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1 Introduction

Let A be the class of functions analytic in the open unit Q = {u+iv:u> ky/(u—1)2+V2}.

disckE = {z: |z < 1} and be given by

f(z) =z+ ianz”. @)

In [5], the domain®y, k € [0, ) is defined as follows:

4)
For fixed k, Q¢ represents the conic region bounded,
successively, by the imaginary axi& = 0), the right
branch of a hyperbolé0 < k < 1) and a parabolgk = 1)

Let SC A be the class of functions which are univalent @nd an ellipsék > 1). Also, we note that, for no choice of

and alsK, S, C be the well known subclasses®Wwhich,
respectively, contain close-to-convex, starlike and eanv
functions.
LetVim(p),m> 2,0 < p < 1, be the class of functions
f analytic and locally univalent it and satisfying the
condition
2 zf'(@)
f'(2)

1-p

dé < mr. 2)
Whenp = 0, we obtain the clasgn(m > 2) of functions
with bounded boundary rotation, se.[The class/im(p)
was introduced and discussed in some detai8]nlf can
easily be shown that € Vin(p) if and only if there exists
f1 € Vim such that

f'(2) = (f1(2))**. ®)
The convolution of two functiond (z) given by (1) and

92) =2+ 3 b2 is defined as
n=2

(fxg9)(2=(g*f)(2) =z+ ianbnz“.

k(k > 1), Qk reduces to a disc, seg, [L8].

In this paper we will chooske [0, 1]. Fork € [0, 1], the
following functions, denoted bpy(z), are univalent irg,
continuous as regard g have real coefficients and map
E onto Q such thatp(0) = 1, p (0) > O:

%, (k=0),

(k=1),

2 147
1+ (log %), seds] . (5)
2

1+ 2, sinl? | (2 arccok) arctanﬂz)] , (0<k<1).

s

Let P denote the class of Caratheodory functions of
positive real part. Then the claB$px) C P is defined as
follows

Definition 1. Let p(z) be analytic in E with f0) = 1. Then
p € P(px), if p(2) is subordinate to gz) given by (5). We
write pe Py, implies gz) < pk(z) in E, and gE) € pk(E).

We note thaP(pg) = P. It is easy to verify thaP(py) is a
convex set and

K
P(pk) CP(p), p= PR
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whereP(p) is the class of functions with real part greater Definition 5. Let f € A. Then, fora>0,0<y< 1, f €
thanp, see f]. k—UTm(a,y, @) if and only if there exists g k—UTn(@)
Also, for p € P(py), it is known 2] that such that

3 (k=0), zf'(z) +af(z) = (a+1)2(d'(2))". ®)

omn t k#£0

|argp(z)| < —- = arctarg, - (k#0) (6)  We note that

T —

7 (k=1).
We extend the clag3(pk) as given below k—UTn (0, 1, iz> =k—UTp,
Definition 2. Let p(z) be analytic in E with f0) = 1. Then
p € Pn(px), if and only if, for m> 2, k € [0, 1], we have 0-UTm (0 1, 1 ) = Tpn.

m 1 m 1
o0 = (F+3)md - (3-3) P2 @ Aso
0-UT(0,1,—log(1—2z)) =C*,

P1, P2 € P(Px). the class of quasi-convex functions, s&@| [
When k = 0, we obtain the clas®&, introduced and ]
studied in R0]. Also P>(px) = P(py). Throughout this paper, we assume that[0, 1], y € (0,1],

m>2,0(a) > —1, z€ E, unless otherwise specified.
We now define the following

Definition 3. Let f € A. Then fe k—UVp, ke [0,1], m>2 2 Preliminaries

if and only if
2(1"(2)) Lemma 1([19]). Let ¢(z), be analytic in E with ¢0) = 1.
[1+ 72 } € Pn(pk), z€E. If a>1,0(c) >0,0< 6; < B, <2m,z=rel? then

6,

k —UVy, is called the class of functions with k-uniform azd(z)

boundary rotation. /D { (2 ca+q(2) 46 > —m
e

Fork =0, 0—UVi = Vin, see f,12,13,14]. !

implies
The corresponding clags- U Ry, is defined as 6,
K—URp={F €A:F =z, f € k—UVp). /Dq(z)db*"'

61

Lemma 2([16]). Let f € k—URy. Then there exist
s € k—ST,i = 1,2 such that

We note that:

() k—UV, =k—UCV, is the class of uniformly convex
functions. (Sl(Z))mTZ
(2))"%°

(i) k—URy=k—STis the class of uniformly starlike (2(2))

functions.
Lemma 3([10]). Let g€ Vim(p). Then, for

For details of these special case, we refei2).[ 0<p<lbi<by

Definition 4. Let f € A. Then fe k—UTy, if there exists (i) d'(2) = (d,(2))*P, g1 € V.
g € k—UVy, such that

t'(2) (i) m{ da'de} > —(3-1)(1-p)7
eP ,z€ E.
g/(z) (pk)
Fork = 0, we have the clask,, introduced and discussed .
in [10). e oo | ! et 3 Main Results

T
Also, for k = 0,m = 2,k —UT,, reduces to well known 1heorem 1.LetGe k—UTm. Then, for6, < 6;, 2= re'”,

classK of close-to-convex functions, seg [

0 (zG(2) 40 m—2
Letg € A Thenf € k—UTn(g) if and only if / G(2) \2(k+1) i
(fx@) ek—UTyforzeE. 61
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Proof. SinceG € k — UTy, there existG; € k—UVp and  That s, withp(z) = 2f(@) \ve have
H f(z)
kK—UVn CVm(p), p= It such that
!
G(2) Ofp(z zp(2) (zG(2) .
G " ©) POt e 2 o

whereo is given by (6) and € P.
Also we observe that, fdr € P,

J gy _ 0 , i0
%argh(re )= %D {—|Inh(re )}
e re'®n'(re'?)
B h(rel®) [’
and so

8 0K (ral® ) ;
/D {reh(r:e(ir:))}de — argh(re'%) — argh(re').

1

Hence

fofrenenye

1

max
heP

= max‘argh(rei %) _argh(re'®)
heP

2r
< 2sint
- 1

r2
2r
1—r2°

Now differentiating (9) logarithmically and using
Lemma 3 together with (10), we obtain

[o{i oo ()

This completes the proof.0

=m—2cos?t

(10

Theorem 2.Let fe k—UTw(a,y,9),d(a) >0,0< y<1,

6, < 6, and z=re'®. Then
&)
zp(2) (m—2)
R L R PR L
~zf(2)

61
p(Z) - f(Z) :

where

Proof.Let G(z) = (g* @)(z). Then, by definition,
zf'(z) +af(z) = (a+1)z2(G'(2))Y,Ge k—UTpn.

Differentiating logarithmically, and with

computations, we have

fl !
at Gk (26(

f - /
Lrafs | 6@

"1y,

simple

Using Theorem 1, we obtain the required result. [

Corollary 1. For m< {ZHLVWH) + 2} , We use

Lemma 1 to have from Theorem 2,

/BZD {fo;(z? }de > 1 f ck—UTn(a y, o).

1

Corollary 2. Let f € k — UTy(0,1, 9).
m<2{(1-o)(k+1)+1},

(i)

1

Then, for

and hence (z) is univalent in E, seef].

If k=1, theno = % and in this casé (z) is univalent inE
for2<m<4.

Theorem3.ForO<y <y <1l z€E,
k_UTZ(av Vla‘P) C k_UTZ(a1V27(p)'

Proof.Let f € k—UTz(a, y1,®). Then

zf'(2) +af(z) = (a+1)z(G'(2))", G(2) = (g* @) (2) € k—UTy,

= (a+1)z(H'(2))%,
where ,
H'(2) = (G(2) %,

We now show thatHH € k—UT, and this will prove that
fek=UTz(a v, o).
Now

H =h=xg.

i

Y
H'(2) = (G'(2))%?, Gek-UT, 5<L

SinceG € k—UT,, there exists a function
G1=(g1x @) € K—UV, such thatg‘/l((zz)) € P(p«) in E.

Y
LetGL(2) = (Gy(2))%, %<1,
It is easy to verify thaG, € k—UV, in E. Thus

"
H'(2) G(2)\ %
= P
oo~ (gm) <P
since% < 1. This completes the proof. O
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Remark. From definition 5, the following integral
representation for the claks- UTn(a, y, @) can easily be
obtained.

A function f € k—UT(a, ¢, y) if and only if there exists
a functionG € k—U T (e, y, ), such that

_arl /za 1G(t) (11)

Theorem 4.Let f€ 0—Tmn(a,1,9) =Tm(a,1,¢). Then f is
a Bazilevic function and hence univalentih< rp,, where
rmis given by

rm:%{m— mz—4}. 12)
Proof. We can write, forf € Tn(a,1, @),
f(z2) = ?/ZtalF(t)dt, F € Tm(o, 1, ).
Leta=c+id, c > 0. Then we have
f(z) = CJ;J d / ©p(t)g(t)td1dt, (13)

wherepe P,ge 0—URy, =R

We define .
c+1
G(z) = z<g(2)> " .
z
Then
zG(z) 1 1 zd(2)
= 1— —|— .
G(2) c+1 c+1 9g(2
Now zg(g) € Pn andPy, is a convex set, s6 € Ry, and, it

is known 0] that G € Ry, is starlike for|z| < ry, whererp,
is given by (12).
Further we defind(z) as

[(c+ 1+id) / G°+1(t)p(t)tid—1dt] .
0

f1(z) is Bazilevic function, seel], and hence univalent in
|7 < rm. Therefore@ #0,|7 <rm.
We note that

f1(2) :z<f(z))ail7 a=c+id.

z

fl(Z)

This means thaf(z), given by (13), is analytic and for
f(2)

5 , it is possible to select uniform branch which

takes the value one far= 0 and which is analytic foz| <

rmand also allows us to compute the derivativézin< rp,.

Thus we conclude thdt(z) is univalent in|z| < ry, where
rmis given by (12). This completes the proofd

a+l

Theorem 5.Let f € 0—UTny (o, Y, ) = Tm(w, y, @). Then
the radius r, of the disc which f maps onto a starlike
domain is given by

z%,l{ml—\/mf—4w}>y# 3

™=y 1 ’ (14)
m V=2

where m = (m+2)yandy; = (2y—1).

Proof. f € Tm(co, y, @) implies that

(2 =2G(2)", G=(g%9) €Tm (15)

Logarithmic differentiation of (15) gives us

zf'(2) _ y(zG (@)’
f(2) G(2)

Therefore, using a result] for G € Ty, we obtain
/
0 zf'(2) - (2y—1)r?
f(z) ]~

and right hand side is positive f¢z| < rm,. This proves
the result. O

+(1-y).

- y(m+2)r+1
1-r2

We now investigate the rate of growth of coefficientd af
k—UTm(ay, ). Let f(2) be given by (1) and leg(z) =

z+ Y baZ', @(2) =z+ 3 ¢z
n=2 n=2
We have:

Theorem6. Let f € k— UT(a,y,9). for

m> { (2—0;2(k+1) _ 2},

Then,

lan| < C(M, y,k) R1(2+) 701} 0,

where Gm, y,K) is constant depending only on yrand k.
Proof. We can write
zf'(z2)+af(z) = (a+1)z(G'(2))Y,

where

(16)

G(z2) = (9% 9)(2) € k—UTn.
This implies there exist&; € k— UV, such that
G'(2) = (G1(2)(h(2))°.
Then, withz=rel?, we have

(n-+a)lan|

2
. [{zt@+ai@}ede
0

2

/(a+ 1)(G(t))d6|,

0

(17)

Gek-UTn  (18)

Zmnfl
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Now, sinceG € k—U Ty, there exist$s; € k—UVy, such ~ We note the following special cases.
that

G (z2) =G} (20h’(2),he P, (i) Letf e 1- UTm (oo 1,+% Z) UTm(e0,1).

ando is given by (6).
Using Lemma 2 together with the known res2¢] that

k—STcC S(p), p_kH,we have

(M)(1*P>(%+é)
z
Gi(z) = o (1-3) t1,tr € S". (29)
(t2(z)2) Pa2
; 2—oy _ ralf
Define, form > {G(lip) 72}, z=re'".

2
N :/|G’(z)|Vd6, Gek—UTn.

Then, from (19)
L [la@ree(i)
3)

Y1) Ih(z)I"do

ly(r) =

%’1

) (o E

1 a4\ V1-e)(3-3)
()

P
— rv(l-p

T
< [ @2 Ding) e,
0

where we have used well-known distortion result for the
starlike functionty(z). We now apply Holder’s inequality,

Thenp = é, y=735 1and
an= O(1)n%1 form> 4,

and, for f € 1—UTpy(e,1
a,=0(1).n% 1 m> 4.

,155) = UTim(,1), we get

(i) Letk=0andf € Ty(e,y,15). Then, form> 2

an =02 )1 — O(1)nZ 1 (0 o).
When we take/ = 1, then
an=0(1)nZ L,
(i) Let f €Tn(0,y,1%5). Then, form> 2
8y =0(1)n? 2,

and withy = 1, we obtain, fom > 2

a,=0(1)n?,
This result is proved in][1]. See also15|.

(n— o).

(iv) Let f € k— UTgy(ew,y,log(l — 2)).

m>2{ 2 Vg)fl}

Then, for

( 2)
an = O(1)n? o) TVO-2

use subordination for starlike functions and a result due to

Pommerenked]] for h € P to have, for
o(1-p)(m+2)>2—o0y,

ly(r) < i (4)V<1p>(9;%)

2—oy yo

2 21T v
(/tl (2) 112 +>) (/|h<z>|2de>
0

yo

¥ 1 ya-p)(F+1)+ 57 -1
semi(557) " () |

whereC(m, y,k) is a constant depending only on y, k.
That is
1 y(1-p)(F+1)+¥ -1
=0 ()

b

Now, withr = 1— 1, we have from (18),
1| wm2)
|an|<c(m Y, )‘ ia n 2k+1) +yo— l (n_>°°)

This completes the proof.00

With k=1, y= 1, we haves = 1 and so, fom > 4

an=0(1)nT 1 (n— o).

Also, if we takek =0,y = 1. Theno = 1 and so

an=0(1)n%, (n— ).

Theorem 7.Let f € k—UTn(0,1, ¢). Denote by r, f),
the length of the image of the CII’CIE| =r under f, by
A(r, ), the area of f|zl <r)and M(r,f) = méax\ (re'9)|

Then
L(r,f)=0(1)M

where 1) is a constant.

1
(r, f)|09ﬁa

Proof. Sincef € k—UTn(0,1, ¢), we have
zf'(z) =2G(2), G(2) = (9% @)(2) e k—UTn.

This implies thatf € k—UTy. So there exist&; € k—
UV C Vin(p) such that
/

o p e P(pk) CP(p).

© 2014 NSP
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Now, with z=re'?, Also, sinceA(r, f) < nM?(r, f), we have
2
L(r,f) = /\zf’(z)|d9 l(r) < f<k+1> M(r, f) (I0g1+r> . 21)

We now estimatéy(r).

peP(p),p = &, implies that we can write

21T
= p(2)|d8, GiVim(p),p < P(p o it o
O/ZG_L(Z) (2)] 1Vin(0) (P) /1+§§td”(t)’/d“(t):
2 r 0
< [ [I@p@H@ +Gi@EP@)dede, g,
00 2 .
l , 1-— P
_ (zG(2) p(2) = du(t).
(M- 555") / e
f 2 s Therefore
< [ [IF@H@Ideds + [ [ 1zB(2)64(2|d6de .
00 00 oy e
— 14(r) + 1o(r). (20) lz(r)Sl,Tp///| et|2 (t)deds.
Now 00O
r2m Also
w(r) = [ [1F(@H(Idode [P
00 /|1 zapdH
where g
_(zG6(@®@) _ ., < dh
H(z) = STOR 14 Z a2, and hence -
f(2) given by (1)Jch| < m(L- ) = andfom>1, () < 2(1-p) [ [ 126 (@IOH@d0
we have 00
[1(r) B _ T —iargzG d¢
r 2m 3 /on 2 - p)o/D{ZG( g }del &%
I 2 2
So/ (/'f @l de) (0/ 2 d9> Integrating by parts gives us
_ 271/(% 2o 2627 2) (%'a | Ezn> l2(r) < [2m(1—p) }no '\f(_rvffz) . (22)
) \&

From (20), (21) and (22), we obtain the desired resut.

1
<V2(i)m (Z o1l 1) (19 H)
+1 n- We study arc-length problem with a different technique as
< \f2<

follows.

m 2 2 on_1 1+4r
k+ 1) T[(nzln'a” ' ) (Iogl—r> ' Theorem 8. Let f € k — UTyn(0,y,9). Then, for
) m> {(2—0;3(k+1) _2}7
But A(r,f)=m Zln\an|2r2“ is the area of the image of

n Y (m
N k—l(vz+l)+ay—l
|zl < r byw = f(2). Therefore L(r, f) = O(1) 1 \& (1),
1 1 l_r
m Alr,f)\ 2 1+r)\2
l1(r) <v2 <k+ 1) 7T< (nr )> ('09 1—r) : wherea is given by (6) and Q) is a constant.
@© 2014 NSP
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Proof. We can write
zf'(2) = 2(G'(2))Y,

= 2(G(2h?(z ) V,
a0 ) v(3+3)

G=(g*x@) ek—UTn,heP

N
/N

h?Y(z),s1,5 € k—ST,  (23)

(ﬂ) V(%L%)
by using Lemma 2.

Also s € k—STimplies thats € S'(p),p = &5,i=1,2
Therefore, forz = re'®

L(r, ) /|zf’ )|do — /'

Sinces,(2) is starlike and hence univalent, so we have

BED (T
Len=(5)" ( [1s@1# e >|“Vd9) .

r
0

Y
zm+

l
2
5 [h(2)|°¥d6.
-3)

»\3 »\3

Y
m

Holder's inequality together with subordination for
starlike functions, we have

L(r, f)

m 1
17?
<( > (/m Zde)
2-oy
o %%w%)z%yde :
/( re'9|>
0

l F 7“1’1 +oy— 1
ow(g)
) <

Yini2) - (2— gy). This completes the proof.0

for k+1

As special cases, we note the following

(i) Fory=1m=2 andk= 1, which gives uss =

This gives us
1
L(r,f)=0(1) 1y
(rf)= 1-r) °

(i) We takek =0 andy = 1. Theno =1 andf € Tp.
This gives us

L -ow () "

We shall estimate the growth rate &iy(n) for the
functions in the clasdJTn(0,y,®). This is the main
motivation of next result.

N\H

NE!

(r—1).

Let f € A and be given by (1). Suppose that th&h
Hankel determinant of is defined fog> 1,n > 1 by

an  ant1l.-- Angg-1
Ho(n) = | et Bz (24)
anigq-1 .- .- ani2q-2

Theorem 9.Let f € UTy(0,y, @) and let the gth Hankel
determinant of fz) for g > 1,n > 1, be defined by (24).

The, for m> {8—;‘ - 2},

Ha(n) = O(L)n(# Y197 (n— eo),
where Q1) is a constant depending upgnm and g only.

To prove Theorem 9, we need the following results and for
these we refer tod].

Lemma 4. Let f € A and be given by (1) and let the gth
Hankel determinant of f be defined by (24). Then, writing

Aj(n) = Aj(n,z1, f). We have
Hq(n)
Azq,l(n) A2q73(n+ 1) Aq,l(nJrqfl)
A2q73(n+1) A2q74(n+2) Aq,z(n-}-q)
= . . . , (25)
Aq,l(n.+qfl) . . Aq(n+.2q—2)
where, withAg(n,z1, f) = a,, we define for > 1,
Aj(n,z. f) =Aj_a(n,z1, ) —z4j1(n+ 1,7, f).  (26)

Lemma 5. With x= (783y) ,v > O and integer

Aj(n+v,v,x,zf (2))

B Z>< ) n+1)1) )AJ 1N+ v+Ly, ).

Proof(Theorem 9) Sincef € UTy(0,y, @), we can write
zf'(2) =2G'(2))" = (9*9). (27)

Now, for G € U T, there exists3; € UVin C Vim(3) such
thatg—,l € P(p1). Also, for p € P(py), we have argp(z)| <

,0€eUTy,G

7 which gives uw = 3.
Thus we can write (27) as

© 2014 NSP
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where sy, s, € S*, where we have used a result due to for y(m+2) > 8q.
Brannan B]. Also we can choose z with |z;| =r such  This completes the proof.O

that for any univalent functions(z) Special C
pecial Case.

2 m
maXKZ— 71)s(z)| < %, (28) Wheny=1,m> 6, we havea, = O(1)na—tand
Z|=r -
see Bl. Hqg(n) :O(l)n(%)q‘qz, n— oo,

Now, for j > 0,z; any nonzero complex number, consider

2;(nz1, 7(2)) For this case we note that

e H(EHD) Ha(n) = O(1)nz "%, m> 14
LRGN
2mrt] %(2) 5(3-3) (p(2)
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