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Abstract: The maximum independent set Problem is to find a biggestveriependent set in a given undirected graph. Itis a vitally
important NP problem in graph theory and applied mathematiaving numerous real life applications. It can be difflgidolved by
the electronic computer in exponential level time. Sinmaity in previous studies DNA molecular computation usulaé used to solve
NP-complete continuous path search problems (for examplIe, ktaveling salesman problem), rarely for NP problemk discrete
vertex or path solutions result, such as the maximum indigr@nset problem, graph coloring problem and so on. In thiepave
present a new algorithm for solving the maximum independetproblem with DNA molecular operations. For an undirégeph
with n vertices, We reasonably design fixed length DNA strandsessmting the vertices and edges of graph, take approptéegis s
and get the solutions of the problem in proper length ranguglﬁ(nz) time. We extend the application of DNA molecular operations
and simultaneity simplify the complexity of the computatio
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1 Introduction Lipton [3] demonstrated that Adleman’s experiment could
be used to figure out the NP-complete satisfiability (SAT)

DNA computing is a newly emerging crossdisciplinenary problem (the first NP-complete problem). In're(;ent years,
science that uses DNA molecular biotechnologies to solvdots 0f papers have occurred for designing DNA
conundrum problems of computer science andpProcedures and algorithms to solve various NP-complete
computational mathematics. Huge storage capacity an@foblems £,5,6,7,8,9,10. However, most of the
massive parallelism are two important advantages ofPrevious works in DNA computing are concentrated on
DNA computation. DNA computing can execute billions Solving the path search problems that the optimum results
of operations simultaneously. The massive parallelism of2"€ continuous head-to-tail ligation edges or vertices set
DNA computing comes from the large number of FOr example, Lee 1] first designs different length's
molecules which chemically interact in a small volume. Strands representing paths values and cities, takes
DNA also provides a huge storage capacity since theynolecular operations to generate strands standing for all
encode information on the molecular scale. MeanwhileP0ssible paths, then uses biochemical techniques, such as
DNA has a great application prospect for having wide denaf[ura'uon temperature grgdlent polymerase _cham
range of abundant resources. NP (nondeterministi¢@action and temperature gradient gel, to get the optimum
polynomial time) problems are a class of mathematicalsolutions of the traveling salesman problem. To splve the
problems which have most likely exponential complexity, Shortest path problem, NarayanaiZ] respectively

for which no efficient solution has been found y&k [As carries out DNA reaction to get the strands for a list of
the pioneering work for DNA computing, Adlemag][  Series paths, then chooses the shortest length strands as

problem of sizen in O(n) steps using DNA molecules. e€searches have some insufficient factors. One is that the
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2 The Adleman-Liption M odel

Bio-molecular computers work at the molecular level.
Because biological and mathematical operations have
some similarities, DNA, the genetic material that encodes
for living organisms, is stable and predictable in its
reactions and can be used to encode information for
mathematical systems.

DNA is the major information storage molecule in
living cells, and billions of years of evolution have tested
and refined both this wonderful informational molecule
and highly special enzymes that can either duplicate the
information in DNA molecules or transmit this

Fig. 1. An undirected graph G with 6 vertices information to other DNA molecules.
A DNA(deoxyribonucleic acid) is a polymer, which is
strung together from monomers called

deoxyribonucleotides 1{]. Distinct nucleotides are

strands for the possible paths are usually very long, whilé€tected only with their bases. Those bases are,
too long DNA strands can lead to error-prone in annealingrESpe.Ct'VEIy’ abbrewate_zd as adenine (A) , guanine (G),
and separation procedures using modern biotechnique%.ytos'ne (C), and thymine (T). Two strands of DNA can
The other is that previous research problems are alf°'M (under appropriate conditions) a double strand, if the
optimum path search problems, so that the possibIéESpeC“Ve bases are the Watson-Crick complements of
solutions can be relatively easily represented by DNAeaaCtEh%tger:? rr;arl]tgheseTgand %g‘atg?ﬁgle%; afz?rr;t}i] ds
strands. While the maximum independent set Problem is ’ g

discrete vertices set problem with discontinuous path. Sc?‘7 CTGCAGTACACE and 3GACGTCATGTGE can

; ; ; ; double strand. We also call the strand
representation of discrete data in DNA strands is an'0'™Mm &
important issue toward expanding the capability of DNA 3 GACGTCATGTGE as the complementary strand of

: L 5'CT GCAGTACACG and simply denote
computing to solve many optimization problems. y
The maximum independent set problem is a problem GACGTCAT GT GGoy CT GCAGTACACCThe length

of central importance in graph theory and computationalOf a 5|_ngle stranqled DNA is the ”“”ﬁber ‘.)f nucleotides
Sciences. It is intractable to solve. Given a grahhan comprising the single strand. Thus, if a single stranded

independent set is a sub&of vertices inG such that no DNA includes 20 nucleotides, it is called argér. The

two vertices inSare adjacent (connected by an edge). The!ength of a double stranded DNA (where each nucleotide

maximum _independent set problem is to find an is base paired) is counted in the number of base pairs.

independent set with the largest number of vertices in aThUS' if we make a double stranded DNA from a single

given graph. This problem is NP-hard, and it is stranded 20 mer, then the length of the double stranded

. . . - . DNA is 20 base pairs, also written as 20 bp.
considered unlikely to exist an efficient algorithm for ”
solving it up to now. In this paper, a new biocomputing The DNA operations proposed by Aldema?| pnd

procedure based on the research of Adlemanand Lipton [3] are described below. These operations will be

Lipton [3] is introduced for figuring out solutions of the used for figuring out solutions of the maximum

maximum independent set problem: Given an undirectecg'gIEpendir.'tt set d pl_r?;?l?mt tmb _th|s tpaflper.l Tlhe
graphG — (V,E) with vertex seV — {vi,Va, - ,va} and eman-Lipton model: A (test) tube is a set of molecules

~ Co ; - of DNA (i.e., a multi-set of finite strings over the alphabet

edge se'r,E —{ajlt=i<j=n}an lnd-epen.dent set I,S a {A,C,G,T}). Given a tube, one can perform the following
subsetV C V such that for any vertices in subsét operations:
afe.n’t adjacent (c'onnec'ted by an edge). A indepgndent set (1) Merge (Tp, T»): for two given test tubedy, Ty, it
V' is to be a maximum mde/pendent set 9f grﬁ/)/hf for stores the uniofi; JT» in T1 and leaved, empty;
any vertex independent st C V with [V'| > [V"|. For (2)Copy(T1, T2): for a given test tub@, it produces a
instance, the undirected graghin Fig. 1 defines such a test tubel, with the same contents 35 ;
problem. It is not difficult to find that the vertex set (3)Detect (T) given a test tub@, it outputs "yes” if T
{Vv2,v3,V5,V6} is the solutions to the maximum contains atleast one strand, otherwise, outputs "no”;
independent set problem for gra@hin Fig. 1. (4) Separation(T1, X, T,): for a given test tubd; and

The rest of this paper is organized as follows. Ina given set of stringsX, it removes all single strands
Section 2, the Adleman-Lipton model is introduced in containing a string irX from Ty, and produces a test tube
detail. Section 3 uses a DNA molecular algorithm for T, with the removed strands;
solving the maximum independent set problem and the (5) Selection(Ty, L, T,): for a given test tub&; and a
complexity of the proposed algorithm is described. We given integelL, it removes all strands with lengthfrom
get conclusions in Section 4. T1, and produces a test tubig with the removed strands;
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(6) Cleavage(T, yo\1): for a given test tubd and a
string of two (specified) symbolgi, it cuts each double

P 70} %1
strand containin
{V@Vl

] in T into two double strands as

follows:
aoYoY1Po aoyp | | Vabo |.
a1y6YiPr ao¥o |’ | ViBo |’

(7)Annealing (T)for a given test tub&, it produces all
feasible double strands ih. The produced double strands
are still stored inT after annealing;

(8) Denaturation (T) for a given test tubeT, it
dissociates each double strand T into two single
strands;

(9) Ligation (T} for a given tubeT, the operation is
used to ligate together the strandsin

(10)Discard (T) for a given test tub@, it discards the
tubeT,;

(11)Read (T) for a given tube€T, the operation is used

design DNA stringX with t-mer length. Let
P={0,1,#A1,Bn#,ABx_1lk=2,3,--- .n},
Q= {#BIA.BOALk=1,2--n},
R={yjll<i<j<n},
S={X}.

For a graph withn vertices, every possible subset of
the vertex setv can be expressed by m&digit binary
number. A bit set to 1 represents the vertex in the subset,
and a bit set to 0 represents the vertex out of the subset.
For example in Fig. 1, the subséi,,v4,v5} can be
expressed by the binary number 010110. In this way, we
transform all possible subsets ¥fin a n-vertex graph
into an ensemble of alt-digit binary numbers. We call
this the data pool.

to describe a single molecule, which is contained in the (1)We choose all possible sets of vertex in graph.

tubeT. Even if T contains many different molecules each

encoding a different set of bases, the operation can give an

explicit description of exactly one of them;

(12)Append (T,Z)for a given test tub& and a given
short DNA singled strand it append<Z onto the end of
every strand in the tubg.

Since these twelve manipulations are implemented

with a constant number of biological steps for DNA
strands 14], we assume that the complexity of each
manipulation i<O(1) steps.

3 DNA algorithm for the maximum
independent set problem

For a given undirected graphG = (V,E),
V = {wlk = 1,2,...,n} is vertex set and
E={e,;/1<i<j<n}isedge set. Some verticesand
vj can be connected by the edgg (i < j) in graph. We
let [E| = mandm< n(n+1)/2. At the same time, the
graph processed in this paper has no self-loops.

In the following, the symbols #,0,1,A, By
(k=1,2,...,n) denote distinct DNA singled strands with
same length, say-mer ¢ can choose a small integer).

(1-1)Merge(P,Q);
(1-2)AneealingP);

(1-3)Ligation(P);

(1-4)Denaturatior{P);

(1-5)SeparatiofiP, {#A1}, T1);

(1-6)Discard(P);

(1-7)SeparatiofiTy, {Bn#},P).

After the above seven steps of manipulations, the
singled strands in tube will encode all possible sets
of vertex. For example, for the graph in Fig. 1, we
have singled strands:

#A11B1A21BoA30B3A41B4As0B5A61B6# € P

which denotes the set of verteXvi,vo,va,Ve}
corresponding to the binary number 110101. This
operation can be finished i@(1) steps since each
manipulation above works i®(1) steps.

(2)Each singled strand in tub® denotes one possible
vertex set after the first step. While the maximum
independent set problem require that any vertex
shouldn’t be connected with other vertices in a same
set by an edge. So we should check all the vertex sets
whether to satisfy the above restrictive condition. If
&,j € E in graph, We should discard the strands which

Obviously the length of the DNA singled strands greatly
depends on the size of the problem involved in order to
distinguish all above symbols and to avoid hairpin
formation [L5]. Then in the below operations, we use the
distinct DNA singled strands symbolsAOBy,
Al1By(k=1,2,...,n) to denote the vertex, with A 1By

for v including in the vertex set, whilé0By for not.
Simultaneity the symbol # is the signal of division
between different vertex sets. We denote DNA singled
strandsy; ; to encode the edge j connecting by the
verticesv; andv; with length oft-mer if there exists the
edgeeg j in graph G. For distinguishing whether some
vertices belonging to a vertex set or not, we meantime

both verticesv; and vj are in the same set. For
example in Fig. 1, the singled strands
#A11B1A20B2A30B3A41B4A51B5A:0Bgt

(representing the set of vertdxi,vs,Vvs}) should be
discarded for the vertices andvs in the set can be
connected by edgeys € E. Only so we can choose
all possible vertex independent sets in graph.

Fori=1toi=n-1
Forj=i+1ltoj=n
(2-1)SeparatioriR, {yi j}, T2);
(2-2)If(Detec(Ty))
Then

(@© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

2364 NS 2 Z. Wang et. al.: Solving the Maximum Independent Set Protidased...

(2-3)Discard(Ty); worst conditions is that the algorithm stop lat n,
(2-4)SeparatioiP, {A1B; }, Ts); thus this operation can be finished less tldn) steps
(2-5)SeparationiTs, {Aj1B}, Ts); since each single manipulation above worksO(i)
(2-6)Discard(Ts); steps.
(2-7MergeP, T3); (5)Finally the ‘Read operation is applied to giving the
(2-8)Discard(Ts). exact solutions to the maximum independent set
End for problem. For example, for the graph in Fig. 1, the
End for maximum independent set i$vy, V3, V5, Ve}. This

operation works in O(1) steps.
After the above operations, the singled strands in tube (5-1)ReadTs);
P are all vertex independent sets. Meanwhile we use ) )
two “For” clauses, thus this operation can be finished ~The following theorem tells that the algorithm
in O(n2) steps since each single manipulation aboveProposed above really can get solutions of the maximum
works inO(1) steps. independent set problem i®(n?) steps using DNA
(3)The maximum independent set problem should be dnolecules.

biggest vertex set which satisfies the independent set Theorem 1. The solutions of maximum independent

restrictive condition. SQ we choosg the maximum set problem for a graph with n vertices can be figured out
vertex independent set in all vertex independent sets;

2 .
If a vertexy; in the vertex set, we append additional |Snu eorcggrrz u?itneps using  DNA  molecules  parallel
strandX at the end of previous strand in order to find P puting.
the optimum strand solutions. For example, for the

graph in Fig. 1, the singled strands Proof. After the operations of first step, all the singled

strands in tubé® denote all possible sets of vertex. Then

#A10B1A,1B2As0B3A,0B4As1B5A:1Bs# the strands can be described:
in P represent containing the verticE®, vs,vs}, SO #A121B1A2ZBy - AzBi - AnZnBn# Zc=0 or 1
we append stran¥ three times at the previous strands

to After the operations of second step, all the strandP in

denotes one possible vertex independent set. In the first
instance we reasonably design the length @#By,0,1
andX, For

A= 1Bkl = [I#] = [lO]] = [[2]| = [|z] = [IX]| = t

#A10B1A21B2A30B3A410B4A51B5As1Bs#X X X

This is done by the following manipulations:
Fork=1tok=n

(3-1)SeparatiofiP, { A 1By}, Ts);

(3-2AppendTs, X); So we defineS as the strands after the third step. Ti&n
(3-3MergeP, Ts); can be described:

(3-4)Discard(Ts).

End for #A121B1A2ZBs - - - Ay By - - - AnznBr#EX - - - X

In the above operation, we use one “For” clause, thu
this operation can be finished @(n) steps since each
single manipulation above works @(1) steps.

(4)We take out those singled strandsRnwith biggest
length, which represent the solutions to maximum
independent set problem. For example, for the graph /S|

SThe numberp of appendingX times is decided by the
existing vertices information on the strands. Due to the
possible times of containing verticesy information is
between 1 and, So

in Fig. 1, the singled strands i with largest length =|[#|+|ALl]+ [|ze|| +|[Be| [+ [|A2]| + || 22|| + [|B2f| + - - - +
are Al 1zl |+ {An [ [[#] 4 [X][ -+ [[X]]
n n n
#A10B1A21B2A31B3A1 1B4AS1B5AGOBEHX X X X =2ll#l+ 3 A+ Y lzdi+ Y 1B+ plIX]|
K=1 K=1 K=1

Therefore, solutions to maximum independent set — (3n+2)t+ pt
problem for the graph in Fig. 1 arév,,vs,vs,Vs}

hich contain four vertices w0=p=n
Fork=110k—n | L (@142) < 9] < (3n+ 240
(4-1)SelectionP, (3n+ 2)t+ kt, Tp);
(4-2)If(Detec(Tg)) So the length of strands which denote containing all the
Break; vertices information must be betwe&n+ 2)t and(3n-+
End for 2+ n)t. So we can get the solution in step 4 in appropriate

In the above operation, we use one “For” clause, thelength range.
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Besides,the manipulates of algorithm can be entirely{7] S. Kamio, A. Takehara, A. Fujiwara, Procedures for
finished in finite operations. Such as step (1), (59{1), computing the maximum with DNA strands, in: Humid
step (4) less tha®(n), Simultaneity step (2) i®(n?) and R. Arabnia, Youngsong Mun (Eds.), Proceedings of the
step (3) inO(n). In conclusion, We can get the solution International Conference on DNA Based Computers, (2003).

of maximum independent set problem withvertices in  [8] W.X. Li, D.M. Xiao, L. He, DNA ternary addition, Applies
o(nZ)_ Mathematics and Computatiot2, 977-986 (2006).

[9] D.M. Xiao, W.X. Li, J. Yu, X.D. Zhang, Z.Z. Zhang, L.
He, Procedures for a dynamical system on 0,1n with DNA
molecules, BioSystem84, 207-216 (2006).

[10] X.L. Wang, Z.M. Bao, J.J. Hu, S. Wang, A. Zhan, Soling

the SAT problem using a DNA computing algorithm based

on ligase chain reaction, BioSysterf4, 117-125 (2008).

4 Conclusion

In this paper, we present DNA algorithms for solving the
maximum independent set problem based on biologicahl]J Y. Lee, S.-Y. Shin, T.-H. Park, B.-T. Zhang, Solving

opere_ltlons in the Adleman-Lipton quel. The proposed traveling salesman problems with DNA molecules encoding
algorithms have two advantages. Firstly, the proposed . merical values, BioSystenizs, 39-47 (2004).

algorithm actually has a lower rate of errors for 1191 A  Narayanan, S. Zorbalas, et al., DNA algorithms for
hybridization because we generate fixed reasonable DNA  computing shortest paths, in: J.R. Koza (Ed.), Proceedifigs
sequences for generating the solutions of the problem. the Genetic Programming 1998, Morgan Kaufmann, 718-723
Secondly, the proposed algorithms can worksOfm?) (1998).

steps for the maximum independent set problem of ar[13] R.M. Karp, Reducibility among combinatorial problens
undirected graph witim vertices, Comparing exponential R.E.Miller, J.W. Thatcher (Eds.), Complexity of Computer
level time by electronic computer. All our results in this ~ Computation, Plenum Press, New York, 85-103 (1972).
paper are based on a theoretical model. However, th¢l4] M. Yamamura, Y. Hiroto, T. Matoba, Solutions of shottes
ability to perform complex operations in solution might ~ path problems by concentration control, Lecture Notes
help us learn more about the nature of computation and Computer Science340, 231-240 (2002).

lead to the development of better DNA based [15] S.-Y. Shin, B.-T. Zhang, S.-S. Jun, et al., Solving &g

problems. Angeline (Ed.), Proceedings of the Congress on Evolutipnar

Computation 1999, IEEE Press, 994-1000 (1999).

[16] G. Paun, G. Rozeberg, A. Salomaa, DNA Computing,
Springer-Verlag, (1998).
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