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Abstract: In this article, the homotopy analysis method (HAM) is implemented for obtgisémi-analytical solutions to the problem
of the nonlinear vibrations of multiwalled carbon nanotubes embedded @taatic medium. A multiple-beam model is utilized in
which the governing equations of each layer are coupled with those ofjésead ones via the Van der Waals inter layer forces.
The amplitude-frequency curves for large-amplitude vibrations oflsinglled, double-walled and triple-walled carbon nanotubes
are obtained. The influence of changes in material constants of tlreisding elastic medium and the effect of changes in nanotube
geometrical parameters on the vibration characteristics are studiedrpadag the results with those from the previous work. Series
solutions of the problem under consideration are developed by meah&Mfand the recurrence relations are given explicitly. The
obtained numerical results show the rapid convergence of the serisged by the proposed method to the exact solution. Test
problems have been considered to ensure that HAM is accurate asidrgfiompared with the Adomian decomposition method.

Keywords. Nonlinear vibration, Carbon nanotube, Homotopy analysis method.

1 Introduction which provides us with a simple way to adjust and control
the convergence region of solution seri8][ Therefore,

It is well known that most of the scientific phenomena are HAM handles linear and nonlinear problems without any
modeled by ordinary or partial differential equations. @sSumption and restriction. Moreover, this technique does
Analytical solutions of these equations may well describenOt require any discretization, linearization or small
the various phenomena in science and nature, such dagrturbations. With ~ the rapid development of
vibrations, solitons and propagation with a finite speed.nano-technology, there appears an ever-increasing sttere
The homotopy analysis method is an analytical techniqueOf scientists and researchers in this field of science.
for solving nonlinear differential equations devised by Nano-materials, because of their exceptional mechanical,
Shi-Jun Liao in 1992 ([1]-[13]). This method has been physmal and chem|cal properties hayg been .the. main
successfully applied to solve many types of nonlineartoPic of research in many scientific publications.
problems in science and engineering by many authorlowadays, they are used as the substantial parts of
(41, [7]-[9]), and references therein. We aim in this work Nano-electronics, nano-devices, and nano-composites.
to effectively employ HAM to establish the semi O_ne of these _materlals attra_\cted great attention due to its
analytical solutions for the proposed nonlinear equationd!igh mechanical strength is carbon nano-tube (CNT).
([3]-[5], [10], [18]). By the present method, numerical CI\_ITs were discovered _by lijima in 1991. In spite of
results can be obtained with using a few iteratiohg[ Peing too small and having light weight, they have very
Moreover, HAM contains the auxiliary parametéy large Young's modulus in axial direction (nearly 1TPa).
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Undoubtedly, CNTs have the eligibility to be the new and 2.2 The mth-order deformation equation

most popular nano-material of this early part of the 21st

century. Since the vibration of CNTs are of considerableDefine the vector

importance in a number of nano-mechanical devices such

as oscillators, charge detectors, field emission devices an Un(t) = [Uo(t), Uy (t), ..., Un(t)]. ()

sensors. Many researchers have been so far devoted to t i . . .
problem of the vibration of these nano-materials.rbefﬁerentlatlng equationd) m times with respect to the

However, most of the investigations conducted on theembeddmg paramete, then settingy = 0 and dividing

I fi i - -
vibration of multiwalled carbon nano-tubes (MWNTS) g:?ir(:r gﬁgrggﬁgﬁ :SISgti(g%’SWG have the so-calleuth
have been restricted to the linear regime and fewer works q

were done on the nonlinear vibration of these materials. LIUn(t) — Sl 1 ()] = RO (U 8
For more details about this topic, seé]([[15], [16], [Un(t) = Omtm-1(1)} m{Um-1), ®
[21)). where
1 9™ N[@(tq)]

o D u —1) — - ) (9)
2 Basicidea of HAM m{lm-1) (m=1!  ogm™t  lg=0
To show the basic idea of HAM1[l], we consider the and 0 m< 1
following differential equation Om = { 1 m> 1. (10)

Flut)] =0, 1)

where F is a nonlinear operaton(t) is an unknown

function. For simplicity, we ignore all boundary and 3 I mplementation of HAM
initial conditions, which can be treated in the similar way.

In this section, we apply HAM to obtain the approximate
solution to the problem of the nonlinear vibrations of

2.1 Zeroth-order deformation equation CNTs.

Liao, _constructed the so-called zeroth-order deformation

equation 3.1 Case 1:Nonlinear vibration of the SWNT
(1-gL[@(t;q) —uo(t)] =ahF[@(t;a)], (2  Consider the SWNT of length, Young’s modulusE,

density p, cross-sectional ared, and cross-sectional
inertia momentl, embedded in an elastic medium with
material constank. The nonlinear vibration equation for
this CNT is in the following form 2]

whereL is an auxiliary linear operatotp(t) is an initial
guess,h is an auxiliary parameter ang € [0,1] is the
embedding parameter. Obviously, whes= 0 andq = 1,
it holds, respectively

dw *El kK mE

PO =w), LY =ut). @ o+ Ot o W 2o

w3 =0, (11)
Thus, asq increasing from 0 to 1, the solutiof®(t;q) der the transf i
various fromug(t) to u(t). Expanding®(t;q) in Taylor un erl € ran\z orma 'OHQS = »
series with respect to the embedding paramgtene has =1/ &, X=7F, W = {7/ ;& Wk=/pa, T= WL,
the above equation can be transformed to the following

®(t;q) = Uo(t) + Z Um(t)g™, (4) dimensionless nonlinear vibration equation
m=1 d2X
2 3_
where w WJrW%erawfx =0, (12)
tn(t) = = 09| )
" m dg"  lg=0 in which o = 0.25 andw, = /W2 + w2, is the linear, free

Assume that the auxiliary linear operator, the initial gues vibration frequency. With the initial conditions
and the auxiliary parametdr are selected such that the )
series 4) is convergent afj = 1, Then aj= 1 and by 8), x(0)=X, x(0)=0. (13)

the series4) becomes .
D By means of homotopy analysis method, we choose the

@ approximation solution
u(t) =Uo(t) + 3 Um(t). (6)
m=1 Xo(T) = XcoYwpT). (14)
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This initial approximation is a trial function and it is used
to obtain more accurate approximate solution of E2).(
Here ), is the ratio of the nonlinear frequency, to the 35001
linear frequencyw,, whereX is the maximum vibration 30001
amplitude. By means of HAM, we choose the linear
operator

4000

2500 -

2000 -

x(t)

9% (1;
tomal =220 Y voma, s
1000 -
where the operator t satisfies the relation
k[cicogt) + cpsin(t)] = O for some arbitrary constants
1, Cp, also we define the non-linear operator as of

-500 1 1 1 1 1 1 1
-20 -15 -10 -5 0 5 10 15 20
h

500

2 .
N(®(t;q)) = Wzacgi(zr,q) +wp @ +aw? @®, (16)
r Figure 1.h curve ofx(1) for SWNT.
using the above definitions, we construct the zeroth-order
deformation equation as follows

(1-qt[®(1;9) —x(1)] = gN[P(T;Q)]. (17)  Substituting the initial approximationl4) into Eq.(2)
results in the following residual
Obviously whemg = 0 andq = 1, we obtain

Ro(&) =(—XW2(Wp)? 4 (Wp)2X + 0.75a (w; )2X3).

?(1;0) =x0(1),  P(T;1) =X(1). (18) cos(Wwp€) -+ 0.25(w; )?) X3 cog 3%wi, ).

Therefore, as the embedding parametgrsrease from 0

to 1, @(1;q), varies from the initial guesg(7) to the  In order to ensure that no secular terms appear in the next

solution x(7). Expanding®(1;q) in Taylor series with iteration, the coefficient of cd¥w,&) must vanish.

respect ta Thereforey = \/1+ 2a(wi /wp)2X2.
o " Now, by using the given initial condition1d), we can
O(1;0) =xo(T) + ) Xm(T: )™, (19)  derive the first components of the solution. Then the
m=1 approximate solution will take the following form
where
, 1 9Mo(1;q) Xm(t) = Xo(t) +xa(t) + ..
Xm(T,Q) = ﬁ ﬁqm ‘q:O. (20) [ 1 i t ) ﬁ(225 q )
—coq—)— co
The initial guess and the auxiliary parametdrs are 20 80 300 80 (25)
properly chosen, the above is convergerg atl co§( ) ]
18000
T)+ z Xrms (21)
m=1
which must one of the solution of the original nonlinear
equation now we define the vector It is noted that our approximate solutions converge at

Xn = [Xo(T),%1(T),%2(T),...]. The mth-order deformation (-2 < h < 2) (see Figure 1). The explicit, analytic
equation is expression given by E@P) contains the auxiliary

parameteh, which gives the convergence region and rate

EXm(T) — OnXm-1(T)] = ARn(Xm-1(7)),  (22)  of approximation for HAM. However, the errors can be
_ o - further be reduced by calculating higher order
with the initial conditionsxm(0) = 0 where approximations. This proves that HAM is a very useful

method to get accurate analytic solutions to linear and

d®m-1(7) ly nonlinear differential ions. | be 1o
X 1) = W2 WX 1L aWRXS. .. (23 strongly nonlinear differential equations. It must be ote
Rm(m-1) arz T WoXmo1 b OWXn1 (23) o AM used here gives the possibility for obtaining an

Now the solution of thanth-order deformation equation analytical satisfactory solution for which the other

becomes results contain a great complexity.

Xon(t) = G2 (t) +ﬁ// )drdr.  (24)
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3.2 Case 2: Nonlinear vibration of the DWNT

0.05

The nonlinear vibration governing equation for a DWNT
is in the following form (], [21])

0.045 -

dwy (n4E|1 c1> +n4E

C1

— W3- W,=0

0.04} dt2 pALl4 + pPAL 4p14 ! pA1W2 '

g (26)
0.035

2w [ PEL, o mE c1
dt2 (pA2I4+pA2 >WZ+4pI4 Ewl_o’
0.03+ (27)

wherec; is the coefficient of the Van der Waals force
between the ifth) tube and the i{1 th) tube. By

%0 a0 20 10 ? 0 2 30 4 substituting the following dimensionless parameters
Figure 2. Approximate solution of SWNT fér= -0.5. _ /Ll _ Vﬁ y— %
|2 PA1
|1
T = wt, ==, a=025

1.8 T I

EQgs.@6)-(27) can be transformed to the following
dimensionless nonlinear system

W\ 2 d?x

314 (a) W—FBlX—‘y—aXS—Bzy:O, (29)
é w2 d?y
i (a) g tBaytay —Bix=0,  (30)

with By to B4 defined as

-1 (2)) mn (8

0

Maximum di i vibration i (X) (q
Figure 3. Effect of spring constamt on nonlinear amplitude- 1 5 ) 5
frequency response curves of SWNT. Bs— 3 (7 i (ﬁ) 4 (ﬂ) ), Bs—f (ﬁ) .
14 @ w @

With the initial conditions

X(0) =X, y¥(0)=X2, x(0)=y(0)=0. (31
To solve system29)-(30) by means of HAM, we choose
the initial approximations

The amplitude-frequency response curves for the - _
SWNT for different spring constantk are shown in Xo(T) = Xy.CO(YWDT),  Yo(T) = X2 COSYWpT).

Figure 2. The material and geometric parameters taker\1N h the I t (32)
here areE = 1.1TPa,p = 130Gkg/m?,¢ = 45nm, the € choose the linear operator

outer diameterd; = 3nm and the inner diameter 02 (1;0) .

do = 2.32nm. In this Figure 2 is the ratio of nonlinear ~ L[®i(T;q)] = T + @ (1;0), i=12 (33)

frequency to linear frequency as discussed earlier@aisd
the maximum vibration amplitude. It can be seen that agvhere the operator t satisfies the relation
the spring constark increases, the nonlinear frequencies £[C1cogt) 4 czsin(t)] = 0 for some arbitrary constants
tend to approach the linear ones especially when exceedy, C2, also we define the non-linear operators as

the value 16n/n?. It should be noted that from this

2
figure is exactly the same as the figure obtained via Ny (®y, @) = ( )2m+gl¢l(r;q)
incremental harmonic balance method (IHBMP] fand w ot2 (34)
Adomian decomposition methodl@], [17]). 4 aq;f(r;q) —Bo®,(1;Q),

© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 4, 1675-1684 (2014)www.naturalspublishing.com/Journals.asp NS 2 1679

16

Now, the solution of themth-order deformation equation

1 w\20%®,(1;0) : (42) atm > 1 becomes
Nz(q’l,‘bz)*(a) TJFE’B‘DZ(T:Q) (35) L
+ a®3(1:q) — Ba®1 (). Xn(T) = SmXem_1 + /O /0 Rym(Xm_1.Ym_1)d7dT, (45)

Using the above definitions, we construct the zeroth-order
deformation equations as follows

YilT) = G2+ t / Rom(Xm1,ym_1)d7dT. (46)
(1—q)t[®1(1;0) —%0o(T)] = gMNy [@1, P2,  (36)

In order to seek the periodic solution of EGQ)-(30)
substitute the initial approximations 3%) into
(1—q)t[D2(T;9) —Yo(T)] = qhoNo [@D1, @2].  (37)  EQs.@9)-(30) results in the following residuals

Obviously whemy = 0 andq = 1, we obtain
Bro(f) — (w2 2 2 2y3
DTO = 0l1), BT =yo(r), o o) T ()RS AT ) B
ml('[;]_) :X(T)’ ¢‘2(T;1) :y('[). - BzXz)COiW%E)—i—O.ZE)U(&]) )Xl COqS(’Uon)a

Therefore, as the embedding parametgrerease from 0 Rao0(&) = (—XoW? ()2 + (a1)?BaX +0.75a (@ ) °X3

to 1, ®1(1;q9) and @,(t;q) varies from the initial guess — 2BaX W 0.250 ()2 X3 cog 3W

%o(T), Yo(T) to the solutionx(t), y(1), respectively. _0.1 4 1)00% @¢)+0. _ (@)7)X; cos3¥ ).

Expanding @1(t;q) and ®,(t;q) in Taylor series with Here inY, the ratio of the nonlinear frequeney to the

respect tay linear frequencyw,, is the unknown constant. Following
the same approach as above and also eliminating the

L e m L e m coefficient of coéWw,&) in the above system due to
‘Dl(T,Q)—nZOXm(T)q ; ‘Dz(T,Q)—WZOym(T)q : avoiding the secular terms, results in the following
(39)  nonlinear system which can be easily solved using a
where simple mathematical algorithm such as Newton-Raphson
" technique
(i) = o L) v ;
m! mdqm a=0 (40) 7(72)x1w§+51x1+2ax13f52x2:o,
ym(r.q)_id <Dz(r;q)‘ “ (47)
T ml m -0 W 3
moq" a0 — (— )Xot +BaXo + 21orxz3 —BsX; =0,

The initial guess and the auxiliary parametdrsare

properly chosen, the above seri@9)(are convergent at {5 calculate the linear vibration frequencies for DWNT.
q=1 We shall first substitute fron3() into Egs.@9) and B0)
without considering the nonlinear terms in EG9)¢(30),

X(T)Zioxmm, y(r)zioym(r), (41)  sothat

2. 2 2 2
+ R -w -
which must one of the solution of the original nonlinear (q “r 2 of 2w° 5 a)2> (§1> = (8) ,
equation, now we define the vectors —Bax  B(5 +wp+ax)— 2

Xn = [%o(T),X1(T),%2(T),...], Yn=I[yo(T),y1(T),y:(1),..]. then by setting the determinant of the above matrix equal
to zero, the frequency characteristic equation will be
Themth-order deformation equations are obtained. The fundamental linear vibration frequency of

DWNT is the lowest root of the resulting equation.
t [Xm(T) — OmXm-1(T)] = MRy m(Xm-1,Ym-1), (42)  Now, by using the given initial conditions3) in the
E[Ym(T) — dmym-1(T)] = R2Rom(Xm-1,Ym-1), recurrence formula 46)-(46), we can obtain the first

) - . components of the solution, then the approximate solution
with the initial conditions¢,(0) = 0 andym(0) = 0, where  \yjj| take the following form

Rim(Xm-1,Ym-1) = (%)2 % +BiXm-1 (43) Xm(T) = XO(T)h+ X (T) + ... . us)
+ax3, 1~ Baym1, = (1= )cos(1) + ZocoS(1) £ .,
@\ 2 d%ym1(7) Ym(T) = Yo(T) +Ya(T) + ...
Rem(n-1.¥m-1) =) =gz + By (44) 10n, @9)

1
=[(1— =—=~coqT) + —hboxcos3(1) + ...
Cay: L Baxea, [( 6 1) 36 (1)£..]

© 2014 NSP
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i —_— k=0

! u
5P d ' — — k=10 4
g - -
ok | 13 1 - - -

Nonlinear frequency ratio (y)

0

Maximum dimensionlegs vibration amplitude (X)‘
Figure 6. Effect of spring constamt on nonlinear amplitude-
frequency response curves of DWNT.

-500

-1000

y(t)
w >.

Figure 4.h curve ofx(t) andy(t) for DWNT.

In Figure 4 shows the variation of the nonlinear
amplitude-frequency response curves of DWNT against
gor ‘ the maximum vibration amplitude for different spring

. ' constantk. The material and geometric parameters used
sor- to obtain this figure are, E = 1.1TPa, p =
. . 1300kg/m?, ¢ = 0.3 x 10“N/m?, | = 45nm,
oo ] do = 1.64nm, d; = 2.32nm andd, = 3nm. It can be seen

w0l that the effect of spring constant on nonlinear vibration of

DWNT is similar to that emerged in the case of SWNT

g S0l (Figure 2) and this figure is exactly the same figure as that
B N obtained via (IHBM) and Adomian decomposition
10} ] method (6], [17]).

3 5 3.3 Case 3: Nonlinear vibration of a TWNT

Toft

Figure 5. Approximate solution of DWNT fdr= -1.5.

The nonlinear vibration governing equations for TWNTs
are in the following form (@], [19], [20])

d2W1 7'[4E|1 C1 7'[4E 3 C1

e +(pA1I4 + pAl)W1+4pl4w1 pAl\Nz_o,
It is noted that our approximate solutions converge at (50)
(-2 < h < 2) (see Figure 3). The explicit, analytic
expression given by Egib)-(46) contains the auxiliary
parameterh, which gives the convergence regibnand W, TElL, o Co
rate of approximation for HAM. However, the errors can e + AR T oA oA, )W
be further be reduced by calculating higher order PP phe Phe (51)
approximations. This proves that HAM is a very useful mE 3 C C2 Ws =0

method to get accurate analytic solutions to linear and + 401472 pAy ! PA,
strongly nonlinear differential equations. It must be wote

that HAM used here gives the possibility for obtaining an

analytical satisfactory solution for which the other d2Ws  PEl; ¢ & K
techniques of calculation are more laborious and the a2 +( A |4+ A +—A+—A)
results contain a great complexity. PR3 pRs PR3 PAs

4p147°  pAg

Ws

(52)
+
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In a similar manner,
dimensionless parameters

introducing the

_/h W W W
r= A17 X= r7 Y— r7 Z= r.7
m_f Ely o — ko Y B
12\ pAL’ PA’ V pAL ’
A A
B—A, V=1 n—A3, Z_|37 a = 0.25,

following Now, the solution of thenth-order deformation equations

becomean > 1 becomes

t t

Xm(T):(Smefl(T)JFﬁl/O/ORl,dedT; (61)
t ot

Yon(T) = Brym_1(T) + /0 /0 Romdrdr,  (62)
t t

n(1) = Onm 1(1) +1 | [ Ramdrar.  (63)

to the Eqs§0)-(52) leads to the dimensionless nonlinear In order to seek the periodic solution of E&R)-(55)

vibration equations as

2
o2 3% + wPBix+ aw?x® — wfByy =0,

a2 (53)

d?
WP g+ @ Bay+ awfy’ - P Box— BBz =0,

(54)
, d%z 2 2 2
W' gzt @Bzt ag Z — w’nByy=0, (55)
with B, to B4 defined as
-~ W\ 2 (W2
N GO O
B 1 [N 2 B 1 [N 2 Wy 2
Bs*‘*(;”(a) ) Ba=n(z+2(5) +(5))
With the initial conditions
X0)=X;, Y0 =X,  z0)=Xs, (56)

X(0) = y(0) = 2(0) = 0.

The initial approximations are selected by using the given

initial conditions as
Xo(T) = Xy cog Y wpt),
Yo(T) = Xacog wit),
20(T = XgCog YWht).

(57)

These initial approximations are trial functions and itdise

to obtain more accurate approximate solutions of B@- (
(55), where

d?xm_1(T
Rl.m(xmfhymfl, mel) = w? %U + (A)lzlem,l
+awdx 1 — wfBBYm 1,
(58)
d?ym_1(T
Ro.m(Xm-1,Ym-1,Zm 1) = W* ydmle() + 0 Baym-1
+ayd, 1 — w?BBXm-1— W BBz 1,
(59)
d?z,
Rsm(Xm-1,Ym-1,Zm-1) = w? dz;nz Ly cqu4zm_1 (60)

+aaf 7, 1 — @nBaym1.

substitute the initial approximation 5¢) into

Eqgs.63)-(55) results in the following residuals

Rio(&) = (X W2 + wfB1 Xy + 0.75a af’ X3
— w?ByXo) cog Wan&) + 0.25a ) X3 co 3Wan &),

Ro0(&) = (—xW2wf + wBgxp + 0.750 wPX3 — wfBofxy

— W?B2Pxz) cog Wané) + 0.250 wi)x3 cog 3Wawné ),
R30(&) = (—xa¥W?wf + w’Baxa +0.75a PG

— w?Banxp) cog Wané ) +0.250 wf)x3 cog 3W ).
Here inW¥, the ratio of the nonlinear frequeney to the
linear frequencyw,, is the unknown constant. Following
the same approach as above and also eliminating the
coefficient of cosyw,&) in the above system due to
avoiding the secular terms, results in the following
nonlinear system which can be easily solved using a

simple mathematical algorithm such as Newton-Raphson
technique

W 3
— (Q)xlwg—k Bix1 + ZOX% —Boxo = 0,

' 3
- (E)sznf+ Baxz + ZO’XS* Bofx1 —Bafxz =0,

% 3
- (&)xyug +Baxs + Zaxg —Banxo =0,
(64)

to calculate the linear vibration frequencies for TWNT. We
shall first substitute from5g) into Eqgs.63)-(55) without
considering the nonlinear terms in EGR)-(55), so that

W + wf — ? —wp 0
~Bu B+ @+ ap) - w? i ~Bawk
0 —neg N5 + @@+ o) - o

(5)-()

Then by setting the determinant of the above matrix equal
to zero, the frequency characteristic equation will be
obtained. the fundamental linear vibration frequency of
TWNT is the lowest root of the resulting equation.

Now, by using the given initial condition&7), we can

© 2014 NSP
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1.35

w

HAM solution " T | | — k=0 .
= = k=10,

------ k=107
—== k=10 A
#q
P

v
3]

[N

o

HAM solution

x
oy
o

Nonlinear frequency ratio (y)

5

!
o
Tof

x

o

.
=)
5

T
HAM solution
2 of 4 1
N /d 0
.

5

1 amplitude (X)
Figure 9. Effect of spring constamt on nonlinear amplitude-
frequency response curves of TWNT.

0
h

Figure 7.h curve ofx(t), y(t) andz(t) for TWNT.

, equations. It must be noted that HAM used here gives the

x 10

20 ‘ ‘ I Er— possibility for obtaining an analytical satisfactory sain
R for which the other techniques of calculation are more
15¢ 1 laborious and the results contain a great complexity.

10

The variation of the nonlinear amplitude-frequency
response curves of TWNT against the maximum vibration
amplitude for different spring constantk is also

X().y(1),2(t)

ofoggggw@ww ©9999000000001 illustrated in figure 6. The material and geometric
¥ 3 parameters used are

i ‘ ‘ ‘ c1 = G = 0.3 x 10"°N/nm?, | = 45nm, dop = 0.96nm,

e 0 . % 100 d; = 1.64nm, d, = 2.32nm and d3 = 3nm, clearly the

same behavior as above is indefeasible in the case of
DWNT. Due to convenience on calculating the nonlinear
free vibration frequency w, the linear vibration
frequenciesiw,(THz) of SWNT, DWNT and TWNT for

obtain the first components of the solution. Then the@ll cases are listed in Table 1.
approximate solution will take the following form

Figure 8. Approximate solution of TWNT fdr=-1.25.

Table 1: The linear free vibration frequencies of SWNT,

X(T) = Xo(T) +xa(T) = [1— (%)COE(T) + 35c08(1) i(...],) DWNT and TWNT in Figures 2, 4 and 6.
65
k(N/n?) | SWNT: | DWNT: | DWNT:
y(1) 2 yo(T) +y1(1) = [1— (2F2)cog 1) + LcoS (1) £ ...], 0 0.128 | 0.116 | 0.111
(66) 107 0.138 | 0.122 | 0.117
h 5 108 0.209 | 0.170 | 0.156
21) 2 2(1)+2(1) = [£cos°’(r)—écos(r)i...]. (67) 10° 0.536 | 0.410 | 0.365

4 Conclusion and remarks

It is noted that our approximate solutions converge atin this paper, we implemented HAM to solve the problem
(—2 < h < 2). The explicit, analytic expression given by of the nonlinear vibrations of multiwalled carbon
Eq.(65)-(67) contains the auxiliary parameté; which nanotubes. The advantage of the method is that it does not
gives the convergence region and rate of approximatiorrequire any discretization, linearization or small
for HAM. However, the errors can be further be reducedperturbations, leading to wide application in nonlinear
by calculating higher order approximations. This provesproblems. This method can be easily extended to the
that HAM is a very useful method to get accurate analyticmultiwalled CNTs with number of walls more than three.
solutions to linear and strongly nonlinear differential It may be concluded that this methodology is very
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powerful and efficient technique in finding exact solutions [16] L. Shuicai and Shi-Jun Liao, An analytic approach to solve
for wide classes of problems. It is also worth noting to multiple solutions of a strongly nonlinear probleApplied
point out that the advantage of this methodology shows a  Mathematics and Computation, 169, 854-865 (2005).

fast convergence of the solutions by means of the[l7]N. H. Sweilam and M. M. Khader, Approximate
auxiliary parameteffy. HAM is very easy applied to both solutions to the nonlinear vibrations of multiwalled carbon
differential equations and linear or nonlinear differahti nanotubes using Adomian decomposition methplied
systems. The approximate solutions were almost identica] _Mathematics and Computation, 217, 495-505 (2010).

to analytic solutions of the nonlinear evolution equations [18] N- H. Sweilam and M. M. Khader, Semi exact solutions for
the bi-harmonic equation using homotopy analysis method,

World Applied Sciences Journal, 13, 1-7 (2011).

[19] J. Yoon, C. Q. Ru and A. Mioduchowski, Vibration of an
embedded multiwall carbon nanotuliggmposites Science
and Technology, 63, 1533-1542 (2003).

[20] J. Yoon, C. Q. Ru and A. Mioduchowski, Noncoaxial
resonance of an isolated multiwall carbon nanotube,
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