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Abstract: High-order consensus, in which individual high-order dynamic units keep in pace with each other in a distributed fashion,
depends both on the feedback gains of the protocol and on the properties of the interaction network. By employing a frequency domain
method, we explicitly derive analytical equations that clarify a rigorous connection between the stability of general high-order consensus
and the system parameters such as the network topology and feedback gains. Using the derived consensus polynomials, the general
sufficient and necessary stability criterion is obtained for high-order consensus networks of arbitrary topology. Furthermore, a sufficient
condition of desirable time complexity for high-order consensus is givenby exploiting the topology properties of underlying networks.
Numerical simulation results are provided to demonstrate the effectiveness of our theoretical results.
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1 Introduction

Recent years have witnessed vibrant advances in our
understanding of distributed cooperative control for
dynamic networks [1,2,3,4,5,6]. For coordination
strategies to be successful, many issues must be
addressed. Among these different issues, the research on
shared information of interest in the network of dynamic
agents facilitates significantly the distributed coordination
[4,7,8,9,10,11,12]. Therefore, an important issue for
coordination is to design effective protocols so that the
dynamic agents in the network are able to converge to a
consistent sense or view of the shared information of
interest in the presence of limited information exchange
and communication time-delays. Although originally
studied in the field of computer science (particularly in
distributed computation and automata), the consensus
problems discussed above have been studied extensively
in the context of distributed coordination of networks of
dynamic agents partly due to the potential broad
applications in various areas including congestion control
in communication networks, cooperative control of
multiple vehicle systems, formation control, swarming
and flocking, distributed sensor network, attitude
alignment of groups of satellites, payload transport, task

assignment, air traffic control, and many others [13,14,
15,16,17].

It is noticed in the literature that most consensus
protocols focus on the case where all the dynamic agents
come to consensus about the value of the so-called
consensus variable [1,7]. No matter whether the
consensus variable is a vector or not, such consensus
protocols are in fact first-order, since the typical
consensus protocol adjusts the first derivative of the
consensus variable for each agent based on the consensus
variable of its neighbors. Despite their widespread
importance, there has been little work dealing explicitly
with higher-order consensus seeking processes on
multiagent networks [2,12,18,19]. Under various
topological and communication condition settings, these
few examples show the convergence conditions that
guarantee the second-order or third-order consensus, but
provide neither a generic picture nor systematic insight
into the connection between the stability of the general
high-order consensus and the system parameters such as
the network topology and feedback gains.

The motivation for employing high-order integrator to
model the intrinsic dynamics of agents in our framework
is inspired by the following two reasons. First, from the
point of view of system theory, nonlinear systems of a
general class (feedback linearizable) can be transformed
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to linear systems via feedback control and transformation
of the state vector by using differential-geometric
methods [20]. Hence if there exist protocols solving the
consensus problems for networks of agents with
dynamics described by the high-order integrator, then
consensus controllers can be synthesized for nonlinear
dynamic networks. Second, observing flocking,
schooling, and swarming behavior in nature has truly
inspired that biological networks may also need to build
consensus on acceleration or even jerk to maintain the
collective behaviours in some sudden events (for instance,
when one of a fish school is suddenly aware of some
source of foods or threats). Therefore it is of both
biological and system theoretical interest to pursue the
consensus problems for networks of high-order integrator
dynamic agents.

In the current paper we investigate arbitrary
high-order consensus seeking processes via a frequency
domain approach in a systematic manner, which links
explicitly the connectivity pattern and control gains to the
consensus of multiagent networks. To the best of our
knowledge, this is the first work to extend the frequency
domain method to arbitrary high-order consensus
problems. We then use the derived consensus polynomials
to give the general sufficient and necessary stability
criterion for the high-order consensus. Moreover, a
sufficient condition of desirable time complexity for
high-order consensus is given by exploiting the topology
properties of underlying networks.

2 Background and Preliminaries

Consider n dynamic agents withkth-order dynamics
described by























ẋ(0)i (t) = x(1)i (t),
...

ẋ(k−2)
i (t) = x(k−1)

i (t),

ẋ(k−1)
i (t) = ui(t),

(1)

wherei = 1,2, . . . ,n, andx(m)
i (t) ∈ R, m = 0,1, . . . ,k−1,

and ui(t) ∈ R denote the information states and the

control input of agenti, respectively.x(m)
i (t) denotes the

mth derivative ofxi with x(0)i (t) = xi(t). Define the states
of the whole network as

XXX(t) = [(xxx(0)(t))T , . . . ,(xxx(k−1)(t))T ]T ,

wherexxx(m)(t) = [x(m)
1 (t), . . . ,x(m)

n (t)]T , m = 0,1, . . . ,k−1.
Then we can decomposexxx(m)(t) according to the following
equation:

xxx(m)(t) = x̄(m)(t)111+δδδ (m)(t), (2)

where ¯x(m)(t) = ∑i x(m)
i (t)/n, 111 = [1,1, . . . ,1]T ∈ Rn, and

δδδ (m)(t) ∈ Rn. We refer toe(t) = ∑k−1
m=0‖δδδ (m)(t)‖2 as the

overall group disagreement for thekth-order consensus
problems, where‖ · ‖ denotes the Euclidean norm. The
sets of integers, real numbers, and complex numbers are
denoted byZ, R, andC, respectively.

Information exchange between agents can be
naturally modeled by the weighted undirected graph
G = (V,E,AAA), where V = {vi} is the set of agents,
{ei j} = E ⊆ V ×V is the set of links between the agents
and AAA is the corresponding weighted adjacency matrix.
The adjacency matrixAAA = [ai j] ∈ Rn×n is defined such
that ai j > 0 if (v j,vi) ∈ E, while ai j = 0 if (v j,vi) /∈ E.
Therefore theai j allow our results to be valid and useful
for weighted network that is much more general than 0-1
weighted network. Let matrixLLL = [li j] be defined as
lii = ∑ j 6=i ai j and li j = −ai j where i 6= j. Following
algebraic graph theory,LLL is positive semi-definite and is
called the Laplacian matrix. The set of neighbors of agent
i is defined asNi = {v j|(v j,vi) ∈ E}. The degree of the
nodevi ∈ V and the average of the degrees of the vertices
adjacent to vi are denoted bydi = |Ni| and mi,
respectively. The graphG does not contain a loop, a link
joining an agent to itself.

We propose the following high-order consensus
protocol

ui(t) = ∑
j∈Ni

ai j

k−1

∑
m=0

βm(x
(m)
j (t)− x(m)

i (t)), (3)

where βm are positive constants denoting the feedback
gains of the protocol.

The high-order consensus problem discussed in this
paper is defined exactly as follows:

Definition 2.1. (kth-order consensus). For the network of
kth-order integrator systems, consensus is said to be
reached globally asymptotically among dynamic agents if

|x(m)
i (t) − x(m)

j (t)| → 0, m = 0,1, . . . ,k − 1, ∀i 6= j as
t → ∞ for anyxxx(0).

3 A General Stability Criterion for Arbitrary
High-Order Consensus Seeking

The main result is given in the following theorem.

Theorem 3.1.Consider a network ofn dynamic agents
with dynamics described by (1). Assume that the network
G = (V,E,AAA) is connected and that each agent receives
the information from its neighboring agents and applies
the control (3). Then thekth-order consensus is achieved,
if and only if the following(n−1) polynomialsPi(s) are
Hurwitz stable for the nonidentically zero eigenvaluesµi
(i ≥ 2) of the negative Laplacian matrix−LLL:

Pi(s) = sk −µi

k−1

∑
m=0

βmsm. (4)

Proof. Since the graphG is connected, the Laplacian
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matrix LLL of G has a simple zero eigenvalue and all the
other eigenvalues are positive real numbers. Hence−LLL
has exactly one zero eigenvalue and all the other
eigenvalues are negative real numbers. Therefore we
write the eigenvalues of −LLL in the form
µn ≤ µn−1 ≤ ·· · ≤ µ2 < µ1 = 0. Substituting the
high-order consensus protocol given by (3) into the
dynamics equations of the agents described by (1) yields



























ẋxx(0)(t) = xxx(1)(t),
...
ẋxx(k−2)(t) = xxx(k−1)(t),

ẋxx(k−1)(t) =−LLL
k−1
∑

m=0
βmxxx(m)(t).

(5)

Because of the symmetry of the protocol, we find that
x̄(k−1) is an invariant quality. It is noticed that the
real-symmetric matrix −LLL possesses a complete
orthonormal set of real eigenvectors. Consequently, we
can diagonalize−LLL with an orthogonal similarity
transformation−UUUT LLLUUU = µµµ for some orthogonalUUU ,
where the real-diagonal matrixµµµ = diag{µ1, . . . ,µn}.
Define yyy(m)(t) = UUUT xxx(m)(t). By employing the above
linear transformations, the closed-loop dynamics
equations can be decoupled inton noninteracting
subsystems































ẏ(0)i (t) = y(1)i (t),
...

ẏ(k−2)
i (t) = y(k−1)

i (t),

ẏ(k−1)
i (t) = µi

k−1
∑

m=0
βmy(m)

i (t),

(6)

wherei = 1,2, . . . ,n, andy(m)
i (t) is the ith component of

yyy(m)(t).
In order to establish the stability of the high-order

consensus system, our proof heavily depends on the
frequency domain analysis. The approach to the analysis
of convergence of the high-order consensus protocol in
this paper is to use the Laplace transform. According to
(6), we obtain

s













y(0)i (s)
...

y(k−2)
i (s)

y(k−1)
i (s)













−













y(0)i (0)
...

y(k−2)
i (0)

y(k−1)
i (0)













=











0 1 · · · 0
...

...
...

...
0 0 · · · 1

β0µi · · · βk−2µi βk−1µi











·













y(0)i (s)
...

y(k−2)
i (s)

y(k−1)
i (s)













, (7)

wheres is the Laplace variable. A brief calculation gives













y(0)i (s)
...

y(k−2)
i (s)

y(k−1)
i (s)













= (sIIIn −ΓΓΓ i(s))
−1













y(0)i (0)
...

y(k−2)
i (0)

y(k−1)
i (0)













, (8)

where

ΓΓΓ i(s) =









0 1 · · · 0
...

...
...

...
0 0 · · · 1

β0µi · · · βk−2µi βk−1µi









,

andIIIn is then× n identity matrix. DenoteZZZi(s) = sIIIn −
ΓΓΓ i(s). Let (s, [ fi0, . . . , fi(k−2), fi(k−1)]

T ) be a right MIMO
transmission zero ofZZZi(s) at frequencys in the direction
[ fi0, . . . , fi(k−2), fi(k−1)]

T ; that is,

ZZZi(s)[ fi0, . . . , fi(k−2), fi(k−1)]
T = 000,

wheres ∈ C and [ fi0, . . . , fi(k−2), fi(k−1)]
T 6= 000. Then we

find that


























s fi0− fi1 = 0,
...
s fi(k−2)− fi(k−1) = 0,

−µi

k−1
∑

m=0
βm fim + s fi(k−1) = 0,

(9)

and therefore,

[sk −µi

k−1

∑
m=0

βmsm] fi0 = 0. (10)

It is obvious thatfi0 6= 0. Thus (10) tells us that the poles
of the ith subsystem described by (6) can be calculated
according to the following important equations

Pi(s) = sk −µi

k−1

∑
m=0

βmsm = 0, (11)

wherei = 1,2, . . . ,n.
Following the multivariable control theory, we see

that the information states of all the agents achieve the
high-order consensus globally asymptotically, if and only
if the poles given by (11) (i.e., the poles of the high-order
consensus system) are located on the open left half plane
(LHP), except for the isolated zero poles associated with
µ1 = 0. And this completes the proof of the theorem.�

Remark 3.1.The polynomialsPi(s) = sk − µi ∑k−1
m=0 βmsm

are fundamental to consensus problems and therefore
called Consensus Polynomials in the remainder of this
paper. Theorem 3.1 clarifies a rigorous connection
between the stability of general high-order consensus and
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the system parameters such as the network topology and
feedback gains. In addition, it provides us with a general
procedure for determining the stability of arbitrary
high-order consensus. We construct the consensus
polynomialsPi(s) and examine their roots. If Re(s) < 0
for all the Pi(s) with i ≥ 2, we conclude that the
consensus is asymptomatically achievable.

Remark 3.2. Moreover, from Theorem 3.1, we observe
that the common assumption used in the literature [7,12]
(i.e., G = (V,E,AAA) is connected and feedback gain
constants βi are positive) is no longer a sufficient
condition for reaching consensus higher than
second-order. As the order of the consensus increases, the
effects of high-order dynamics of the agents emerge and
the conditions for consensus are more and more
uncharitable.

4 Application of the Proposed Stability
Criterion

We stress that Theorem 3.1 completely characterizes the
dynamical behavior of arbitrary high-order consensus in
a unified framework. Hence it can be used to deduce the
algebraic conditions for consensus seeking of any specific
order. In order to illustrate this concept, let us consider the
fourth-order consensus seeking problem in the following
results.

Corollary 4.1. Consider a connected network of
fourth-order integrator agents with a topology
G = (V,E,AAA). Then the network guided by protocol (3)
solves the fourth-order consensus if and only if the
following conditions are satisfied:

µ2 < min{−β1/(β2β3),β 2
1/[β3(β0β3−β1β2)]}, (12)

β0β3 < β1β2. (13)

Proof. For the fourth-order consensus (i.e.,k = 4), each

agent is governed by the fourth-order integrator and driven
towards consensus by the distributed protocol

ui(t) = ∑
j∈Ni

ai j

3

∑
m=0

βm(x
(m)
j (t)− x(m)

i (t)).

According to Theorem 3.1, conditions (12) and (13) are
derived from the Routh-Hurwitz criterion for the following
consensus polynomials

Pi(s) = s4−µiβ3s3−µiβ2s2−µiβ1s−µiβ0. (14)

The proof is complete.�

Remark 4.1. For reaching the fourth-order consensus,
condition (12) neatly separates questions of consensus
protocol from questions of network structure. The
structure appears only on the left of the inequality, via the

eigenvalues of the graph Laplacian, and the consensus
protocol appears only on the right, via feedback gains.
Apart from establishing a constraint between the network
structure and the consensus protocol, Corollary 4.1 exerts
an additional constraint (13) solely on the feedback gains
of the protocol.

Remark 4.2. The implication of (13) is somewhat
surprising. For instance, if all the feedback gains are set to
be a common value, then the consensus will never be
achieved no matter how large the feedback gains are.
Hence, contrary to common wisdom, increasing the
feedback gains is neither sufficient nor necessary to
guarantee the high-order consensus.

5 A Sufficient Condition for High-Order
Consensus Using Topology Properties of
Networks

When the underlying network is an unweighed graph,
denoted asGu = (V,E,AAAu) (i.e., ignoring the weights of
the links in the networks), a sufficient condition for the
generalkth-order consensus is derived as follows. In such
a case, the Laplacian matrixLLLu(Gu) = DDDu(Gu)−AAAu(Gu)
is the difference of the diagonal matrix of vertex degrees
DDDu(Gu) and the 0-1 adjacency matrixAAAu(Gu).
Furthermore, edge connectivity of the graphGu (i.e., the
minimal number of links whose removal would result in
losing connectivity of the graphic), is denoted bye(Gu).
Now we are ready to present our result on finding the
relation between the reachability of the high-order
consensus and the topology features of the networks.

Theorem 5.1. Consider a network of finiten dynamic
agents with dynamics described by (1). Assume that the
networkGu = (V,E,AAAu) is connected and that each agent
receives the information from its neighboring agents and
applies the control law (3). If the following four
polynomials are Hurwitz stable, then the high-order
consensus is achieved:

K1(s) = l0+ l1s+u2s2+u3s3+ l4s4+ l5s5+ · · · , (15)

K2(s) = u0+u1s+ l2s2+ l3s3+u4s4+u5s5+ · · · , (16)

K3(s) = l0+u1s+u2s2+ l3s3+ l4s4+u5s5+ · · · , (17)

K4(s) = u0+ l1s+ l2s2+u3s3+u4s4+ l5s5+ · · · , (18)

where
lm = 2e(Gu)(1−cos(π/n))βm,

and
um = max{di +mi|vi ∈V}βm.

Proof. Consider the eigenvaluesµn ≤ µn−1 ≤ ·· · ≤ µ2 <
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µ1 = 0 of the−LLLu. According to [21,22], we have

α1 = 2e(Gu)(1−cos(π/n))≤−µ2, (19)

α2 = max{di +mi|vi ∈V} ≥ −µn. (20)

Therefore we find

α1βm ≤−µiβm ≤ α2βm, (21)

wherei = 2, . . . ,n.
Let lm = α1βm andum = α2βm, and then we see each

coefficient of the fundamental consensus polynomials in
Theorem 3.1

Pi(s) = sk −µi

k−1

∑
m=0

βmsm = ai0+ · · ·+ai(k−1)s
k−1+ sk

(22)
must take value in the specified interval:

lm ≤ aim ≤ um, (23)

for i = 2, . . . ,n, andm = 0, . . . ,k−1.
Hence if the four polynomials (i.e., (15)∼(18)) are

Hurwitz stable, Kharitonov’s theorem [23] guarantees
that the(n− 1) polynomialsPi(s) are Hurwitz stable for
all the nonzero eigenvaluesµi (i ≥ 2) of negative
Laplacian matrix−LLLu. Then the direct application of
Theorem 3.1 completes the proof.�

Remark 5.1.Theorem 5.1 provides a sufficient condition
to check the reachability of the high-order consensus but
not a necessary one. However, this result has its merits in
the following three respects. First, what is somewhat
surprising about our result of Theorem 5.1 is that,
although in principle we are examining(n − 1) = O(n)
polynomials for stability (see Theorem 3.1), if the four
(independent of the size of the networks) polynomials in
Theorem 5.1 are examined to be Hurwitz stable, then we
can still arrive at the conclusion. This means the dramatic
reduction of time complexity. Second, in practice, edge
connectivity and degree sequence of network topology
can be estimated or detected efficiently for large-scale
real-world networks. For instance, the edge connectivity
can be computed via the edge-contraction algorithm [24].
Third, from a point of view of the controller synthesis, it
is observed that the feedback gainsβi are robust to the
perturbations of the network topology, as long as the edge
connectivity and max{di +mi|vi ∈ V} of the network are
invariant. Hence, Theorem 5.1 provides a conservative but
robust design approach to high-order consensus feedback
controllers (i.e., consensus protocols).

6 Numerical Example and Simulation
Results

We emphasize that the results in this paper characterize
the convergence properties for the arbitrary high-order

Fig. 1: Undirected communication graphG used for fourth-order
consensus problem.

consensus processes on multiagent networks. In order to
illustrate these points, we consider solving fourth-order
consensus problem of the network of four agents whose
communication graphG is shown in Fig.1. It is easy to
see thatG is a connected graph. We assume that the
numbers on the links are the corresponding weights of the
communication links in the graphG. Moreover, the
agents evolve according to (1) and (3) starting from
random initial conditions.

Note that µ2 = −0.6013. In Case 1, we choose
β0 = 1, β1 = 1, β2 = 3, andβ3 = 4. Then condition (12)
in Corollary 4.1 is satisfied, but it is easily seen that
condition (13) is not satisfied. If we chooseβ0 = 1,
β1 = 1, β2 = 2, andβ3 = 1 in Case 2, then condition (13)
holds but condition (12) does not. Hence the fourth-order
consensus can not be achieved in the above two cases.
However, if we chooseβ0 = 1, β1 = 1, β2 = 3, andβ3 = 1
in Case 3, then all the conditions in Corollary 4.1 are
satisfied. As a result, consensus can be reached. Figs.2, 3,

and 4 show the state trajectoriesx(m)
i of the system and

the overall group disagreement functione(t) in time for
Case 1, 2, and 3, with different feedback gainsβm,
m = 0,1,2,3, values, respectively. Note that although the
network topology is connected in all cases, the consensus
network is not stable in Case 1 and 2, whereas it is stable
in Case 3. Therefore, the feedback gainsβm must be
designed properly to guarantee that the consensus is
achieved.

7 Conclusions

By a frequency domain method, a rigorous and general
convergence analysis was given in this paper for
high-order consensus on multiagent networks. We
developed sufficient and necessary conditions for the
stability of the arbitrary high-order consensus, along with
algorithms for checking these conditions. Moreover, a
sufficient condition of desirable time complexity for
high-order consensus is proposed by exploiting the
underlying topology properties. We suggest that insights
provided by these results will illuminate the design
principles and evolution mechanisms of both natural and
engineered dynamic networks, in which consensus is
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Fig. 2: Evolutions of the fourth-order consensus on graphG
given in Fig.1, with βi values (Case 1):β0 = 1, β1 = 1, β2 = 3,
andβ3 = 4.

0 5 10 15 20 25 30
0

200

400

x
(0
)

i

Case 2:  β
0
=1, β

1
=1, β

2
=2, β

3
=1 

0 5 10 15 20 25 30
-50

0

50

x
(1
)

i

0 5 10 15 20 25 30
-20

0

20

x
(2
)

i

0 5 10 15 20 25 30
-20

0

20

x
(3
)

i

0 5 10 15 20 25 30
0

500

1000

time [s]

e

Fig. 3: Evolutions of the fourth-order consensus on graphG
given in Fig.1, with βi values (Case 2):β0 = 1, β1 = 1, β2 = 2,
andβ3 = 1.

functionally important. In addition, the general high-order
consensus problems in dynamical networks with
switching topologies will be a topic of future research.
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