) whose first
order partial derivatives are summable on[0,π] for each
x∈ [0,π] such that the representation

ϕ (x,λ ) = ϕ0 (x,λ )+
µ+(x)∫

0

A(x, t)cosλ tdt

+

µ+(x)∫

0

B(x, t)sinλ tdt

(7)

is provided, where β± =
1
2

(
β ± 1

αβ

)
,

µ± (x) =±
√

ρ (x)x+d
(

1∓
√

ρ (x)
)

, α (x) =

x∫

0

p(t)dt,

ϕ0 (x,λ ) = β+ cos

[
λ µ+ (x)− α(x)√

ρ(x)

]

+β− cos

[
λ µ− (x)+ α(x)√

ρ(x)

]

α (x) = xp(0)

+
2ρ (x)

β+

x∫

0

[
A(ξ ,µ+ (ξ ))sin α(ξ )√

ρ(ξ )

−B(ξ ,µ+ (ξ ))cos α(ξ )√
ρ(ξ )

]
dξ

(8)

and in the following relations are satisfied :

p(x) = p(0)

+
2ρ (x)

β−

[
A(x, t)sin α(x)√

ρ(x)

+B(x, t)cos α(x)√
ρ(x)

]∣∣∣∣
µ−(x)+0

t=µ−(x)−0

(9)
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q(x) =− p2 (x)
ρ (x)

+
2α
β+

d
dx

[
A(x,µ+ (x))cos α(x)√

ρ(x)

+B(x,µ+ (x))sin α(x)√
ρ(x)

]
(10)

β−
[

p2 (x)
ρ (x)

+q(x)

]

= 2α
d
dx

[
A(x, t)cos α(x)√

ρ(x)

−B(x, t)sin α(x)√
ρ(x)

]∣∣∣∣
µ−(x)+0

t=µ−(x)−0

(11)

B(x,0) = At (x, t)|t=0 = 0 (12)

Moreover if we assume thatq(x) ∈W1
2 (0,π) , p(x) ∈

W2
2 (0,π) , the kernelsA(x, t) andB(x, t) satisfy the system

{
Axx(x, t)−q(x)A(x, t)−2p(x)Bt (x, t) = ρ (x)Att (x, t)

Bxx(x, t)−q(x)B(x, t)+2p(x)At (x, t) = ρ (x)Btt (x, t) .
(13)

If the second order derivatives of functionsA(x, t) and
B(x, t) are summable on[0,π] for eachx∈ [0,π] and these
functions satisfy equalities(13) and relations(8)− (12) ,
thenϕ (x,λ ) is a solution of equation(1) satifying initial
conditions(2) and discontinuity conditions(3) .

The functionϕ (x,λ ) is entire inλ and the following
asymptotic relations are valid for|λ | → ∞.

If x< d,

ϕ (x,λ ) = O(exp(|τ |x)) , (14)

ϕ ′ (x,λ ) = O(|λ |exp(|τ |x)) .

If x> d,

ϕ (x,λ ) = O
(
exp

(
|τ |µ+ (x)

))
, (15)

ϕ ′ (x,λ ) = O
(
|λ |exp

(
|τ |µ+ (x)

))
.

Lemma 2.2. Let λn and λk (λn 6= λk) be the
eigenvalues with the eigenfunctionsy(x,λn) andy(x,λk) ,
respectively. These functions are orthogonal in the sense
of

(λn+λk)

π∫

0

ρ (x)y(x,λn)y(x,λk)dx

−2

π∫

0

p(x)y(x,λn)y(x,λk)dx= 0

Proof.
Defineℓy(x,λ ) by

ℓy(x,λ ) :=
1

ρ (x)
{−y′′ (x,λ )+q(x)y(x,λ )}

= λ 2y(x,λ )−2λ
p(x)
ρ (x)

y(x,λ ) ,

we get,

π∫

0

ρ (x)ℓy(x,λn)y(x,λk)dx=

π∫

0

ρ (x)y(x,λn)ℓy(x,λk)dx

π∫

0

ρ (x)

[
λ 2

n y(x,λn)−2λn
p(x)
ρ (x)

y(x,λn)

]
y(x,λk)dx

=

π∫

0

ρ (x)y(x,λn)

[
λ 2

k y(x,λk)−2λk
p(x)
ρ (x)

y(x,λk)

]
dx.

Thus

(
λ 2

n −λ 2
k

) π∫

0

ρ (x)y(x,λn)y(x,λk)dx

−2(λn−λk)

π∫

0

p(x)y(x,λn)y(x,λk)dx= 0.

By virtue of λn 6= λk,

(λn+λk)

π∫

0

ρ (x)y(x,λn)y(x,λk)dx

−2

π∫

0

p(x)y(x,λn)y(x,λk)dx= 0

is obtained.
Let us define the function

∆ (λ ) =W [ψ,ϕ] = ψ (x,λ )ϕ ′ (x,λ )−ψ ′ (x,λ )ϕ (x,λ )
(16)

Since∆ (λ ) is constant onx∈ [0,d)∪ (d,π] , we get

∆ (λ ) =−ψ ′ (0,λ ) =−ϕ (π,λ ) . (17)

∆ (λ ) is called the characteristic function of the
problemL. The function∆ (λ ) is entire inλ and it has at
most a countable set of zeros{λn}.

Lemma 2.3. The zeros{λn} of the characteristic
function coincide with the eigenvalues of the boundary
value problemL and for eigenfunctionsϕ (x,λn) and
ψ (x,λn) there exists a sequence{βn}, such that the
relations

ψ (x,λn) = βnϕ (x,λn) (18)
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holds.
Proof.
Let λ0 be a zero of the function∆ (λ ). Then∆ (λ0) =

0. So, we getψ (x,λ0) = β0ϕ (x,λ0) for some constantβ0.

Henceλ0 is an eigenvalue andψ (x,λ0) andϕ (x,λ0) are
eigenfunctions related toλ0.

Let λ0 be an eigenvalue of the problemL and show that
∆ (λ0) = 0. Suppose that∆ (λ0) 6= 0. Then the functions
ϕ (x,λ0) andψ (x,λ0) are linearly independent. Thus

y(x,λ0) =C1ψ (x,λ0)+C2ϕ (x,λ0)

is a general solution of the problemL. Hence

ψ (x,λ0) =
1

C1
y(x,λ0)−

C2

C1
ϕ (x,λ0) ,

whereC1 6= 0.
The equality

< ψ (x,λ0) ,ϕ (x,λ0)>= 0

contradicts with∆ (λ0) 6= 0.
Since function ϕ (x,λn) and ψ (x,λn) are linearly

dependent, there exists sequenceβn such that

ψ (x,λn) = βnϕ (x,λn) .

Let

∆0 (λ ) = β+ cos

[
λ µ+ (π)− α (π)

α

]

+β− cos

[
λ µ− (π)+

α (π)
α

] (19)

and
{

λ 0
n

}
are zeros of∆0 (λ ) .

From [36] , the roots of the equation∆0
(
λ 0

n

)
= 0 have

the form

λ 0
n =

nπ
µ+ (π)

+
α (π)

αµ+ (π)
+hn, sup

n
|hn|<+∞. (20)

Moreover, denote

αn :=

π∫

0

ρ (x)y2 (x,λn)dx− 1
λn

π∫

0

p(x)y2 (x,λn)dx. (21)

The numbers{αn} are called normalizing numbers of
problemL.

Lemma 2.4.Eigenvalues of the problemL are simple,
i.e.,

.

∆ (λn) 6= 0 and the eigenvalues of the boundary value

problemL are real.

(
.

∆ (λ ) =
d∆ (λ )

dλ

)

Proof.

Sinceϕ = ϕ (x,λ ) andψ = ψ (x,λ ) are the solutions
of the equation(1) , the equalities

−ϕ ′′+[2λ p(x)+q(x)]ϕ = λ 2ρ (x)ϕ,

− .
ϕ ′′

+[2λ p(x)+q(x)]
.
ϕ = λ 2ρ (x)

.
ϕ +{2λρ (x)−2p(x)}ϕ

−ψ ′′+[2λ p(x)+q(x)]ψ = λ 2ρ (x)ψ

− .
ψ ′′

+[2λ p(x)+q(x)]
.

ψ = λ 2ρ (x)
.

ψ +{2λρ (x)−2p(x)}ψ

hold.
If the first equation is multiplied by

.
ψ , the last

equation is multiplied byϕ and substracting them side by
side, and if the second equation is multiplied byψ, the
third equation is multiplied by

.
ϕ and substracting them

side by side the equalities

d
dx

{
ϕ

.
ψ ′−ϕ ′ .ψ

}
=−{2λρ (x)−2p(x)}ϕψ

d
dx

{
.
ϕψ ′− .

ϕ ′ψ
}
= {2λρ (x)−2p(x)}ϕψ

are obtained. Finally, integrating above equations over
[x,π], [0,x] , respectively, we get

−
{

ϕ (ξ ,λ )
.

ψ ′
(ξ ,λ )−ϕ ′ (ξ ,λ )

.
ψ (ξ ,λ )

}∣∣∣
π

x

=

π∫

x

[2λρ (ξ )−2p(ξ )]ϕ (ξ ,λ )ψ (ξ ,λ )dξ

and

{
.
ϕ (ξ ,λ )ψ ′ (ξ ,λ )− .

ϕ ′
(ξ ,λ )ψ (ξ ,λ )

}∣∣∣
x

0

=

x∫

0

[2λρ (ξ )−2p(ξ )]ϕ (ξ ,λ )ψ (ξ ,λ )dξ .

If the last equations are added them side by side, the
equality

W
[
ϕ,

.
ψ
]
+W

[ .
ϕ,ψ

]
=−

.

∆ (λ )

=

π∫

0

[2λρ (ξ )−2p(ξ )]ϕ (ξ ,λ )ψ (ξ ,λ )dξ

is obtained. Hence,

.

∆ (λ ) =−
π∫

0

[2λρ (ξ )−2p(ξ )]ϕ (ξ ,λ )ψ (ξ ,λ )dξ .

Writing λ = λn and by virtue of(21) , we get
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.

∆ (λn) =

π

−
∫

0

[2λnρ (ξ )−2p(ξ )]βnϕ2 (ξ ,λn)dξ

=

−2λnβn





π∫

0

ρ (ξ )ϕ2 (ξ ,λn)dξ − 1
λn

π∫

0

p(ξ )ϕ2 (ξ ,λn)dξ





=−2λnβnαn.

It is obviously that
.

∆ (λn) 6= 0 for λn 6= 0.
On the other hand, the conditions

y′ (0)y(0)−y′ (π)y(π) = 0

and
π∫

0

{∣∣y′ (x)
∣∣2+q(x) |y(x)|2

}
dx> 0,

imply that the eigenvalues of the boundary value problem
L are real, wherey(x) 6= 0 andy(x) ∈W2

2 ([0,d)∪ (d,π]) .
Theorem 2.5.Eigenvalues of the problemL have the

asymptotic behaviour

λn = λ 0
n +

dn

λ 0
n
+

kn

λ 0
n
, n→ ∞, (22)

wheredn is a bounded sequence,kn ∈ l2,

λ 0
n =

nπ
µ+ (π)

+
α (π)

αµ+ (π)
+hn, sup

n
|hn|<+∞.

Proof.
Let us denote Gδ =

{
λ :

∣∣λ −λ 0
n

∣∣≥ δ
}

and

Γn =

{
λ : |λ |=

∣∣λ 0
n

∣∣+ β
2

}
, where δ is a sufficiently

small positive numberδ <
β
2

. Using Theorem 12.4[41] ,

it is easy to show that

|∆0 (λ )| ≥Cδ e|Imλ |µ+(π) > |∆ (λ )−∆0 (λ )|

for λ ∈ Γn.

On the other hand, by virtue of lemma 1.3.1.in[42] and
from [39] , we obtain

∆ (λ )−∆0 (λ ) = O
(

e|Imλ |µ+(π)
)
, |λ | → ∞.

Then by Rouch́e theorem, number of zeros of the
function {∆ (λ )−∆0 (λ )} + ∆0 (λ ) = ∆ (λ ) inside the
contourΓn coincides with the number of zeros of function
∆0 (λ ). Further, applying the Rouché theorem to the circle
γn (δ ) =

{
λ :

∣∣λ −λ 0
n

∣∣≤ δ
}
, we conclude that for

sufficiently largen, there exists only one zeroλn of the

function ∆ (λ ) in γn (δ ). By virtue of the arbitrariness of
δ > 0, we have

λn = λ 0
n + εn, εn = o(1) , n→ ∞. (23)

By virtue of ∆ (λn) = 0, we get

∆0
(
λ 0

n + εn
)
+

µ+(π)∫

0

A(π, t)cos
(
λ 0

n + εn
)
tdt

+

µ+(π)∫

0

B(π, t)sin
(
λ 0

n + εn
)
tdt = 0

(24)

From(19) ,

∆0
(
λ 0

n + εn
)
=
[ .

∆ 0(λ 0
n )+o(1)

]
εn, n→ ∞.

Thus(24) can be rewritten as form of

.

∆ 0(λ 0
n )εn+

µ+(π)∫

0

A(π, t)cos
(
λ 0

n + εn
)
tdt

+

µ+(π)∫

0

B(π, t)sin
(
λ 0

n + εn
)
tdt+o(εn) , n→ ∞.

(25)

Further we know that since∆0 (λ ) is type of ”Sine
type” [40] , there exists γδ > 0 such that∣∣∣
.

∆0(λ 0
n )
∣∣∣≥ γδ > 0 is satisfied for alln.

Substituting(20) into (25) , we obtained

εn ≈
1

2λ 0
n

.

∆ 0 (λ 0
n )

{[
β−

α
sin

[
α(π)

α +
(
λ 0

n + εn
)

µ− (π)
]

+
β+

α
sin

[
α(π)

α −
(
λ 0

n + εn
)

µ+ (π)
]] π∫

0

[
q(t)+

(
p(t)
α

)2
]

dt

−
[

β−

α2 cos
[

α(π)
α −

(
λ 0

n + εn
)

µ− (π)
]

+
β+

α
cos

[
α(π)

α −
(
λ 0

n + εn
)

µ+ (π)
]]

[p(π)− p(0)]

}

+
1

λ 0
n

.

∆ 0 (λ 0
n )




µ+(π)∫

0

At (π, t)sin
(
λ 0

n + εn
)
tdt

−
µ+(π)∫

0

Bt (π, t)cos
(
λ 0

n + εn
)
tdt




Since for εn → 0, cosεnµ± (π) ∼ 1,
sinεnµ± (π)∼ εnµ± (π) , we obtain
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εn ≈
1

2λ 0
n

.

∆ 0 (λ 0
n )

{[
β−

α
sin

[
λ 0

n µ− (π)+ α(π)
α

]

− β+

α
sin

[
λ 0

n µ+ (π)− α(π)
α

]] π∫

0

[
q(t)+

(
p(t)
α

)2
]

dt

−
[

β−

α2 cos
[
λ 0

n µ− (π)+ α(π)
α

]

+
β+

α
cos

[
λ 0

n µ+ (π)− α(π)
α

]]
[p(π)− p(0)]

}

+
1

λ 0
n

.

∆0
(
λ 0

n
)




µ+(π)∫

0

At (π, t)sinλ 0
n tdt−

µ+(π)∫

0

Bt (π, t)cosλ 0
n tdt




+
o(εn)

λ 0
n

, n→ ∞.

Moreover by the virtue of





µ+(π)∫

0

At (π, t)sin
(
λ 0

n + εn
)
tdt





∈ l2

and




µ+(π)∫

0

Bt (π, t)cos
(
λ 0

n + εn
)
tdt





∈ l2,

we get

εn ≈
1

2λ 0
n

.

∆ 0 (λ 0
n )

{[
β−

α
sin

[
λ 0

n µ− (π)+ α(π)
α

]

− β+

α
sin

[
λ 0

n µ+ (π)− α(π)
α

]] π∫

0

[
q(t)+

(
p(t)
α

)2
]

dt

−
[

β−

α2 cos
[
λ 0

n µ− (π)+ α(π)
α

]

+
β+

α
cos

[
λ 0

n µ+ (π)− α(π)
α

]]
[p(π)− p(0)]

}

+
kn

λ 0
n

wherekn ∈ l2.
Hence

λn = λ 0
n +

dn

λ 0
n
+

kn

λ 0
n
, n→ ∞,

where

dn =
1

2
.

∆ 0 (λ 0
n )

{[
β−

α
sin

[
λ 0

n µ− (π)+ α(π)
α

]

− β+

α
sin

[
λ 0

n µ+ (π)− α(π)
α

]] π∫

0

[
q(t)+

(
p(t)
α

)2
]

dt

−
[

β−

α2 cos
[
λ 0

n µ− (π)+ α(π)
α

]

+
β+

α
cos

[
λ 0

n µ+ (π)− α(π)
α

]]
[p(π)− p(0)]

}

is a bounded sequence.
Consequently, theorem is proved.

3 Main Result

In this section the uniqueness theorem of inverse problem
according to Weyl function is proved.

We consider a second problem̃L




ℓ̃y(x) =−y′′ (x)+ [2λ p(x)+ q̃(x)]y(x) = λ 2ρ (x)y(x) , x∈ Ĩ

y′ (0,λ ) = 0, y(π,λ ) = 0

y
(

d̃+0
)
= β̃y

(
d̃−0

)

y
′
(

d̃+0
)
= β̃−1y′

(
d̃−0

)
+ γ̃y

(
d̃−0

)

where q̃(x) has the same properties ofq(x) and

Ĩ =
(

0, d̃
)
∪
(

d̃,π
)
. We agree that if a certain symbolδ

denotes an object related toL, then δ̃ will denote an
analogous object related tõL.

Let Φ (x,λ ) be the solution of (1) under the
conditionsU (Φ) = 1, V (Φ) = 0 and under the jump
conditions. Denote

Φ (x,λ ) :=−ψ (x,λ )
∆ (λ )

andM (λ ) :=Φ (0,λ )=−ψ (0,λ )
∆ (λ )

.

(26)
The functionsΦ (x,λ ) andM (λ ) are called the Weyl

solution and the Weyl function[38] of the boundary value
problem L, respectively. It is clear thatM (λ ) is a
meromorphic function with poles in{λn}n≥0 .

Lemma 3.1.The following equation is valid except for
the eigenvalues{λn}n≥0 :

Φ (x,λ ) = S(x,λ )+M (λ )ϕ (x,λ ) (27)

Proof.
One can prove in a direct calculation that

W [ϕ,S]|x=0 = 1 6= 0. (28)

So the functionsϕ (x,λ ) and S(x,λ ) are linearly
independent. Thus, the functionψ (x,λ ) can be written as
follows:

ψ (x,λ ) = A(λ )ϕ (x,λ )+B(λ )S(x,λ ) .
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From the initial conditions(4) , we calculate

A(λ ) = ψ (0,λ ) andB(λ ) = ψ ′ (0,λ ) =−∆ (λ ) .

This completes the proof.
Theorem 3.2. If M (λ ) = M̃ (λ ) , then L = L̃. Thus,

given the Weyl function uniquely determines the boundary
value problemL.

Proof:
Let us define the matrixP(x,λ ) =

[
Pj,k (x,λ )

]
,

( j,k= 1,2) by the formula

P(x,λ )

[
ϕ̃ (x,λ ) Φ̃ (x,λ )

ϕ̃ ′ (x,λ ) Φ̃ ′ (x,λ )

]
=

[
ϕ (x,λ ) Φ (x,λ )

ϕ ′ (x,λ ) Φ ′ (x,λ )

]

(29)
Rewrite(29) in the form





P11(x,λ ) = ϕ (x,λ )Φ̃ ′ (x,λ )− ϕ̃ ′ (x,λ )Φ (x,λ )

P12(x,λ ) = ϕ̃ (x,λ )Φ (x,λ )−ϕ (x,λ )Φ̃ (x,λ )

P21(x,λ ) = ϕ ′ (x,λ )Φ̃ ′ (x,λ )− ϕ̃ ′ (x,λ )Φ ′ (x,λ )

P22(x,λ ) = ϕ̃ (x,λ )Φ ′ (x,λ )−ϕ ′ (x,λ )Φ̃ (x,λ )
(30)

or




P11(x,λ ) = ϕ (x,λ )
ψ̃ ′ (x,λ )

∆̃ (λ )
− ϕ̃ ′ (x,λ )

ψ (x,λ )
∆ (λ )

P12(x,λ ) = ϕ̃ (x,λ )
ψ (x,λ )
∆ (λ )

−ϕ (x,λ )
ψ̃ (x,λ )
∆̃ (λ )

P21(x,λ ) = ϕ ′ (x,λ )
ψ̃ ′ (x,λ )

∆̃ (λ )
− ϕ̃ ′ (x,λ )

ψ ′ (x,λ )
∆ (λ )

P22(x,λ ) = ϕ̃ (x,λ )
ψ ′ (x,λ )

∆ (λ )
−ϕ ′ (x,λ )

ψ̃ (x,λ )
∆̃ (λ )

(31)
It follows from (3)

P11(x,λ ) = ϕ (x,λ ) S̃′ (x,λ )− ϕ̃ ′ (x,λ )S(x,λ )

+
[
M̃ (λ )−M (λ )

]
ϕ (x,λ ) ϕ̃ ′ (x,λ )

P12(x,λ ) = ϕ̃ (x,λ )S(x,λ )−ϕ (x,λ ) S̃(x,λ )

+
[
M (λ )− M̃ (λ )

]
ϕ (x,λ ) ϕ̃ (x,λ )

P21(x,λ ) = ϕ ′ (x,λ ) S̃′ (x,λ )− ϕ̃ ′ (x,λ )S′ (x,λ )

+
[
M̃ (λ )−M (λ )

]
ϕ ′ (x,λ ) ϕ̃ ′ (x,λ )

P22(x,λ ) = ϕ̃ (x,λ )S′ (x,λ )−ϕ ′ (x,λ ) S̃(x,λ )

+
[
M (λ )− M̃ (λ )

]
ϕ ′ (x,λ ) ϕ̃ (x,λ ) .

Thus if M (λ ) ≡ M̃ (λ ) then the functionsPj,k (x,λ ) ,
( j,k= 1,2) are entire in λ . Denote
Λδ := {λ : |λ −λn|> δ} , where δ is sufficiently small
number. Taking(5)− (6) and(14)− (15) into account we
get

|P11(x,λ )| ≤Cδ and |P12(x,λ )| ≤
Cδ
|λ | , x∈ [0,π]

for λ in Λδ ∩ Λ̃δ .
According to the last inequalities and Liouville’s

theorem, we obtain for∀x∈ [0,π]\
{

d, d̃
}

P11(x,λ ) = A(x) andP12(x,λ ) = 0. (32)

It follows from (30) and(32)

ϕ (x,λ )Φ̃ ′ (x,λ )− ϕ̃ ′ (x,λ )Φ (x,λ ) = A(x) (33)

and
ϕ̃ (x,λ )Φ (x,λ )−ϕ (x,λ )Φ̃ (x,λ ) = 0. (34)

Multiplying (33) by ϕ̃ (x,λ ) , (34) by ϕ̃ ′ (x,λ ) and
subtracting them by side, we obtain

ϕ̃ (x,λ )A(x) = ϕ (x,λ )
[
ϕ̃ (x,λ )Φ̃ ′ (x,λ )− ϕ̃ ′ (x,λ )Φ̃ (x,λ )

]
.

SinceW
[
ϕ̃ ,Φ̃

]
= 1,

ϕ (x,λ ) = ϕ̃ (x,λ )A(x) . (35)

Similarly sinceW [ϕ,Φ ] = 1,

Φ (x,λ ) = Φ̃ (x,λ )A(x) . (36)

By virtue of (35) and(36) we getA2 (x) ≡ 1, for all x

in [0,π]\
{

d, d̃
}

and for allλ .
On the other hand, the asymptotic expressions

ϕ (x,λ ) =Cexp

(
−i

(
λ µ+ (x)− α(x)√

ρ(x)

))(
1+O

(
1
λ

))

(37)

ϕ̃ (x,λ ) = C̃exp

(
−i

(
λ µ+ (x)− α(x)√

ρ(x)

))(
1+O

(
1
λ

))

(38)

are valid for sufficiently largeλ on the imaginary axis,
where

C=





1
2
, if x< d

β+

2
, if x> d

andC̃=





1
2
, if x< d̃

β̃+

2
, if x> d̃.
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Firstly, let us show thatd = d̃. Assume in contrary that
d 6= d̃. Without loss of generality we assumed < d̃. From
(35) , (37) and(38) we have





A(x) = 1, for x∈ [0,d)

A(x) = β+, for x∈
(

d, d̃
)

A(x) =
β+

β̃+
, for x∈

(
d̃,π

]
.

SinceA2 (x)≡ 1 andβ+ 6= 1, we obtaind = d̃, A(x)≡
1 andβ+ = β̃+.Thus

ϕ (x,λ )= ϕ̃ (x,λ ) andΦ (x,λ )= Φ̃ (x,λ ) for all x andλ .

Henceq(x) = q̃(x) a.e. in(0,π) , β = β̃ andγ = γ̃ .
Consequently,L = L̃.

References

[1] M. Kac, Can one hear the shape of a drum, The American
Mathematical Monthly,73, 1-23 (1966).

[2] A. V. Likov and Yu. A. Mikhailov, The theory of heat and
mass transfer, Gosnergoizdat, (1963). [in Russian]

[3] O. N. Litvinenko, V. I. Soshnikov, The theory of
heteregeneous lines and their applications in radio
engineering, Radio, Moscow, (1964). [in Russian]

[4] J. McLaughlin and P. Polyakov, On the uniqueness of
a spherical symmetric speed of sound from transmission
eigenvalues, J. Diff. Eqn.,107, 351-382 (1994).

[5] V. P. Meschanov and A. L. Feldstein, Automatic design of
directional couplers, Sviaz, Moscow, (1980).

[6] A. N. Tikhonov and A. A. Samarskii, Equations of
mathematical physics, Pergamon, Oxford, (1990).

[7] N. N. Voitovich, B. Z. Katsenelbaum, and A. N. Sivov,
Generalized method of eigen-vibration in the theory of
diffraction [M], Nauka, Moskov, (1997). [in Russian]
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Yaşar Çakmak
received the PhD degree
in Mathematics Science
at Cumhuriyet University
of Sivas. His research
interests are in the areas
of applied mathematics
and mathematical physics
including the mathematical
methods of spectral analysis.

He has published research articles related with direct and
inverse spectral problems for differential operators.
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