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Abstract: In this article, the homotopy analysis method (HAM) is implemented for obtaining semi-analytical solutions to the problem
of the nonlinear vibrations of multiwalled carbon nanotubes embedded in anelastic medium. A multiple-beam model is utilized in
which the governing equations of each layer are coupled with those of its adjacent ones via the Van der Waals inter layer forces.
The amplitude-frequency curves for large-amplitude vibrations of single-walled, double-walled and triple-walled carbon nanotubes
are obtained. The influence of changes in material constants of the surrounding elastic medium and the effect of changes in nanotube
geometrical parameters on the vibration characteristics are studied by comparing the results with those from the previous work. Series
solutions of the problem under consideration are developed by means ofHAM and the recurrence relations are given explicitly. The
obtained numerical results show the rapid convergence of the series constructed by the proposed method to the exact solution. Test
problems have been considered to ensure that HAM is accurate and efficient compared with the Adomian decomposition method.
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1 Introduction

It is well known that most of the scientific phenomena are
modeled by ordinary or partial differential equations.
Analytical solutions of these equations may well describe
the various phenomena in science and nature, such as
vibrations, solitons and propagation with a finite speed.
The homotopy analysis method is an analytical technique
for solving nonlinear differential equations devised by
Shi-Jun Liao in 1992 ([11]-[13]). This method has been
successfully applied to solve many types of nonlinear
problems in science and engineering by many authors
([1], [7]-[9]), and references therein. We aim in this work
to effectively employ HAM to establish the semi
analytical solutions for the proposed nonlinear equations
([3]-[5], [10], [18]). By the present method, numerical
results can be obtained with using a few iterations [18].
Moreover, HAM contains the auxiliary parameter̄h,

which provides us with a simple way to adjust and control
the convergence region of solution series [13]. Therefore,
HAM handles linear and nonlinear problems without any
assumption and restriction. Moreover, this technique does
not require any discretization, linearization or small
perturbations. With the rapid development of
nano-technology, there appears an ever-increasing interest
of scientists and researchers in this field of science.
Nano-materials, because of their exceptional mechanical,
physical and chemical properties have been the main
topic of research in many scientific publications.
Nowadays, they are used as the substantial parts of
nano-electronics, nano-devices, and nano-composites.
One of these materials attracted great attention due to its
high mechanical strength is carbon nano-tube (CNT).
CNTs were discovered by Iijima in 1991. In spite of
being too small and having light weight, they have very
large Young’s modulus in axial direction (nearly 1TPa).
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Undoubtedly, CNTs have the eligibility to be the new and
most popular nano-material of this early part of the 21st
century. Since the vibration of CNTs are of considerable
importance in a number of nano-mechanical devices such
as oscillators, charge detectors, field emission devices and
sensors. Many researchers have been so far devoted to the
problem of the vibration of these nano-materials.
However, most of the investigations conducted on the
vibration of multiwalled carbon nano-tubes (MWNTs)
have been restricted to the linear regime and fewer works
were done on the nonlinear vibration of these materials.
For more details about this topic, see ([6], [15], [16],
[21]).

2 Basic idea of HAM

To show the basic idea of HAM [11], we consider the
following differential equation

F [u(t)] = 0, (1)

where F is a nonlinear operator,u(t) is an unknown
function. For simplicity, we ignore all boundary and
initial conditions, which can be treated in the similar way.

2.1 Zeroth-order deformation equation

Liao, constructed the so-called zeroth-order deformation
equation

(1−q)L[Φ(t;q)−u0(t)] = qh̄F [Φ(t;q)], (2)

whereL is an auxiliary linear operator,u0(t) is an initial
guess,h̄ is an auxiliary parameter andq ∈ [0,1] is the
embedding parameter. Obviously, whenq = 0 andq = 1,
it holds, respectively

Φ(t;0) = u0(t), Φ(t;1) = u(t). (3)

Thus, asq increasing from 0 to 1, the solutionΦ(t;q)
various fromu0(t) to u(t). ExpandingΦ(t;q) in Taylor
series with respect to the embedding parameterq, one has

Φ(t;q) = u0(t)+
∞

∑
m=1

um(t)q
m, (4)

where

um(t) =
1

m!
∂ mΦ(t;q)

∂qm

∣

∣

∣

q=0
. (5)

Assume that the auxiliary linear operator, the initial guess
and the auxiliary parameter̄h are selected such that the
series (4) is convergent atq = 1, Then atq = 1 and by (3),
the series (4) becomes

u(t) = u0(t)+
∞

∑
m=1

um(t). (6)

2.2 The mth-order deformation equation

Define the vector

un(t) = [u0(t),u1(t), ...,un(t)]. (7)

Differentiating equation (2) m times with respect to the
embedding parameterq, then settingq = 0 and dividing
them bym!, finally using (5), we have the so-calledmth-
order deformation equations

L[um(t)−δmum−1(t)] = h̄ℜm(um−1), (8)

where

ℜm(um−1) =
1

(m−1)!
∂ m−1N[Φ(t;q)]

∂qm−1

∣

∣

∣

q=0
, (9)

and

δm =

{

0, m ≤ 1;
1, m > 1. (10)

3 Implementation of HAM

In this section, we apply HAM to obtain the approximate
solution to the problem of the nonlinear vibrations of
CNTs.

3.1 Case 1:Nonlinear vibration of the SWNT

Consider the SWNT of lengthl, Young’s modulusE,
density ρ , cross-sectional areaA, and cross-sectional
inertia momentI, embedded in an elastic medium with
material constantk. The nonlinear vibration equation for
this CNT is in the following form [2]

d2W
dt2 +(

π4EI
ρ Al4 +

k
ρ A

)W +
π4E
4ρ l4 W 3 = 0, (11)

under the transformations
r =

√

I
A , x = W

r , wl =
π2

l2

√

EI
ρ A , wk =

√

k
ρ A , τ = ω t,

the above equation can be transformed to the following
dimensionless nonlinear vibration equation

ω2 d2x
dτ2 +w2

b x+α w2
l x3 = 0, (12)

in which α = 0.25 andwb =
√

w2
l +w2

k , is the linear, free
vibration frequency. With the initial conditions

x(0) = X , ẋ(0) = 0. (13)

By means of homotopy analysis method, we choose the
approximation solution

x0(τ) = X cos(ψ wbτ). (14)
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This initial approximation is a trial function and it is used
to obtain more accurate approximate solution of Eq.(12).
Hereψ, is the ratio of the nonlinear frequencyω, to the
linear frequencywb, whereX is the maximum vibration
amplitude. By means of HAM, we choose the linear
operator

Ł[Φ (τ;q)] =
∂ 2Φ (τ;q)

∂τ2 +Φ (τ;q), (15)

where the operator Ł satisfies the relation
Ł[c1cos(t) + c2sin(t)] = 0 for some arbitrary constants
c1,c2, also we define the non-linear operator as

N(Φ(τ;q)) = w2 ∂ 2Φ (τ;q)
∂τ2 +w2

b Φ +α w2
l Φ3, (16)

using the above definitions, we construct the zeroth-order
deformation equation as follows

(1−q)Ł[Φ(τ;q)− x(τ)] = qh̄1N[Φ(τ;q)]. (17)

Obviously whenq = 0 andq = 1, we obtain

Φ(τ;0) = x0(τ), Φ(τ;1) = x(t). (18)

Therefore, as the embedding parametersq increase from 0
to 1, Φ(τ;q), varies from the initial guessx0(τ) to the
solution x(τ). ExpandingΦ(τ;q) in Taylor series with
respect toq

Φ(τ;q) = x0(τ)+
∞

∑
m=1

xm(τ;q)qm, (19)

where

xm(τ;q) =
1

m!
∂ mΦ(τ;q)

∂qm

∣

∣

∣

q=0
. (20)

The initial guess and the auxiliary parametersh̄1 are
properly chosen, the above is convergent atq = 1

x(τ) = x0(τ)+
∞

∑
m=1

xm, (21)

which must one of the solution of the original nonlinear
equation now we define the vector
xn = [x0(τ),x1(τ),x2(τ), ...]. The mth-order deformation
equation is

Ł[xm(τ)−δmxm−1(τ)] = h̄Rm(xm−1(τ)), (22)

with the initial conditionsxm(0) = 0 where

Rm(xm−1) = w2 d2xm−1(τ)
dτ2 +w2

b xm−1+α w2
l x3

m−1. (23)

Now the solution of themth-order deformation equation
becomes

xm(t) = δmxm−1(t)+ h̄
∫ t

0

∫ t

0
(Rm(xm−1))dτ dτ. (24)
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Figure 1.h̄ curve ofx(τ) for SWNT.

Substituting the initial approximation (14) into Eq.(12)
results in the following residual

R0(ξ ) =(−XΨ2(wb)
2+(wb)

2X +0.75α(wl)
2X3).

cos(Ψwbξ )+0.25(wl)
2)X3cos(3Ψwbξ ).

In order to ensure that no secular terms appear in the next
iteration, the coefficient of cos(Ψwbξ ) must vanish.

ThereforeΨ =
√

1+ 3
4α(wl/wb)2X2.

Now, by using the given initial condition (14), we can
derive the first components of the solution. Then the
approximate solution will take the following form

xm(t) = x0(t)+ x1(t)+ ...

= [
1
20

cos(
t

80
)− h̄(

2251
3000

)cos(
t

80
)

+
1

18000
cos3(

t
80

)− ...].

(25)

It is noted that our approximate solutions converge at
(−2 ≤ h̄ ≤ 2) (see Figure 1). The explicit, analytic
expression given by Eq.(25) contains the auxiliary
parameter̄h, which gives the convergence region and rate
of approximation for HAM. However, the errors can be
further be reduced by calculating higher order
approximations. This proves that HAM is a very useful
method to get accurate analytic solutions to linear and
strongly nonlinear differential equations. It must be noted
that HAM used here gives the possibility for obtaining an
analytical satisfactory solution for which the other
techniques of calculation are more laborious and the
results contain a great complexity.
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Figure 2. Approximate solution of SWNT for̄h = -0.5.

Figure 3. Effect of spring constantk on nonlinear amplitude-
frequency response curves of SWNT.

The amplitude-frequency response curves for the
SWNT for different spring constantsk are shown in
Figure 2. The material and geometric parameters taken
here areE = 1.1T Pa,ρ = 1300kg/m3, ℓ = 45nm, the
outer diameter d1 = 3nm and the inner diameter
d0 = 2.32nm. In this Figure 2,Ψ is the ratio of nonlinear
frequency to linear frequency as discussed earlier andX is
the maximum vibration amplitude. It can be seen that as
the spring constantk increases, the nonlinear frequencies
tend to approach the linear ones especially when exceeds
the value 107n/m2. It should be noted that from this
figure is exactly the same as the figure obtained via
incremental harmonic balance method (IHBM) [2] and
Adomian decomposition method ([16], [17]).

3.2 Case 2: Nonlinear vibration of the DWNT

The nonlinear vibration governing equation for a DWNT
is in the following form ([2], [21])

d2W1

dt2 +
(π4E I1

ρ A1l4 +
c1

ρ A1

)

W1+
π4E
4ρ l4 W 3

1 −
c1

ρ A1
W2 = 0,

(26)

d2W2

dt2 +
(π4E I2

ρ A2l4
+

c1

ρ A2
+

k
ρ A2

)

W2+
π4E

4ρ l4
W 3

2 −
c1

ρ A2
W1 = 0,

(27)
wherec1 is the coefficient of the Van der Waals force

between the (i-th) tube and the (i-1 th) tube. By
substituting the following dimensionless parameters

r =

√

I1
A1

, x =
W1

r
, y =

W2

r
,

ωl =
π2

l2

√

EI1
ρ A1

, ωk =

√

k
ρ A1

, ωc =

√

c
ρ A1

,

τ = ωt, β =
A1

A2
, γ =

I1
I2
, α = 0.25.

(28)

Eqs.(26)-(27) can be transformed to the following
dimensionless nonlinear system

( ω
ωl

)2 d2x
dτ2 +B1 x+α x3

−B2 y = 0, (29)

( ω
ωl

)2 d2y
dτ2 +B3 y+α y3

−B4 x = 0, (30)

with B1 to B4 defined as

B1 = 1+
(ωc

ωl

)2
, B2 =

(ωc

ωl

)2
,

B3 = β
(1

γ
+
(ωc

ωl

)2
+
(ωk

ωl

)2)

, B4 = β
(ωc

ωl

)2
.

With the initial conditions

x(0) = X1, y(0) = X2, ẋ(0) = ẏ(0) = 0. (31)

To solve system (29)-(30) by means of HAM, we choose
the initial approximations

x0(τ) = X1cos(ψ wbτ), y0(τ) = X2cos(ψ wbτ).
(32)

We choose the linear operator

Ł[Φi(τ;q)] =
∂ 2Φi (τ;q)

∂τ2 +Φi (τ;q), i = 1,2, (33)

where the operator Ł satisfies the relation
Ł[c1cos(t) + c2sin(t)] = 0 for some arbitrary constants
c1, c2, also we define the non-linear operators as

N1(Φ1,Φ2) =
( ω

ωl

)2 ∂ 2Φ1(τ;q)
∂τ2 +B1Φ1(τ;q)

+αΦ3
1(τ;q)−B2Φ2(τ;q),

(34)
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N2(Φ1,Φ2) =
( ω

ωl

)2 ∂ 2Φ2(τ;q)
∂τ2 +B3Φ2(τ;q)

+αΦ3
2(τ;q)−B4Φ1(τ;q).

(35)

Using the above definitions, we construct the zeroth-order
deformation equations as follows

(1−q)Ł[Φ1(τ;q)− x0(τ)] = qh̄1N1[Φ1,Φ2], (36)

(1−q)Ł[Φ2(τ;q)− y0(τ)] = qh̄2N2[Φ1,Φ2]. (37)

Obviously whenq = 0 andq = 1, we obtain

Φ1(τ;0) = x0(τ), Φ2(τ;0) = y0(τ),
Φ1(τ;1) = x(τ), Φ2(τ;1) = y(τ).

(38)

Therefore, as the embedding parametersq increase from 0
to 1, Φ1(τ;q) and Φ2(τ;q) varies from the initial guess
x0(τ), y0(τ) to the solution x(τ), y(τ), respectively.
ExpandingΦ1(τ;q) and Φ2(τ;q) in Taylor series with
respect toq

Φ1(τ;q) =
∞

∑
m=0

xm(τ)qm, Φ2(τ;q) =
∞

∑
m=0

ym(τ)qm.

(39)
where

xm(τ;q) =
1

m!
∂ mΦ1(τ;q)

∂qm

∣

∣

∣

q=0
,

ym(τ;q) =
1

m!
∂ mΦ2(τ;q)

∂qm

∣

∣

∣

q=0
.

(40)

The initial guess and the auxiliary parametersh̄ are
properly chosen, the above series (39) are convergent at
q = 1

x(τ) =
∞

∑
m=0

xm(τ), y(τ) =
∞

∑
m=0

ym(τ), (41)

which must one of the solution of the original nonlinear
equation, now we define the vectors

xn = [x0(τ),x1(τ),x2(τ), ...], yn = [y0(τ),y1(τ),yτ(τ), ...].

Themth-order deformation equations are

Ł[xm(τ)−δmxm−1(τ)] = h̄1R1,m(xm−1,ym−1),

Ł[ym(τ)−δmym−1(τ)] = h̄2R2,m(xm−1,ym−1),
(42)

with the initial conditionsxm(0) = 0 andym(0) = 0, where

R1,m(xm−1,ym−1) =
( ω

ωl

)2 d2xm−1(τ)
dt2 +B1xm−1

+α x3
m−1−B2ym−1,

(43)

R2,m(xm−1,ym−1) =
( ω

ωl

)2 d2ym−1(τ)
dτ2 +B3ym−1

+α y3
m−1−B4xm−1.

(44)

Now, the solution of themth-order deformation equation
(42) at m ≥ 1 becomes

xm(τ) = δmxm−1+ h̄1

∫ t

0

∫ t

0
R1,m(xm−1,ym−1)dτdτ , (45)

ym(τ) = δmym−1+ h̄2

∫ t

0

∫ t

0
R2,m(xm−1,ym−1)dτdτ . (46)

In order to seek the periodic solution of Eqs.(29)-(30)
substitute the initial approximations (32) into
Eqs.(29)-(30) results in the following residuals

R1,0(ξ ) = (−X1Ψ 2(ωb)
2+(ωl)

2B1X1+0.75α(ωl)
2X3

1

−ω2
l B2X2)cos(Ψωbξ )+0.25α(ωl)

2)X3
1 cos(3Ψωbξ ),

R2,0(ξ ) = (−X2Ψ 2(ωb)
2+(ωl)

2B3X2+0.75α(ωl)
2X3

2

−ω2
l B4X1)cos(Ψωbξ )+0.25α(ωl)

2)X3
2 cos(3Ψωbξ ).

Here inΨ , the ratio of the nonlinear frequencyω to the
linear frequencyωb, is the unknown constant. Following
the same approach as above and also eliminating the
coefficient of cos(ψωbξ ) in the above system due to
avoiding the secular terms, results in the following
nonlinear system which can be easily solved using a
simple mathematical algorithm such as Newton-Raphson
technique

− (
Ψ
ω2

l

)X1ω2
b +B1X1+

3
4

αX3
1 −B2X2 = 0,

− (
Ψ
ω2

l

)X2ω2
b +B3X2+

3
4

αX3
2 −B4X1 = 0,

(47)

to calculate the linear vibration frequencies for DWNT.
We shall first substitute from (31) into Eqs.(29) and (30)
without considering the nonlinear terms in Eqs.(29)-(30),
so that
(

ω2
l +ω2

c −ω2 −ω2
c

−βω2
c β (ω2

l
γ +ω2

c +ω2
k )−ω2

)

(

X1
X2

)

=

(

0
0

)

,

then by setting the determinant of the above matrix equal
to zero, the frequency characteristic equation will be
obtained. The fundamental linear vibration frequency of
DWNT is the lowest root of the resulting equation.
Now, by using the given initial conditions (32) in the
recurrence formula (45)-(46), we can obtain the first
components of the solution, then the approximate solution
will take the following form

xm(τ) = x0(τ)+ x1(τ)+ ...

= (1−
h1

6
)cos(τ)+

1
36

cos3(τ)± ...],
(48)

ym(τ) = y0(τ)+ y1(τ)+ ...

= [(1−
19h2

6
cos(τ)+

1
36

hboxcos3(τ)± ...].
(49)
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Figure 4.h curve ofx(τ) andy(τ) for DWNT.
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Figure 5. Approximate solution of DWNT for̄h = -1.5.

It is noted that our approximate solutions converge at
(−2 ≤ h̄ ≤ 2) (see Figure 3). The explicit, analytic
expression given by Eq.(45)-(46) contains the auxiliary
parameter̄h, which gives the convergence region̄h and
rate of approximation for HAM. However, the errors can
be further be reduced by calculating higher order
approximations. This proves that HAM is a very useful
method to get accurate analytic solutions to linear and
strongly nonlinear differential equations. It must be noted
that HAM used here gives the possibility for obtaining an
analytical satisfactory solution for which the other
techniques of calculation are more laborious and the
results contain a great complexity.

Figure 6. Effect of spring constantk on nonlinear amplitude-
frequency response curves of DWNT.

In Figure 4 shows the variation of the nonlinear
amplitude-frequency response curves of DWNT against
the maximum vibration amplitude for different spring
constantsk. The material and geometric parameters used
to obtain this figure are, E = 1.1T Pa, ρ =
1300kg/m3, c = 0.3 × 1012N/m2, l = 45nm,
d0 = 1.64nm, d1 = 2.32nm andd2 = 3nm. It can be seen
that the effect of spring constant on nonlinear vibration of
DWNT is similar to that emerged in the case of SWNT
(Figure 2) and this figure is exactly the same figure as that
obtained via (IHBM) and Adomian decomposition
method ([16], [17]).

3.3 Case 3: Nonlinear vibration of a TWNT

The nonlinear vibration governing equations for TWNTs
are in the following form ([2], [19], [20])

d2W1

dt2 +(
π4E I1
ρ A1l4 +

c1

ρ A1
)W1+

π4E
4ρ l4 W 3

1 −
c1

ρ A1
W2 = 0,

(50)

d2W2

dt2 +
π4E I2
ρ A2l4 +

c1

ρ A2
+

c2

ρ A2
)W2

+
π4E
4ρ l4 W 3

2 −
c1

ρ A2
W1−

c2

ρ A2
W3 = 0,

(51)

d2W3

dt2 +(
π4E I3
ρ A3l4 +

c1

ρ A3
+

c2

ρ A3
+

k
ρ A3

)W3

+
π4E
4ρ l4 W 3

3 −
c2

ρ A3
W2 = 0.

(52)
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In a similar manner, introducing the following
dimensionless parameters

r =

√

I1
A1

, x =
W1

r
, y =

W2

r
, z =

W3

r
,

ωl =
π2

l2

√

EI1
ρ A1

, ωk =

√

k
ρ A1

, ωc =

√

c
ρ A1

, τ = wt,

β =
A1

A2
, γ =

I1
I2
, η =

A1

A3
, ζ =

I1
I3
, α = 0.25,

to the Eqs.(50)-(52) leads to the dimensionless nonlinear
vibration equations as

ω2 d2x
dτ2 +ω2

l B1 x+αω2
l x3

−ω2
l B2 y = 0, (53)

ω2 d2y
dτ2 +ω2

l B3 y+αω2
l y3

−ω2
l β B2 x−ω2

l βB2 z = 0,

(54)

ω2 d2z
dτ2 +ω2

l B4 z+αω2
l z3

−ω2
l η B2 y = 0, (55)

with B1 to B4 defined as

B1 = 1+
(ωc

ωl

)2
, B2 =

(ωc

ωl

)2
,

B3 = β
(1

γ
+2
(ωc

ωl

)2)

, B4 = η
( 1

ζ
+2
(ωc

ωl

)2
+
(ωk

ωl

)2)

.

With the initial conditions

x(0) = X1, y(0) = X2, z(0) = X3,

ẋ(0) = ẏ(0) = ż(0) = 0.
(56)

The initial approximations are selected by using the given
initial conditions as

x0(τ) = X1cos(ψ wbt),

y0(τ) = X2cos(ψ wbt),

z0(τ = X3cos(ψ wbt).

(57)

These initial approximations are trial functions and it used
to obtain more accurate approximate solutions of Eqs.(53)-
(55), where

R1,m(xm−1,ym−1,zm−1) = ω2 d2xm−1(τ)
dτ2 +ω2

1B1xm−1

+αω2
1x3

m−1−ω2
1βB2ym−1,

(58)

R2,m(xm−1,ym−1,zm−1) = ω2 d2ym−1(τ)
dτ2 +ω2

1 B3ym−1

+α y3
m−1−ω2

1βB2xm−1−ω2
1βB2zm−1,

(59)

R3,m(xm−1,ym−1,zm−1) = ω2 d2zm−1

dτ2 +ω2
l B4 zm−1

+αω2
l z3

m−1−ω2
l η B2 ym−1.

(60)

Now, the solution of themth-order deformation equations
becomem ≥ 1 becomes

xm(τ) = δmxm−1(τ)+ h̄1

∫ t

0

∫ t

0
R1,m dτ dτ , (61)

ym(τ) = δmym−1(τ)+ h̄2

∫ t

0

∫ t

0
R2,m dτ dτ , (62)

zm(τ) = δmzm−1(τ)+ h̄3

∫ t

0

∫ t

0
R3,m dτ dτ . (63)

In order to seek the periodic solution of Eqs.(53)-(55)
substitute the initial approximation (56) into
Eqs.(53)-(55) results in the following residuals

R1,0(ξ ) = (−X1Ψ 2ω2
b +ω2

l B1X1+0.75αω2
l X3

1

−ω2
l B2X2)cos(Ψωbξ )+0.25αω2

l )X
3
1 cos(3Ψωbξ ),

R2,0(ξ ) = (−x2Ψ2ω2
b +ω2

l B3x2+0.75αω2
l x3

2−ω2
l B2βx1

−ω2
l B2βx3)cos(Ψωbξ )+0.25αω2

l )x
3
2 cos(3Ψωbξ ),

R3,0(ξ ) = (−x3Ψ2ω2
b +ω2

l B4x3+0.75αω2
l x3

3

−ω2
l B2ηx2)cos(Ψωbξ )+0.25αω2

l )x
3
3 cos(3Ψωbξ ).

Here inΨ , the ratio of the nonlinear frequencyω to the
linear frequencyωb, is the unknown constant. Following
the same approach as above and also eliminating the
coefficient of cos(ψωbξ ) in the above system due to
avoiding the secular terms, results in the following
nonlinear system which can be easily solved using a
simple mathematical algorithm such as Newton-Raphson
technique

− (
Ψ
ω2

l

)x1ω2
b +B1x1+

3
4

αx3
1−B2x2 = 0,

− (
Ψ
ω2

l

)x2ω2
b +B3x2+

3
4

αx3
2−B2βx1−B2βx3 = 0,

− (
Ψ
ω2

l

)x3ω2
b +B4x3+

3
4

αx3
3−B2ηx2 = 0,

(64)

to calculate the linear vibration frequencies for TWNT. We
shall first substitute from (56) into Eqs.(53)-(55) without
considering the nonlinear terms in Eqs.(53)-(55), so that








ω2
l +ω2

c −ω2 −ω2
c 0

−βω2
c β (ω2

l
γ +ω2

c +ω2
k )−ω2 −βω2

c

0 −ηω2
c η(ω2

l
γ +ω2

c +ω2
k )−ω2









.





X1
X2
X3



=





0
0
0



 .

Then by setting the determinant of the above matrix equal
to zero, the frequency characteristic equation will be
obtained. the fundamental linear vibration frequency of
TWNT is the lowest root of the resulting equation.
Now, by using the given initial conditions (57), we can

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1682 M. M. Khader et. al. : Analytical Study for the Nonlinear Vibrations of...

−5 0 5
−2

0

2
x 10

6

h

x(
t)

 

 
HAM solution

−5 0 5
0

2

4
x 10

8

h

y(
t)

 

 
HAM solution

−5 0 5
−1

0

1
x 10

7

h

z(
t)

 

 
HAM solution

Figure 7.h curve ofx(t), y(t) andz(t) for TWNT.
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Figure 8. Approximate solution of TWNT for̄h=-1.25.

obtain the first components of the solution. Then the
approximate solution will take the following form

x(τ)∼= x0(τ)+ x1(τ) = [1− ( h1
6 )cos(τ)+ 1

36cos3(τ)± ...],
(65)

y(τ)∼= y0(τ)+ y1(τ) = [1− (19h2
6 )cos(τ)+ 1

36cos3(τ)± ...],
(66)

z(τ)∼= z0(τ)+z1(τ)= [
−h
36

cos3(τ)−
5
6

cos(τ)± ...]. (67)

It is noted that our approximate solutions converge at
(−2 ≤ h̄ ≤ 2). The explicit, analytic expression given by
Eq.(65)-(67) contains the auxiliary parameter̄h, which
gives the convergence region and rate of approximation
for HAM. However, the errors can be further be reduced
by calculating higher order approximations. This proves
that HAM is a very useful method to get accurate analytic
solutions to linear and strongly nonlinear differential

Figure 9. Effect of spring constantk on nonlinear amplitude-
frequency response curves of TWNT.

equations. It must be noted that HAM used here gives the
possibility for obtaining an analytical satisfactory solution
for which the other techniques of calculation are more
laborious and the results contain a great complexity.

The variation of the nonlinear amplitude-frequency
response curves of TWNT against the maximum vibration
amplitude for different spring constantsk is also
illustrated in figure 6. The material and geometric
parameters used are
c1 = c2 = 0.3 × 1012N/m2, l = 45nm, d0 = 0.96nm,
d1 = 1.64nm, d2 = 2.32nm and d3 = 3nm, clearly the
same behavior as above is indefeasible in the case of
DWNT. Due to convenience on calculating the nonlinear
free vibration frequency ω, the linear vibration
frequenciesωb(T Hz) of SWNT, DWNT and TWNT for
all cases are listed in Table 1.

Table 1: The linear free vibration frequencies of SWNT,
DWNT and TWNT in Figures 2, 4 and 6.

k(N/m2) SWNT: DWNT: DWNT:
0 0.128 0.116 0.111

107 0.138 0.122 0.117
108 0.209 0.170 0.156
109 0.536 0.410 0.365

4 Conclusion and remarks

In this paper, we implemented HAM to solve the problem
of the nonlinear vibrations of multiwalled carbon
nanotubes. The advantage of the method is that it does not
require any discretization, linearization or small
perturbations, leading to wide application in nonlinear
problems. This method can be easily extended to the
multiwalled CNTs with number of walls more than three.
It may be concluded that this methodology is very
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powerful and efficient technique in finding exact solutions
for wide classes of problems. It is also worth noting to
point out that the advantage of this methodology shows a
fast convergence of the solutions by means of the
auxiliary parameter,̄h. HAM is very easy applied to both
differential equations and linear or nonlinear differential
systems. The approximate solutions were almost identical
to analytic solutions of the nonlinear evolution equations.
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