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Abstract: This paper utilizes the Gibbs sampling technique to develop a Bayesian inference for Seasonal Moving Average 
(SMA) model, which includes parameters that distinguish between Multiplicative and Non-multiplicative models (referred 
to as Augmented Seasonal Moving Average hereafter). The construction of Bayesian inference involves several steps. 
Firstly, the method of Non-linear least squares (NLS) is used to estimate unknown lagged errors, allowing for the 
approximation of the complex likelihood function. Secondly, both a semi-conjugate prior distribution and a non-
informative prior distribution are applied to the unknown parameters and initial errors. Thirdly, the prior distributions are 
combined with the approximated likelihood function to obtain the joint posterior distribution. Lastly, the full conditional 
distributions are derived as part of the Gibbs sampling process. The proposed method is notable for its simplicity in 
assessing the significance of the parameters that distinguish between Multiplicative and Non-multiplicative models, a task 
that is challenging to accomplish using classical analysis. The convergence of the method was verified, ensuring that it 
reached stable and reliable results. 
Keywords: Multiplicative Seasonal Moving Average Model; Non-multiplicative Seasonal Moving Average Model; Gibbs 
Sampling. 
 
1 Introduction 

Box and Jenkins methodology is a highly regarded technique for analysing time-series data. In their work, Box and Jenkins 
proposed the concept of Seasonal Autoregressive Integrated Moving Average (SARIMA) model family as a means of 
forecasting seasonal patterns in time-series data that involves a single variable. The analysis of SMA models, which are a 
specific subset of SARIMA models, using Bayesian methods presents a challenge due to the nonlinear nature of the errors 
in the parameters. This results in a complicated likelihood function, which makes defining prior distributions and 
conducting posterior analysis difficult. The literature provides three distinct approaches for Bayesian time series analysis. 
The first method for Bayesian time series analysis involves numerical integration, as described in [1]. The second method 
utilizes analytical approximations, with several examples of these approximations being developed in the literature (see 
[2,3,4,5,6]). The third method is based on sampling techniques, and the advancement of Markov Chain Monte Carlo 
(MCMC) techniques, specifically the utilization of the Gibbs sampling algorithm, has greatly improved Bayesian time 
series analysis. In this paper, we utilized the third approach to Bayesian time series analysis, as it effectively deals with the 
issue of starting values and considers SMA model as Multiplicative model. This method is also less complicated and 
less time-consuming compared to the first approach, especially when working with models with multiple parameters.     

Several sources employed this method. For instance, [7,8] utilized MCMC techniques to conduct Bayesian analysis on 
Autoregressive Moving Average (ARMA) models. They assumed prior distributions for the initial observations and errors 
without considering the seasonality feature. In order to estimate Multiplicative Seasonal Autoregressive (SAR) and ARMA 
models, Barnett et al. [9,10] utilized MCMC methods, but their procedure was more complex as it relied on sampling 
functions of partial autocorrelations and restricted the coefficient space to meet the stationarity and invertibility conditions. 

 In recent years, several studies have utilized MCMC techniques, particularly Gibbs sampling, to develop Bayesian 
estimates for Multiplicative (SARIMA, Double SARIMA, Triple SARIMA) models as well as their special cases (SAR, 
SMA, Double SAR, Double SMA, Triple SAR) (see [11,12,13,14,15,16,17,18,19]). 

Furthermore, Amin [20] utilized the Gibbs algorithm to predict Multiplicative SARIMA models. 

Unlike the approach employed by [8,10], which imposes restrictions on the parameter space to satisfy stationarity and 
invertibility conditions, this paper adopts the approach utilized by [11,12,21,22], and others. This approach incorporates 
hyper-parameters that ensure the prior distribution for the model coefficients resides within the region of stationarity and 
invertibility, thus ensuring the process is both stationary and invertible. 
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The purpose of this paper is to extend Amin's [20] algorithm on Augmented Seasonal Moving Average models. Our 
approach does not rely on the initial errors and allows us to easily construct confidence intervals for the parameters that 
distinguish between Multiplicative and Non-multiplicative models and assess their significance. 

The present paper is organized as follows: In Section 2, we provide an overview of SMA models. In Section 3, we 
introduce Bayesian analysis of Augmented SMA model. Section 4 presents the proposed Gibbs sampling algorithm for 
Augmented SMA model. In Sections 5 and 6, the algorithm is assessed through simulation study and real-world 
application. Finally, the paper concludes in Section 7. 

2 Overview of SMA models  

It is stated that a time series can be considered to have been generated from SMA model with orders q and Q if it adheres 
to: 
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where {𝜖!} is a series of independent variables that have mean equals zero and variance of 𝑎*. The non-seasonal and 
seasonal orders of SMA model are symbolized by q and Q, respectively. 𝜑"(𝑗 = 1,… , 𝑞) and Φ$	(𝑘 = 1,… , 𝑄)  indicate 
the non-seasonal and seasonal coefficients, respectively. 𝛽"$(𝑗 = 1, . . , 𝑞; 𝑘 = 1,… , 𝑄)	represent the interaction coefficients, 
and the symbol s indicates the number of seasons that occur in a year. 

Let 𝛽"$ = 𝜑"Φ$ + 𝜆"$ , (𝑗 = 1,2, . . . , 𝑞; 𝑘 = 1,2, . . . , 𝑄)   

Model (1) can be restated in the following way: 
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Model (2)[23] is called Augmented SMA model of orders q,Q,  and it may be expressed in matrix form as: 

𝑦! = 𝑀!𝛽 + 𝑅!𝜆 + 𝜖!	 	 	 	  	 																																																								  	 	  			 	 	 	 	 																													 (3) 

 

Where, 𝑀! = (𝜖!#(, . . . , 𝜖!#); 𝑜; 𝜖!#%, 𝜖!#%#(, . . . , 𝜖!#%#); 𝑜; . . . ; 𝜖!#&%, 𝜖!#&%#(, . . . , 𝜖!#&%#)), 

𝛽 = (𝜑(, 𝜑*, … , 𝜑); 𝑜;Φ(, 𝜑(Φ(, … , 𝜑)Φ(; 𝑜;Φ& , 𝜑(Φ& , … , 𝜑)Φ&)+ , 

𝑅! = (𝜖!#%#(, . . . , 𝜖!#%#); 𝑜(; 𝜖!#&%#(, . . . , 𝜖!#&%#)), 𝜆 = (𝜆((, . . . , 𝜆)(; 𝑜(; 𝜆(& , . . . , 𝜆)&)+ , and both 𝑜	and 𝑜( are row vectors 
composed entirely of zeros and their order are (s-q-1) and (s-q) respectively. 

 

If all 𝜆"$(𝑗 = 1, . . . , 𝑞, 𝑘 = 1, . . . , 𝑄) are insignificant, model (2) is reduced to Multiplicative model as follows: 
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It should be noted that the model will be Non-multiplicative if at least one of 𝜆"$  is significant (𝜆"$ ≠ 0). Therefore, testing 
the multiplicativity of the SMA model is the same as testing the significance of 𝜆"$ This can be accomplished by 
constructing confidence intervals for the parameters that distinguish between Multiplicative and Non-multiplicative models 
and thus testing their significance. 

 

 

 



J. Stat. Appl. Pro. 13, No. 1, 185- 201 (2024) / http://www.naturalspublishing.com/Journals.asp                                                        93 
 

 
 
         © 2024 NSP 
           Natural Sciences Publishing Cor. 

 

3 Bayesian analysis of Augmented SMA model 

3.1 Likelihood Function 

 Assume that 𝑦	is a sequence of observations (𝑦(, 𝑦*, . . . , 𝑦,) generated from Augmented 𝑆𝑀𝐴(𝑞, 𝑄)% model (2), and 
denoting the random error as 𝜖!~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝑎*) , one can obtain the likelihood function 𝐿(𝜑,Φ, 𝜆, 𝑎*, 𝜖-|𝑦) = ℓ  by 
transforming 𝜖!into 𝑦! , as follows: 
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Where, 𝑀	is a 𝑛 × (𝑞 + 𝑄𝑠) matrix that has row 

𝑀! = (𝜖!#(, . . . , 𝜖!#); 𝑜; 𝜖!#%, 𝜖!#%#(, . . . , 𝜖!#%#); 𝑜; . . . ; 𝜖!#&%, 𝜖!#&%#(, . . . , 𝜖!#&%#)), 

𝑅	is a 𝑛 × (𝑞 + 𝑄𝑠 − 𝑠) matrix that has row 

𝑅! = (𝜖!#%#(, . . . , 𝜖!#%#); 𝑜(; 𝜖!#&%#(, . . . , 𝜖!#&%#)), and 𝛽 and 𝜆 are defined in (3) 

We can see from (6) that 𝜖!′  is not linear in the model parameters, so the likelihood function (6) is  complex concerning the 
parameters 𝜑,Φ, 𝜆 , and 𝜖-, which complicates and makes the likelihood function analytically challenging. To solve this, 
the unknown errors can be estimated by replacing them with their estimated values through a recursive process as follows: 
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Where 𝜑\" , 𝛷]$ ,and 𝜆̂"$   are estimates obtained using NLS through the minimization of  the sum of square errors 𝑠𝑠(𝜑,𝛷, 𝜆) 
with respect to 𝜑,𝛷 and 𝜆 over the invertible region. As a result, we may approximate the likelihood function (6) as 
follows: 
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Where, 𝑀] is a 𝑛 × (𝑞 + 𝑄𝑠) matrix that has 𝑡!ℎrow 

𝑀]! = (𝜖!̂#(, . . . , 𝜖!̂#); 𝑜; 𝜖!̂#%, 𝜖!̂#%#(, . . . , 𝜖!̂#%#); 𝑜; . . . ; 𝜖!̂#&%, 𝜖!̂#&%#(, . . . , 𝜖!̂#&%#)), 𝑅b is a 𝑛 × (𝑞 + 𝑄𝑠 − 𝑠) matrix that has 
𝑡!ℎ	row 𝑅b! = (𝜖!̂#%#(, . . . , 𝜖!̂#%#); 𝑜(; 𝜖!̂#&%#(, . . . , 𝜖!̂#&%#)) and 𝛽  and 𝜆 are defined in (3).  
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3.2 Prior and Posterior Distribution. 

In the context of Augmented SMA model (2), it is assumed that the parameters 𝜑,Φ, 𝜆 and 𝜖- are independent a priori, 
given the error variance parameter 𝑎*. 

𝜉(𝜑,Φ, 𝜆, 𝑎*, 𝜖-) = 𝜉(𝜑|𝑎*) × 𝜉(Φ|𝑎*) × 𝜉(𝜆|𝑎*) × 𝜉(𝜖-|𝑎*) × 𝜉(𝑎*)	
												= 𝑁)e𝜇2, 𝑎*𝛴2h × 𝑁&(𝜇3, 𝑎*𝛴3) × 𝑁)&(𝜇4, 𝑎*𝛴4) × 𝑁)5&%e𝜇67 , 𝑎

*𝛴67h × 𝐼𝐺 S
𝜈
2 ,
𝜂
2m																				(11) 

Where 𝑁,89(𝜇, 𝑎*𝛴)  refers to the multivariate normal distribution with mean vector 𝜇 and variance-covariance matrix 
𝑎*𝛴 while 𝐼𝑛𝑣 − 𝐺𝑎𝑚𝑚𝑎(:

*
, ;
*
) refers to the inverse-gamma distribution with parameters :

*
 and ;

*
. The representation of the 

prior distribution (11) can now be expressed in the following way: 

𝜉(𝜑,Φ, 𝜆, 𝑎*, 𝜖-) ∝ (𝑎*)
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+𝛴67
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There were multiple reasons for selecting the prior distribution (12). Firstly, it is versatile enough to be applied in various 
situations. Secondly, it simplifies mathematical computations, which is beneficial for practical implementation. Finally, it is 
at least conditionally a conjugate prior, which makes it a useful choice for the given context.[14] 

In situations where there is limited or no information available regarding the unknown parameters, the Jeffreys’ prior 
distribution can be employed, which is a special case of the normal-inverse gamma distribution when 𝜂 = 0, 𝛴2#( = 𝛴3#( =
𝛴4#( = 𝛴67

#( = 0 and 𝜈 = −𝑝∗ where 𝑝∗ = 2𝑞 + 𝑄 + 𝑞𝑄 + 𝑄𝑠. 

We get the joint posterior distribution 𝜁(𝜑,Φ, 𝜆, 𝑎*, 𝜖-|𝑦)  By multiplying (12) with (10) as follows: 

𝜉(𝜑,Φ, 𝜆, 𝑎*, 𝜖-|𝑦) 

∝ (𝑎*)#<
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3.3 Full conditional distributions  

This sub-section introduces the full conditional distributions (FCDs) for the unknown parameters. The process of obtaining 
these FCDs involves the following steps: 

1) We start with the joint posterior distribution, which represents the distribution of all the unknown parameters given the 
observed data. 

2) We identify the specific unknown parameter for which we want to derive the conditional distribution. 

3) Next, we group the terms in the joint posterior distribution that depend on the chosen parameter. This step entails 
isolating the relevant terms and excluding those that do not involve the parameter of interest. 

4) To ensure that the resulting distribution is a proper density function, we determine the appropriate normalizing 
constant. 

5) We then simplify and manipulate the grouped terms to obtain the functional form of the conditional distribution. 

6) The characteristics of the grouped terms determine the nature of the conditional distribution. In our case, the study 
reveals that all the conditional posteriors are either normal or inverse gamma distributions. 

By following these steps, we can derive the full conditional distributions for each unknown parameter. 

3.3.1 FCD for 𝜑 

FCD for 𝜑 is  

𝜑E~𝜁(𝜑E|𝑦,ΦE#(, 𝜆E#(, (𝑎*)E#(, 𝜖-E#() = 𝑁)(𝜇2∗ , 𝛨2∗ ) 

where, 𝜇2∗ = (𝛴2#( + 𝐴+𝐴)#((𝛴2#(𝜇2 + 𝐴+𝑦 − 𝐴+𝐾Φ− 𝐴+𝑅b𝜆), 𝐻2∗ = 𝑎*(𝛴2#( + 𝐴+𝐴)#( 

𝐴 refers to  a 𝑛 × 𝑞 matrix with 𝐴!" = (𝜖!̂#" + ∑ Φ"𝜖!̂#"#$%
&
$'( )  and 𝐾 refers to a 𝑛 × 𝑄 matrix with 𝐾!$ = (𝜖!̂#$%)  . 
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3.3.2 FCD for Φ 

 FCD for Φ  is 

Φ	E~𝜁(Φ	E|𝑦, 𝜑E , 𝜆E#(, (𝑎*)E#(, 𝜖-E#() = 𝑁&(𝜇3		∗ , 𝐻3		∗ ) 

Where, 𝜇3		∗ = (𝛴3		#( +𝑊+𝑊)#((𝛴3		#(𝜇3		 +𝑊+𝑦 −𝑊+𝑍𝜑 −𝑊+𝑅b𝜆),𝐻3		∗ = 𝑎*(𝛴3		#( +𝑊+𝑊)#( 

W refers to a 𝑛 × 𝑄 matrix with 𝑊!$ = (𝜖!̂#$% + ∑ 𝜑"𝜖!̂#"#$%
)
"'( ) and 𝑍	refers to a 𝑛 × 𝑞 matrix with 𝑍!" = (𝜖!̂#"). 

3.3.3 FCD for 𝜆 

 FCD for 𝜆	 is 

	𝜆	E~𝜁(	𝜆	E|𝑦, 𝜑E , ΦE , (𝑎*)E#(, 𝜖-E#() = 𝑁)&(𝜇	4	∗ , 𝐻	4	∗ ) 

where, 

𝜇	4	∗ = (𝛴	4	#( + 𝑅b+𝑅b)#((𝛴	4	#(𝜇	4	 + 𝑅b+𝑦 − 𝑅b+𝑀]𝛽)	
𝐻	4	∗ = 𝑎*(𝛴	4	#( + 𝑅b+𝑅b)#(. 

3.3.4 FCD for 𝑎* 

 FCD for 𝑎*	is 

(𝑎*)E~𝜉((𝑎*)E|𝑦, 𝜑E , ΦE , 	𝜆	E , 𝜖-E#()~𝐼𝑛𝑣 − 𝐺𝑎𝑚𝑚𝑎(
𝜈∗

2 ,
𝜂 + 𝑛(𝑠*)E

2 ) 

Where, 𝜈∗ = 𝑛 + 𝜈 + 2𝑞 + 𝑄 + 𝑞𝑄 + 𝑄𝑠 and 𝑛𝑠* = (𝜑 − 𝜇2)+𝛴2#((𝜑 − 𝜇2) + (Φ − 𝜇3)+𝛴3#((Φ − 𝜇3) + (𝜆 −
𝜇4)+𝛴4#((𝜆 − 𝜇4) + (𝜖- − 𝜇67)

+𝛴67
#((𝜖- − 𝜇67) + (𝑦 −𝑀]𝛽 − 𝑅b𝜆)

+(𝑦 −𝑀]𝛽 − 𝑅b𝜆) 

3.3.5 FCD for 𝜖- 

Utilizing model (2), the equations that describe the elements of 𝜖- can be expressed as follows:  

𝑦)5&% = 𝐿𝜖- + Λ	𝜖)5&% 

Where, 𝐿 and Λ are (𝑞 + 𝑄𝑠) × (𝑞 + 𝑄𝑠) matrices, 𝑦)5&% = (𝑦(, 𝑦*, … , 𝑦)5&%)+ and 𝜖)5&% = (𝜖(, 𝜖*, . . . , 𝜖)5&%)  which has 
Normal-distribution with zero mean and variance 𝑎*𝐼)5&% where 𝐼)5&%  is the identity matrix of order (𝑞 + 𝑄𝑠) . The 
calculation of FCD is performed utilizing the results of linear regression and standard Bayesian methods 

𝜖-E~𝜁(𝜖-E|𝑦, 𝜑E , ΦE , 𝜆E , (𝑎*)E) = 𝑁)5&%(𝜇67
∗ , 𝐻67

∗ ) 

Where, 

𝜇67
∗ = (Σ67

#( + 𝐿+(ΛΛ+)#(𝐿)#((Σ67
#(𝜇67 + 𝐿

+(ΛΛ+)#(𝑦)5&%),𝐻67
∗ = 𝑎*(Σ67

#( + 𝐿+(ΛΛ+)#(𝐿)#( 

4 The Proposed Gibbs Sampler 
For Augmented SMA model (2), the Gibbs sampling algorithm is as follows: 

Step 1: Define initial values for the parameters  𝜑-, Φ-, 𝜆-, (𝑎*)- and 𝜖-- and set the iteration counter to one (r=1). Initial 
estimates can be obtained by fitting SMA model using Non-linear least squares and setting the initial values of the 
parameters 𝜖- to zero. 

Step 2: Repeatedly calculate the residuals utilizing the given formula (8). 

Step 3: Get the FCDs for the parameters. 

Step 4: Set the iteration counter to one (r=1) and run the simulation. 

𝜑E~𝜁(𝜑E|𝑦,ΦE#(, 𝜆E#(, (𝑎*)E#(, 𝜖-E#()	
ΦE~𝜁(ΦE|𝑦, 𝜑E , 𝜆E#(, (𝑎*)E#(, 𝜖-E#()	
𝜆E~𝜁(𝜆E|𝑦, 𝜑E , ΦE , (𝑎*)E#(, 𝜖-E#()	
(𝑎*)E~𝜉((𝑎*)E|𝑦, 𝜑E , ΦE , 𝜆E , 𝜖-E#()	
𝜖-E~𝜁(𝜖-E|𝑦, 𝜑E , ΦE , 𝜆E , (𝑎*)E) 

Step 5: Increase the iteration counter by 1 (𝑟 = 𝑟 + 1) and return to step 4. 
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The process of obtaining the next value of the Markov chain {𝜑E5(, ΦE5(, 𝜆E5(, (𝑎*)E5(, 𝜖-E5(}  is performed by iteratively 
drawing samples from each of the FCDs, while updating the conditions at each iteration of the algorithm. This process is 
iteratively carried out for a significant number of iterations, and the convergence is verified. When the chain converges, the 
resulting values from the simulations {φH5(, ΦH5(, λH5(, (a*)H5(, ϵ-H5(, ∀r ≻ n-} are treated as samples from the joint 
posterior distribution, and the average of these samples is used to obtain the posterior estimates for the parameters. The 
method for monitoring the convergence of the Gibbs sampling sequence has been widely researched and documented in the 
literature, as seen in references [24,25,26]. 

5 Simulation study  

5.1 Simulation design  

A simulation study is presented to assess the precision of our suggested Bayesian methodology for Augmented SMA 
models.  

One thousand sets of time series data are created by using two Augmented SMA models with different values of 𝜆. 
Simulation design details are presented in Table (1), which comprises actual parameter values, model variance, seasonal 
periods, and sample size. 

Table 1: Design of the Simulation 

Model  𝜑 Φ 𝜆 𝑎* s n 

I 0.4 0.6 0,0.3 and 0.4 1 4 400 

II -0.5 -0.3 0,0.1,0.3 and 0.4 0.5 12 300 

 

5.2 Simulation steps 

To assess the accuracy of our proposed methodology for Augmented SMA model, we conducted a simulation study 
following the steps outlined below. 

1) Creation of 1000 time series datasets: The study begins by generating 1000 time series datasets from the Augmented 
SMA models. 

2) Bayesian analysis with non-informative prior: The Bayesian analysis is conducted by employing a non-informative 
prior distribution for the parameters 𝜑,Φ, 𝜆	𝑎𝑛𝑑	𝑎* by sitting , 𝛴2#( = 𝛴3#( = 𝛴4#( = 0, 𝜂 = 𝑆* and 𝜈 = 3 , while the 
initial errors 𝜖 are assumed to follow  normal distribution with zero mean and  variance-covariance matrix 𝑎*𝐼)5&%. 

3) Selection of starting values: The starting values for  𝜑,Φ, 𝜆	𝑎𝑛𝑑	𝑎*are determined based on estimates derived from the 
NLS technique applied to the Augmented SMA model. As for the starting values of 𝜖, they are assumed to be zero. 

4) Execution of Gibbs sampler: The Gibbs sampler is executed 31,000 times for each dataset. The first 1,000 outputs are 
discarded as burn-in, and subsequently, every 10th value from the remaining 30,000 outputs is retained to produce an 
approximately independent sample. 

5) Computation of posterior estimates: Summary statistics, such as the mean 𝜇, standard deviation 𝑠𝑑, median 𝑚𝑒𝑑., and 
95% credible interval (𝐶𝐼) limits, are directly computed from the output of the Gibbs sampler as posterior estimates of 
the model parameters. 

6) Calculation of average summary statistics: The averages of the summary statistics are computed and reported based on 
the posterior outcomes got from the 1000 generated time series datasets. 

Further Discussion on Results and Convergence Diagnostics: Examination of the outcomes obtained from the proposed 
Gibbs sampling algorithm and their convergence diagnostics is presented in a subsequent sub-section. 

5.2 Simulation outcomes 

Tables (2) to (4) exhibit the results of Model I based on the 1000 time series datasets generated. These tables comprise the 
Bayesian estimates of the model parameters along with their true values and the 0.025 and 0.975 percentiles of the 
simulation draws used to create a 95% credible interval for each parameter. 
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Table 2: Bayesian analysis outcomes for Model I with 𝜆 = 0 

par True value 𝜇 Sd. LL  

95% CI 

Med. UL  

95% CI 

𝜑 0.4 0.400 0.050 0.302 0.400 0.498 

Φ 0.6 0.602 0.050 0.503 0.602 0.700 

𝜆 0 -0.004 0.062 -0.127 -0.004 0.117 

𝑎* 1 0.997 0.071 0.868 00.994 1.144 

 

Table 3: Bayesian analysis outcomes for Model I with 𝜆 = 0.3 

par True value 𝜇 Sd. LL  

95% CI 

Med. UL  

95% CI 

𝜑 0.4 0.402 0.050 0.304 0.402 0.500 

Φ 0.6 0.597 0.050 0.499 0.597 0.695 

𝜆 0.3 0.293 0.062 0.169 0.293 0.413 

𝑎* 1 1.001 0.071 0.871 0.998 1.149 

Table 4: Bayesian analysis outcomes for Model I with 𝜆 = 0.4 

par True 
value 

𝜇 Sd. LL  

95% 
CI 

Med. UL  

95% 
CI 

𝜑 0.4 0.404 0.050 0.306 0.404 0.502 

Φ 0.6 0.592 0.050 0.494 0.592 0.690 

𝜆 0.4 0.388 0.062 0.265 0.389 0.509 

𝑎* 1 1.006 0.071 0.875 1.003 1.155 

 

Based on the information presented in Tables (2) to (4), the estimates of the model parameters exhibit remarkable 
proximity to their actual values. Additionally, the average of the 95% CI limits encompasses the actual value for each 
parameter. To assess convergence diagnostics, we generate a single time series dataset using Model I with a value of λ = 
0.3. In Figure 1, we present trace plots (traceplot) for each parameter in Model I, accompanied by their corresponding 
marginal posteriors. Additionally, Table (5) displays autocorrelations (Autocorr) and Raftery-Lewis[25,26] diagnostics, 
while Table (6) presents Geweke[24] diagnostics. 
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Fig.1: traceplot and marginal posterior densities of Model I when 𝜆 = .3 

As depicted in Figure 1, the Gibbs algorithm's posterior draws remain stable and vary around the actual values. The 
marginal posterior densities display that the actual value of each parameter lies within the 95% CI.  

 

Table 5: Autocorre and Raftery.Lewis.Diag for Model I when 𝜆 = 0.3 

Par. Autocorr 

1ag1 lag5 lag10 lag50 

𝜑 0.003 0.013 0.031 -0.025 

Φ -0.046 -0.027 0.005 -.007 

𝜆 0.022 0.011 0.022 -00.015 

𝑎* -0.008 -0.026 -0.022 -0.017 

Par. Raftery.Lewis.Diag 

Burn-in Total N N-min I-stat 

𝜑 2 892 937 0.952 

Φ 2 892 937 0.952 

𝜆 2 892 937 0.952 

𝑎* 2 892 937 0.952 

 

Table (5) indicates that there is no convergence issue as the autocorrelations for each parameter at lags 1, 5, 10, and 50 are 
low. This is further provided by the Raftery.Lewis.Diag, specifically the I-stat value, which is approximately 1, indicating a 
value lower than 5. 
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Table 6: Geweke.diag for Model I when 𝜆 = 0.3 

Par. 𝜑 Φ 𝜆 𝑎* 

NSE iid 0.001 0.001 0.001 0.001 

RNE iid 1 1 1 1 

NSE 4% 0.001 0.001 0.001 0.001 

RNE 4% 0.6955 1.2767 1.1424 1.1622 

NSE 8% 0.0010 0.0008 0.0010 0.0011 

RNE 8% 0.7809 1.4478 1.3067 1.3785 

NSE 15% 0.0009 0.0006 0.0009 0.0011 

RNE 15% 1.054 1.968 1.517 1.281 

𝝌𝟐 0.584 0.607 0.600 0.578 

 

Table (6) indicates that there is no convergence issue as the 𝜒* probabilities indicate that the hypothesis of equal means 
cannot be rejected, and there are no significant differences in the NSE estimates. Additionally, the RNE estimates being 
close to one suggests that the output sample has an independent and identically distributed (iid) nature. 

The outcomes of a Bayesian analysis performed on Model II are presented in Tables (7) to (9). These results demonstrate 
that Model II yields comparable findings to Model I, thereby confirming the efficacy and accuracy of the proposed Gibbs 
sampling algorithm. 

Table 7: Bayesian analysis outcomes for Model II with 𝜆 = 0 

Par. True value 𝜇 Sd. LL  

95% CI 

Med. UL  

95% CI 

𝜑 -0.5 -0.493 0.058 -0.606 -0.493 -0.381 

Φ -0.3 - 0.297 0.059 -0.412 -0.297 -0.183 

𝜆 0 -0.002 0.068 -0.136 -0.001 0.130 

𝑎* 0.5 0.500 0.041 0.426 0.497 0.586 

 

Table 8: Bayesian analysis outcomes for Model II with 𝜆 = 0.4 

Par. True value 𝜇 Sd. LL  

95% CI 

Med. UL  

95% CI 

𝜑 -0.5 -0.490 0.058 -0.604 -0.490 -0.378 

Φ -0.3 -0.293 0.058 -0.408 -0.293 -0.179 

𝜆 0.4 0.395 0.067 0.262 0.396 0.527 

𝑎* 0.5 0.504 0.041 0.429 0.502 0.591 



100                                                                                                                    E. Ahmed et al.: Estimating Seasonal Moving … 
 

 
 
© 2024 NSP 
Natural Sciences Publishing Cor. 
 

Table (9): Bayesian analysis outcomes for Model II with 𝜆 = −0.3 

Par. True value 𝜇 Sd. LL  

95% CI 

Med. UL  

95% CI 

𝜑 -0.5 -0.480 0.058 -0.593 -0.480 -0.368 

Φ -0.3 -0.286 0.058 -0.400 -0.286 -0.172 

𝜆 -0.3 -0.295 0.067 -0.427 -0.294 -0.164 

𝑎* 0.5 0.506 0.041 0.431 0.504 0.593 

 
6 Real-world application 

To demonstrate the suggested Bayesian analysis of Augmented SMA model, one of the frequently cited time series 
examples in the literature was employed as an illustration. This series was chosen because it was really modelled using the 
Multiplicative Seasonal Moving Averages model. This series is known as the “Airline Series” [23]. 

The airline series comprises 144 monthly observations of US airline passengers from 1949 to 1960. The series exhibits both 
trend and seasonal patterns, and its variance increases over time, making it non-stationary Figure (2). However, by taking 
the natural logarithm of the series and using non-seasonal and seasonal differences, the series becomes stationary Figures 
(3) to (5). Box et al. [23] identified this logged and differenced series as Multiplicative 𝑆𝑀𝐴(1,1)(* without testing the 
multiplicativity of this series, i.e., without testing the significance of 𝜆, the parameter that distinguishes between 
Multiplicative and Non-multiplicative models, so we estimate Augmented SMA for this series by using the proposed 
Bayesian analysis and then test the significance of  parameter 𝜆 by constructing the credible interval of this parameter as 
shown below. The selection of hyper-parameters and starting values follows the same way as that used in the simulation 
study. 

 

 
Fig. 2: monthly values of numbers of passengers. 

 
Fig. 3: “ACF” and “PACF” for log (airline data). 

 
Fig. 4: “ACF” and “PACF” for log(airline data) 
after taking seasonal differences. 

 
Fig. 5: “ACF” and “PACF” for log (airline data) after 
taking first differences for seasonal differences. 
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Table (10) presents the Bayesian analysis outcomes for the logged and differenced airline series. Trace plots and marginal 
densities of the logged and differenced airline series are displayed in figure (6).  

Table 10: Bayesian analysis outcomes for the logged and differenced airline series 

UL  

95% CI 

Med. LL  

95% CI 

Sd. 
 

Mean  Par. 

-0.1937 -0.3698 -0.5499 0.0888 -0.3694 𝜑 

-0.4244 -0.6028 -0.7894 0.0952 -0.6040 Φ 

0.2264 0.0151 -0.2046 0.1106 0.0128 𝜆 

0.0018 0.0014 0.0011 0.0002 0.0014 𝑎* 

 

 
Fig. 6: traceplot and marginal posterior densities for the logged and differenced airline series 

 

From table (10) the 95% credible interval for the parameter 𝜆 contains zero, which means that we accept that the used 
model is Multiplicative SMA model, and this agrees with the reported statistical results in the literature [23]. 

7 Conclusion 

This study demonstrates that the full conditional distributions of Augmented SMA model adhere to standard probability 
distributions. Specifically, the full conditionals of the parameters 𝜑,Φ, 𝜆 and 𝜖- follow multivariate normal distributions, 
while the full conditional of the parameter 𝑎* is an inverse-gamma distribution. 

Taking advantage of the standard nature of the full conditional distributions, a Bayesian method was developed to estimate 
the parameters of Augmented SMA model. This method utilizes the simple MCMC Gibbs sampling algorithm. 

To evaluate the accuracy of the proposed algorithm, both a simulation study and a real-world application were employed. 
The stability of the proposed Gibbs sampling algorithm was demonstrated by several convergence measures. 
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