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Abstract: High-order consensus, in which individual high-order dynamic ureegpkin pace with each other in a distributed fashion,
depends both on the feedback gains of the protocol and on the preprties interaction network. By employing a frequency domain
method, we explicitly derive analytical equations that clarify a rigoromneation between the stability of general high-order consensus
and the system parameters such as the network topology and feedtiaskldsing the derived consensus polynomials, the general
sufficient and necessary stability criterion is obtained for high-ordesensus networks of arbitrary topology. Furthermore, a sufficient
condition of desirable time complexity for high-order consensus is diyegxploiting the topology properties of underlying networks.
Numerical simulation results are provided to demonstrate the effectiseri®ur theoretical results.
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1 Introduction assignment, air traffic control, and many othet8, 14,
15,16,17].

It is noticed in the literature that most consensus

Recent years have witnessed vibrant advances in ouprotocols focus on the case where all the dynamic agents
understanding of distributed cooperative control for ©0Me to consensus about the value of the so-called
dynamic networks 1,2,3,4,5,6]. For coordination Consensus va_nable_l,[?]. No matter whether the
strategies to be successful, many issues must b&ONSensus vangble is a yector or nqt, such consensus
addressed. Among these different issues, the research difotocols are in fact first-order, since the typical
shared information of interest in the network of dynamic cOnsensus protocol adjusts the first derivative of the
agents facilitates significantly the distributed coordi ~ CONSensus variable for each agent based on the consensus
[4,7,8,9,10,11,12]. Therefore, an important issue for yarlable of its neighbors. _Desplte thelr_ Wldesp_re_ad
coordination is to design effective protocols so that theimportance, there has been little work dealing explicitly
dynamic agents in the network are able to converge to &Vith higher-order consensus seeking processes on
consistent sense or view of the shared information offMultiagent networks 2,12,18,19. Under various
interest in the presence of limited information exchangetopPological and communication condition settings, these
and communication time-delays. Although originally féw examples show the convergence conditions that
studied in the field of computer science (particularly in 9uarantee the second-order or third-order consensus, but
distributed computation and automata), the consensuBrovide neither a generic picture nor systematic insight
problems discussed above have been studied extensiveljto the connection between the stability of the general
in the context of distributed coordination of networks of high-order consensus and the system parameters such as
dynamic agents partly due to the potential broadthe network topology and feedback gains.

applications in various areas including congestion céntro  The motivation for employing high-order integrator to

in communication networks, cooperative control of model the intrinsic dynamics of agents in our framework
multiple vehicle systems, formation control, swarming is inspired by the following two reasons. First, from the
and flocking, distributed sensor network, attitude point of view of system theory, nonlinear systems of a
alignment of groups of satellites, payload transport, taskgeneral class (feedback linearizable) can be transformed
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to linear systems via feedback control and transformatioroverall group disagreement for theh-order consensus
of the state vector by using differential-geometric problems, wherg| - | denotes the Euclidean norm. The
methods 20]. Hence if there exist protocols solving the sets of integers, real numbers, and complex numbers are
consensus problems for networks of agents withdenoted byZ, R, andC, respectively.
dynamics described by the high-order integrator, then Information exchange between agents can be
consensus controllers can be synthesized for nonlineamaturally modeled by the weighted undirected graph
dynamic networks. Second, observing flocking, G = (V,E,A), whereV = {vi} is the set of agents,
schooling, and swarming behavior in nature has truly{e;} = E CV xV is the set of links between the agents
inspired that biological networks may also need to buildand A is the corresponding weighted adjacency matrix.
consensus on acceleration or even jerk to maintain th&he adjacency matriA = [a;] € R™" is defined such
collective behaviours in some sudden events (for instancethat a;; > 0 if (vj,v;) € E, while & = 0 if (vj,vi) ¢ E.
when one of a fish school is suddenly aware of someTherefore theg;j allow our results to be valid and useful
source of foods or threats). Therefore it is of both for weighted network that is much more general than 0-1
biological and system theoretical interest to pursue theweighted network. Let matrid. = [lj;] be defined as
consensus problems for networks of high-order integratotij = ¥ ;. &; and ljj = —aj; wherei # j. Following
dynamic agents. algebraic graph theory, is positive semi-definite and is
In the current paper we investigate arbitrary called the Laplacian matrix. The set of neighbors of agent
high-order consensus seeking processes via a frequendyis defined asN; = {vj|(vj,vi) € E}. The degree of the
domain approach in a systematic manner, which linksnodev; € V and the average of the degrees of the vertices
explicitly the connectivity pattern and control gains teth adjacent tov; are denoted bydi = |[N;| and m,
consensus of multiagent networks. To the best of oumrespectively. The grap& does not contain a loop, a link
knowledge, this is the first work to extend the frequencyjoining an agent to itself.
domain method to arbitrary high-order consensus We propose the following high-order consensus
problems. We then use the derived consensus polynomialgrotocol
to give the general sufficient and necessary stability

criterion for the high-order consensus. Moreover, a k=1 (m) (m)
sufficient condition of desirable time complexity for ui(t):je _a*'ir;oﬁm(xj () =% (1), ©)

high-order consensus is given by exploiting the topology

properties of underlying networks. where B, are positive constants denoting the feedback

gains of the protocol.
The high-order consensus problem discussed in this

2 Background and Preliminaries paper is defined exactly as follows:
Consider n dynamic agents withkth-order dynamics Definition 2.1. (kth-order consensus). For the network of
described by kth-order integrator systems, consensus is said to be
reached globally asymptotically among dynamic agents if
K9ty = x (1), X™(t) - X™®)] -0, m=01... k-1, v # ] as

t — oo for anyx(0).

@)

D) =), 3 A General Stability Criterion for Arbitrary

. (m) High-Order Consensus Seeking
wherei =1,2,...,n, andx "(t) e R m=0,1,... k-1,

and ui(t) € R denote the information states and the The main result is given in the following theorem.

control input of agent, respectivelyx™ (t) denotes the  Theorem 3.1.Consider a network of dynamic agents
mth derivative ofx; with X% (t) = x(t). Define the states with dynamics described bylY. Assume that the network

of the whole network as G = (V,E,A) is connected and that each agent receives
() T (K1) 1\ TyT the information from its neighboring agents and applies
X(t) =[xV () ",...,x* ()], the control B). Then thekth-order consensus is achieved,

(m) (M) i if and only if the following (n— 1) polynomialsR (s) are
wherex™(t) =[x (t),....xa " (1)]T,m=0,1,....k—1.  Hurwitz stable for the nonidentically zero eigenvalygs
Then we can decompogé™ (t) according to the following (i > 2) of the negative Laplacian matrixL:
equation:

(M) () — xtm (m) k1
XT() =X (H)1+67(), @ R=%—1h S Bns" @)
wherex™(t) = 5 xX™(t)/n, 1=[1,1,...,1T € R", and m=0

&M (t) € R". We refer toe(t) = zﬁ;loné(m) (t)||> as the  Proof. Since the graphG is connected, the Laplacian
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matrix L of G has a simple zero eigenvalue and all the wheresis the Laplace variable. A brief calculation gives
other eigenvalues are positive real numbers. Hente

has exactly one zero eigenvalue and all the other yi(o)(s) yfo)(o)
eigenvalues are negative real numbers. Therefore we .
write  the eigenvalues of —L in the form : =(slp—TFi(s) ! : . (8)
Un < Hno1 < -+ < Wp < p1 = 0. Substituting the y<2(s) yv*2(0)
high-or.der consensus protocol given .b§3) (intp the yi(k_l)(s) yi(k—l)(o)
dynamics equations of the agents describedlbyiglds
where

xOt) =xM(t), 0o 1 0

i re—| i,

%2 (1) = xk-D(p), () i o0 - 1

(=D () — _Lkil Bax™ (1), Boki -+ Bx—2ti Be—1Hi

m=0

andl, is then x n identity matrix. DenoteZ.( s)=9lh—
ri(s). Let (s [fio,. .., fix_2): fix1)]") be a right MIMO
Because of the symmetry of the protocol, we find th‘"‘ttransmlssmn zero OZ ( s) at frequencys in the direction

xk~Y is an invariant quality. It is noticed that the [fio,- s fi2), fie_ny] T that is,

real-symmetric matrix —L possesses a complete rrre Titk=2) Tkt

orthonormal set of real eigenvectors. Consequently, we Zi(9)[fio fie2) fige 1)]T -0
) 9 (K= s TIH{(K— - )

can diagonalize —L with an orthogonal similarity
transformation—UTLU = p for some orthogonal,

X : : T
where the real-diagonal matrig = diag{ys, ..., tn}. wheres € C and [fio, .., fige-2), fi-g)]" # 0. Then we

find that
Define y™(t) = UTx(M(t). By employing the above natha
linear transformations, the closed-loop dynamics sfio— fi1 =0,
equations can be decoupled into noninteracting :
subsystems : 9
Sfik-2 — fik-1) =0, ©)
k—1
(0 1 — L fi f; =0
yi( )(t) :yi( )(t), Hi mEOBm im+ STj(k-1) )
o - )  and therefore,
20 =y, ©)
< (K— —
WO =m 3 "), &~ i z B fio = 0. (10)

It is obvious thatfig # 0. Thus (0) tells us that the poles
of the ith subsystem described bg)(can be calculated
ym(t). according to the following important equations

In order to establish the stability of the high-order
consensus system, our proof heavily depends on the k=1
frequency domain analysis. The approach to the analysis R(s) = - i z Pms™ =0, (11)
of convergence of the high-order consensus protocol in m=0
this paper is to use the Laplace transform. According to

X wherei =1,2,....n.
(6), we obtain Following the multivariable control theory, we see

that the information states of all the agents achieve the

wherei = 1,2,....n, andyi“m (t) is theith component of

yfo)(s) yi(o)(O) o 1 - 0 high-order consensus globally asymptotically, if and only
: : o : if the poles given byX1) (i.e., the poles of the high-order
S| 1y i = : consensus system) are located on the open left half plane
Yi (9 Y 7(0) 0 0 - 1 (LHP), except for the isolated zero poles associated with
y<(s) v (0) Boki -+ Br—2Hi Bk 1Hi p1 = 0. And this completes the proof of the theorém.
v (s) Remark 3.1. The polynomialsP(s) = & — 1 554 Bns™

are fundamental to consensus problems and therefore
(7)  called Consensus Polynomials in the remainder of this
yi© () paper. Theorem 3.1 clarifies a rigorous connection
() between the stability of general high-order consensus and
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the system parameters such as the network topology aneigenvalues of the graph Laplacian, and the consensus
feedback gains. In addition, it provides us with a generalprotocol appears only on the right, via feedback gains.
procedure for determining the stability of arbitrary Apart from establishing a constraint between the network
high-order consensus. We construct the consensustructure and the consensus protocol, Corollary 4.1 exerts
polynomialsR(s) and examine their roots. If R®) < 0 an additional constraintL@) solely on the feedback gains
for all the R(s) with i > 2, we conclude that the of the protocol.

consensus is asymptomatically achievable. Remark 4.2. The implication of (3) is somewhat
Remark 3.2. Moreover, from Theorem 3.1, we observe surprising. For instance, if all the feedback gains areset t
that the common assumption used in the literatidr&d] be a common value, then the consensus will never be
(i.e., G = (V,E,A) is connected and feedback gain achieved no matter how large the feedback gains are.
constants 3 are positive) is no longer a sufficient Hence, contrary to common wisdom, increasing the
condition for reaching consensus higher thanfeedback gains is neither sufficient nor necessary to
second-order. As the order of the consensus increases, thyarantee the high-order consensus.

effects of high-order dynamics of the agents emerge and

the conditions for consensus are more and more

unchartable. 5 A Sufficient Condition for High-Order
Consensus Using Topology Properties of

4 Application of the Proposed Stability Networks

Criterion

When the underlying network is an unweighed graph,

We stress that Theorem 3.1 completely characterizes th enoted a5, = (V,E,Ay) (i.e., ignoring the weights of

dynamical behavior of arbitrary high-order consensus int1€ ks in the networks), a sufficient condition for the
a unified framework. Hence it can be used to deduce th@€nerakth-order consensus is derived as follows. In such
algebraic conditions for consensus seeking of any specifi(‘:’1 cssed.;fhe Laplacf|ar:1 '“g?‘tmﬁ(Glu) ~ D“((?“) - A“(ésu)
order. In order to illustrate this concept, let us consitier t 'S the difference of the diagonal matrix of vertex degrees

: ; . Du(Gy) and the 0-1 adjacency matrixAy(Gy).
fourth- k I he foll uiSu - :
rgl;[}“s(_)rder consensus seeking problem in the fo 0Wlm‘:]Furthermore, edge connectivity of the gra@h (i.e., the

. minimal number of links whose removal would result in
Corollary 4.1.. Consider a conneqted network of losing connectivity of the graphic), is denoted &{Gy).
fourth-order  integrator agents with a topology Now we are ready to present our result on finding the
G = (V,E,A). Then the network guided by protocd)(  re|ation between the reachability of the high-order

solves the fourth-order consensus if and only if the ;ongensus and the topology features of the networks.
following conditions are satisfied: , . )
Theorem 5.1. Consider a network of finiten dynamic
ol 2 _ agents with dynamics described hi).(Assume that the
< min , . (12 g y
He {=P1/(BaPo). Pi/Ps(Pobs = PrP)l} - (12) networkG, = (V,E,Ay) is connected and that each agent
receives the information from its neighboring agents and
BofBz < Brfe. (13) applies the control law 3. If the following four
. polynomials are Hurwitz stable, then the high-order
Proof. For the fourth-order consensus (i.k.= 4), each  ~ynsensus is achieved:

agent is governed by the fourth-order integrator and driven

towards consensus by the distributed protocol Ki(s) =lo+l1s+ S + UsSS + 14?1582 + - -, (15)
S My ()
Ui(t):je 'aijnZOBm(Xj (t)ixi (t)) Kz(S) :U0+U15+|252+|353+U4S4+U555+'~ , (16)

According to Theorem 3.1, condition42) and (L3) are
derived from the Routh-Hurwitz criterion for the following
consensus polynomials

R(s) =" — lifsS® — iBoS — HiBis— Hifo-  (14)
where

The proof is complete] Im = 26(Gy) (1 —cog11/n))Bm,
Remark 4.1. For reaching the fourth-order consensus, gq
condition (L2) neatly separates questions of consensus
protocol from questions of network structure. The
structure appears only on the left of the inequality, via theProof. Consider the eigenvalugg, < 1 < - - < U <

K3(S) = lo+ UiS+ Ups® + 138> + 48t + uss + -, (17)

Ka(S) = Up + 115+ 128> + UgS® + tas? +1s8° + -+, (18)

Um = max{d; + m|v; €V } Bm.
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1 = 0 of the—L,. According to P1,22], we have

a1 =2e(Gy)(1—cogm/n)) < — Ly, (29)
az; =max{di + m|vi eV} > —pUp. (20)

Therefore we find
a1fm < —HUiBm < a2fm, (21)

wherei =2,...,n.

Let Iy, = a1Bm anduy = a2y, and then we see each

Fig. 1: Undirected communication graghused for fourth-order
consensus problem.

coefficient of the fundamental consensus polynomials in

Theorem 3.1

k-1
PI(S) = sk*I-li Z Bmsm: ai0+"'+ai(k_1)5k_l+sk
m=0
(22)
must take value in the specified interval:

Im < @im < Um, (23)

fori=2,....n,andm=0,...,k—1.

Hence if the four polynomials (i.e.15)~(18)) are
Hurwitz stable, Kharitonov’s theorem23] guarantees
that the(n— 1) polynomialsR(s) are Hurwitz stable for
all the nonzero eigenvalueg; (i > 2) of negative

consensus processes on multiagent networks. In order to
illustrate these points, we consider solving fourth-order
consensus problem of the network of four agents whose
communication grapl® is shown in Fig.1. It is easy to
see thatG is a connected graph. We assume that the
numbers on the links are the corresponding weights of the
communication links in the grapls. Moreover, the
agents evolve according tal)( and @) starting from
random initial conditions.

Note that g = —0.6013. In Case 1, we choose
Bo=1, B =1, [=3, andBs = 4. Then condition 12)
in Corollary 4.1 is satisfied, but it is easily seen that
condition (L3) is not satisfied. If we choos§y = 1,

Laplacian matrix—L,. Then the direct application of B1=1,B> =2, andBs =1 in Case 2, then conditiori8)
Theorem 3.1 completes the pro@f. holds but condition12) does not. Hence the fourth-order

Remark 5.1. Theorem 5.1 provides a sufficient condition CONS€Nsus can not be achieved in the above two cases.
to check the reachability of the high-order consensus buftowever, if we choosgo=1,51 =1, 5> = 3, andB; = 1

not a necessary one. However, this result has its merits iff! €as€ 3, then all the conditions in Corollary 4.1 are
the following three respects. First, what is somewhatSalisfied. As a result, consensus can be reached.Zgs.
surprising about our result of Theorem 5.1 is that,and4 show the state trajectorieém) of the system and
although in principle we are examining — 1) = O(n) the overall group disagreement functieft) in time for
polynomials for stability (see Theorem 3.1), if the four Case 1, 2, and 3, with different feedback gaifs,
(independent of the size of the networks) polynomials inm= 0,1,2,3, values, respectively. Note that although the
Theorem 5.1 are examined to be Hurwitz stable, then wenetwork topology is connected in all cases, the consensus
can still arrive at the conclusion. This means the dramatigetwork is not stable in Case 1 and 2, whereas it is stable
reduction of time complexity. Second, in practice, edgein Case 3. Therefore, the feedback gafsis must be
connectivity and degree sequence of network topologydesigned properly to guarantee that the consensus is
can be estimated or detected efficiently for large-scaleachieved.

real-world networks. For instance, the edge connectivity

can be computed via the edge-contraction algoritBd. [

Third, from a point of view of the controller synthesis, it 7 Conclusions

is observed that the feedback gajfisare robust to the

perturba}tipns of the network topology, as long as the edg%y a frequency domain method, a rigorous and general
connectivity and magd; +m|vi € V} of the network are  conyergence analysis was given in this paper for
invariant. I-_|ence, Theorem 5:1 provides a conservative buﬁigh-order consensus on multiagent networks. We
robust design approach to high-order consensus feedbadkeyeloped sufficient and necessary conditions for the
controllers (i.e., consensus protocols). stability of the arbitrary high-order consensus, alonchwit
algorithms for checking these conditions. Moreover, a
sufficient condition of desirable time complexity for
high-order consensus is proposed by exploiting the
underlying topology properties. We suggest that insights
provided by these results will illuminate the design
We emphasize that the results in this paper characterizprinciples and evolution mechanisms of both natural and
the convergence properties for the arbitrary high-orderengineered dynamic networks, in which consensus is

6 Numerical Example and Simulation
Results
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Case 3: /30=1, ,6’1:1, /32=3, ,6’3=1

500 T T
S 0 1 S~ 2001 /
. . . . . I . .
5000 5 10 15 20 25 30 00 5 10 15 20 25 30
50 T T T T T 20 T T T T T
S~ 0 — = - 0
-50 20 .
0 5 10 15 20 25 30 5 10 15 20 25 30
10 5 T
%= 0 — —— = — g~ 0 —— — —
-10 . -5
0 5 10 15 20 25 30 0 5 10 15 20 25 30
5 T 10
S~ 0 —— — — — S~ 0 —
-5 L L L L L - -10 L L L L L
0 5 10 15 20 25 30 0 5 10 15 20 25 30
1000 T T T T T 100 T T T T T
© 500 © 50 J(\’\/\
0 n . . . 0 . . .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
time [s] time [s]

Fig. 2: Evolutions of the fourth-order consensus on graph Fig. 4: Evolutions of the fourth-order consensus on grdph
given in Fig.1, with §; values (Case 130 =1,61 =1, =3, given in Fig.1, with §; values (Case 330 =1,61 =1, =3,
andfs = 4. andps = 1.

Case 2: B=1, B=1, B=2, B,=1
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