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Abstract: In this paper, we introduced two types of fuzzy stabilizﬁ%(F) andS3 (F) of a fuzzy sefF and the stabilize®" (F, G)
of F with respect tdG in IMTL-algebras. We proved thzﬁ,%(F), S,%‘(F) and"(F, G) are fuzzy filters oM. We investigated some

properties of the stabilizers. By introducing theoperation of two fuzzy filters, we prove thatandV (-, -) form an adjoint pair and
the set of all fuzzy filters# (M) is a residuated lattice.
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1 Introduction several characterizations of fuzzy positive implicative
filters in lattice implication algebras. Liu and L17,18|

Algebraic method plays a key role in studying fuzzy proposed the notions of fuzzy Boolean filters and fuzzy

logic, and any logical algebra systems corresponding tgpositive  implicative filters of BlL-algebras and

various logical systems are established accordingl®][ Ro-algebras. Some properties of fuzzy Boolean filters and

MTL-algebras are the corresponding algebraic structure$uzzy positive implicative filters of BL-algebras and

of Esteva and Godo’s monoidatnorm based logic Rp-algebras are derived. Recently, Zhang and Zhdj [

(MTL). IMTL-algebras, which are the algebra structures proved that the filters set of a residuated lattice forms a

for monoidal t-norm based logic with an involutive residuated lattice and the prime Boolean filters set is a

negation (IMTL), are the important sub-classes of MTL- quasi-Boolean algebra by introducing some operations

algebras. The main examples of IMTL-algebras are theamong filters.

real unit interval [0, 1] endowed with the structure In the present paper, we studied two types of fuzzy

induced by a left-continuousnorm with an involutive  stabilizers3g (F) and S5 (F) of a fuzzy setF and the

negation and the Lindenbaum algebra of the IMTL (thefuzzy stabilizerSV(F, G) of F with respect toG, for

quotient of the free algebra of formulas with respect tofuzzy subset§& andG in IMTL-algebras. We investigated

the logical equivalence). MV-algebras and NM-algebras,some properties of the fuzzy stabilizers and show that

which is calledRy—algebras in §], are the most known S (F), S5 (F) andS"(F, G) are fuzzy filters ofM. By

classes of IMTL-algebras. For more details of theseintroducing thex operation of two fuzzy filters, we prove

algebras, we refer the reader 84,5,6,7,8,9]. that® andS"(-, -) is an adjoint pair and the se& (M) of

Up to now, these relevant logical algebra structuresa|| fuzzy filters forms a residuated lattice.

have already been widely studied. In particular, emphasis

seems to have been put on filters theorgjeH 3] proved

the completeness of basic logical system BL. Turunnen2 o

[10,11] studied some properties of the filters and prime Preliminaries

filters of BL-algebras (he called them deductive systems

and prime deductive systems, respectively). 18][ he = Throughout this paper, le¥l denote an IMTL-algebra.

introduced the notion of Boolean filters (Boolean Here we recall some definitions and results about IMTL-

deductive systems) in BL-algebras and derived somealgebra which will be needed in the following.

characterizations of Boolean filters. Xu, Qin and JL8 [ Definition 2.1 (see 4]). A MTL-algebra is a bounded

14,15,16] proposed the notions of positive implicative residuated latticéM, v, A, ®,—,0,1), whereVv andA are

filter and fuzzy positive implicative filter, and derived the lattice meet and join operations afiegh,—) is a
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residuated pair, satisfying the pre-linearity equation

(X—=y)V
An IMTL-algebra is a MTL-algebra satisfying

(y—=x) =1.

—|—|X:X7

where-x=x— 0.

Let M be an IMTL-algebra. For any,y € M, define
XPy=-x—Y.ltis easy to verify thats are commutative,
associative anddy = —(—x® ).

Example 2.2. Let [0,1] be the real unitintervak is a
left-continuougt-norm with an order-reversing involution
and — is its residuum, ther{[0, 1],®,—) is an IMTL-
algebra called the IMTL-unit interval.

Lemma 2.3 (see4,7]). Let M be an IMTL-algebra.
Then for anyx,y,ze M,

(P1) (M, ®,1) is a commutative semigroup with the
unit element 1,

(P2) @ is a monotone operator,

(P3) Xx@y <XAYy<XVYy < XDy,

(P4 xoy<zifandonly ifx<y—z

(P5) x@y—z=x—=(y—2),Xx— (Y= XxQy) =1,

(PE)X—>y<XVZ—=YVZX—=Y<XRZ—=YRZ,

(P7) x® (X —=Y) <Y, X<y = X®Y,

(P8) x®@—-x=0, x&—-x=1,

(P9) x® (yVz) = (XQYy)V (X®2),

(P10)xV (Yy®2Z) > (XVY)® (XV 2),

(P11) (x> y)®(y <> 2) < X<>Z wherex«+»y=
A (Y = X),

(P12) (x & y)®
NeE{NV, R, — 1.

A subsetA of M is called a filter ofM if (i)1 € A,
(ii)xe Aandx <yimply y € A, (iii)x,y € Aimpliesx®
y € A. It is easy to prove that a subskts a filter if and
only if A satisfieqi) and(iv)x,x =y € A imply ye A A
filter Ais called prime if(v)Va, b € M,xVvy € Aimplies
acAorbeAl6,12].

Definition 2.4 (see 19]). A fuzzy setF of M is called
a fuzzy filter ofM if it satisfies:

(F1) F(1) > F(x), foranyx e M,

(F2) if x<ythenF(x) < F(y),

(F3) F(x®y) > F(x) AF(y), for anyx,y € M.

The empty set 0 is also viewed as a fuzzy filteMbfand
the set of all fuzzy filters of M is denoted b¥ (M).

Proposition 2.5 (see 19)). A fuzzy setF of M is a
fuzzy filter if and only ifF satisfiesF1) and

(F4) F(y) > F(X) AF(x—y) foranyx,y € M.

Definition 2.6 (see 19)). LetF be a fuzzy filter oM.
F is called a fuzzy prime filter if (xVVy) = F(X) V F(y)
for anyx, y € M.

Proposition 2.7 (see 19]). A fuzzy setF of M is a
fuzzy prime Boolean filter if and only F (x®y) = F (x) Vv
F(y) foranyx,yc M.

Definition 2.8 (see 19)). Let G be a fuzzy set oM.
The fuzzy filter generated b® is defined as

= () F.

Fe.Z (M)
GCF

(X—

y)

(z <+ u) < (xAZ) <> (yAu), where

Lemma 2.9 (see [19])Let G be a nonempty fuzzy set
of M. Then forx € M,

=\V{A Ga)
k=1

Definition 2.10 (see 19]). A fuzzy subsetR on
M x M is called a fuzzy congruence relation K is a
fuzzy equivalent relation and satisfies

lag, - ,aneEM,X>a1® - ®an}.

R(XAZ yAU) > R(X, ) AR(Z W),

forallx,y, z ue M, whereA € {A, vV, ®, —}.

Proposition 2.11 (see 19). Let R be a fuzzy
congruence relation oM. ThenR(X, y) = R(x <>y, 1) for
allx,ye M

Proposition 2.12 (see 19). Let R be a fuzzy
congruence relation oM. ThenR(x, -) is a fuzzy filter
for everyx € M.

Proposition 2.13 (seel9)). LetF be a fuzzy filter of
IMTL-algebraM andF (1) = 1. By means of~ we can
generate a fuzzy congruence relatioR(x,y) =
F((x—=y)A(y—X)) onM x M.

Proposition 2.14. For a fuzzy congruence relatidd
we haveR(x, y) = R(—x, —y) for all x,y € M.

Proof. On one handR(—x, —y) = R(xto0,y — 0) >
R(x,y) AR(0, 0) = R(x, y). On the other handR(x, y) =
R(x =+ 0) = 0,(y = 0 — 0 > Rx — 0,y —
0) AR(0, 0) = R(—x, —y). HenceR(x, y) = R(=x, y).

3 Fuzzy stabilizer with respect to a fuzzy
congruence relationR in IMTL-algebras

Definition 3.1. Let F be a fuzzy set oM andR be a
fuzzy congruence relation oil. The fuzzy®-stabilizer
and fuzzy®-stabilizer ofF with respect taR are defined

by:

= N {F(® >Rz z®x)},

zeM

= AN {F(@ = Rz®-% 2}, XEM,
zeM

where—; is the residuum implication with respect to a left-
continuoug-norm® with an order-reversing involution on
[0, 1].

Remark 3.2. (1) LetR be an identity relation oM.
Then for anyx € M,

x)= A\ {F(2 = 1d(z. zex)} = \/ F(z) >0,
zeM ZAZRX
= AN {F@—ldzo—x2}= \/ F(Z
zeM ZA2HX

(2) If Ris an identity relationd on M and X is a
classic subset d¥l, i.e.,F = x,.. Then
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Si(X) = {xeM|vze X, z@x =12z} = {xe M|Vvze
X, X = —z= =z},

(X)) ={xeM|Vze X, z&-x=27} = {xe M|Vze
X,X—z2=12}.

The above equations mean tl@ap x identity with z
andz@ —x identity with z for every elemengz € X. From
logical point of view, ifX is a formula set thei®;;(X)
corresponds to the set of formulae that every formul4 in
that impliesz equals taz, 3/ (X) corresponds to the set of
formulaes that every formula iX that implies—z equals
to =z for any formulaz € X. This means that the formulas
in &4(X) andS;;(X) have some stability for implication
operation. Hence33(X) and §5(X) may be called
®-stabilizer and®-stabilizer of X respectively. Further
S5 (F) and S5 (F) are called fuzzy®-stabilizer and
fuzzy @-stabilizer of fuzzy seF respectively.

Example 3.3.LetM = {0, a, b, ¢, d, 1} be a set with
Fig.1 as a partial order. Define two binary operations™
and “— " on M as Table 1 and Table 2 respectively:

1
a b
d c

0

Fig. 1
®/0abcdl1
0j/000O0O0Q
al0ado0oda
b/OdccOb
c|l00ccOc
djodoood
1/0abcdl

Table 1
—|/0abcdl
0/111111]
ajlclbchbil
bjdalbal
claallal
dib11b11
l1|/0abcd1l

Table 2

ThenM is an IMTL-algebra. Define a fuzzy setof M by

The fuzzy congruence relatidRis generated by. Then
fuzzy ®@-stabilizer and fuzzys-stabilizer ofF are

SE(F) = 0.9, forx e {b, c, 1},
R 0.4, forxe {0,a,d}.

‘ 0.9, forx e {b, c, 1},
Sr(F)= {04 forx e {0, a,d}.

In the following, we give some characterizations of
fuzzy prime Boolean filters.

Theorem 3.4. Let R be a fuzzy congruence relation
andF, G be two fuzzy sets ofl. Then

1 forx=1
(1) Denote x,, (x) = {O, otherwise then
SFZ?(X“}) = R(1> )!
1, forx=0
(2) Denote X, (x) = {O, otherwise’ then

Sg(X{o}) =M;
@) If F C G, thenS3(G) € K2 (F) and S5(G) C
SR (F).

4) SR(FUG) = SR(F)NSK(G), SR(FUG) =

Sk (F)NSR(G).

(5) SR(FNG) = JR(F)USR(G), SR(FNG) =
S (F)USS(G).

(6) If we define a fuzzy seff : F(x) = F(—x),x€ M,
then3y (F) = I3 (F).

Proof. (1) S5 (X)) (¥ = A {Xy, (@ = Rz zex)}

zeM

=1—R(1, 1®x) =R(1,X). Hencetg (X)) =
= A\ xo@

(2) SR X{o}
zeM

R(0,0) =1. HenceS«R (X{0}> =M.
() 35(G) = A\ {G(2 =Rz zax)} < A {F(2)

zeM zeM

R(z, Z®X)} SR (F).
= AN{G(2 = Rzzax} < A{F(2)

(17 )
- Rz zex)}=1—

R(z, z&—x)} Zegge(li) “
(@) SF(FUG) = A{F(X) VG2 — Rz zX)}
zeM
= N {F(@ = Rz zax} A\ /\{G(z) —~ R(z,zoXx)}
zeM zeM
=38R (F)NSR(G),
SE(FUG) = A{F( 2) - Rz zd—x)} =
zeM
N{F(2 = Rzzo-x} /\ {G(2) = R(z,z®d —Xx)}
“wyEnsge).

(5) The proof of (5) is similar to (4).
(6) By Proposition 2.14, we have

1, forx=1,
F(x)=<¢ 0.7, forx e {b, ¢}, F(z) — R(z, z& —x
0.3, forx e {0, a, d}. Zé}/l{ :
© 2014 NSP
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= N\ {F(-2) = R(-z ~(zd-x))}

zeM

= N\ {F(=2) = R(-z -z®x))}
zeM

= A {F(u—Ruu®x)}
u=-z2zeM

= AN {F(1) = R(u,u®x))} = S (F)(x).
ueM

Theorem 3.5.LetF be a fuzzy set ofl. ThenS (F)
andSg (F) are fuzzy filters oM.

Proof. (1) & = N{F(@
zeM
N{F@

2 >Rz 2}=1>3F(F)(x);
zeM

(2) Forx <y, by Propositions 2.11 and 2.12 we have

= A {F@

zeM

—Rzz®l)} =

—R(z,z®x)}

= N {F(? = Rz zox 1)}
zeM

< A {F(2 =Rz zoy, 1)}
zeM

< N {F(@ =Rz zoy)} =SF(F)(Y);
zeM

(3) ¥x,y,z€ M, we have

(2= ZRX)® (2= zZRY) = (2— ZRXXY)

=(z2—z20X) = [(z— zQY) — (z— z0XQY)]
= (2= 20X) = [z2® (2— zRY) = ZRX®)Y)|
=ZR(2—2®X) R (Z— ZQY) —» ZRXKQY
>ZRX® (2= ZRY) = ZOXKY
>XRZQY — Z2RXQYy=1.

This means that (z - z® X) ® (z - z®Y)
< (z— z®Xx®Y). Then by Propositions 2.11 and 2.12 we
have
SR (F)(x®y) = ) {F(2) = Rz zox®y, 1)}
zeM
= A {F(2 > R(z—zox®y, 1)}
zeM
> N\ {F(2 = R(z— z&x 1) AR(z— z®y, 1)}
zeM
= N {F(@—-Rz=zex )} \ A {F(2 = Riz—zoy,1)}
zeM zeM
= A {F(2 >Rz zex} \ \ {F(2 =Rz zay)}
zeM zeM
=SR(F)XASR(F)(Y)-

Hence S (F) is a fuzzy filter of M. The proof of that
SR (F) is a fuzzy filter ofM is similar.

4 Stabilizer of a fuzzy set with respect to
another fuzzy set

Definition 4.1. Let F, G be two fuzzy sets oM. The V-
stabilizer ofF with respect tdG is defined by:

N\ [F(2) > G(zvx)].

zeM

SY(F,G)(x) =

Example 4.2. The IMTL-algebraM is defined as in
Example 3.3. Given two fuzzy sets and G of M as
follows:

0.9, forx=1,
F(x)=< 0.8, forxe {b, c},
0.4, forx e {0, a, d}.

0.9, forxe {b,c, 1},
Glx) = {0.3, forx € {0, a,d}.

Then thev-stabilizer ofF with respect tds is

v 1, f b,c 1
S (F.0I00={ 5o e f0 5 o

In the above computing, the implication operater is
taken as Lukasiewicz implication operator, i@+ b=
(1—a+b)Al

Theorem 4.3. (1) If SY(F,G) = M thenF C G.
Conversely, ifF € G and F is a fuzzy filter then
SV (F, G) = M, particularly" (F, F) = M;

(2) If Gis a fuzzy filter, therG C XV (F, G);

(3) 8(X) G) = G

(4) If G is a fuzzy filter andG(1) = 1, then
SV(X{1}7 ) = M'

(5) If R C R and Gy C Gy, then SV(R, G;)
g SV(F].’ GZ);

(6) XV(F,(G)=()g"(F,G);
ielr iel

(7) V(| JR.G)=(3"(R.G).
ielr ielr

Proof. (1) Sincex"(F, G) = M, we haveyx € M,

SY(F,G)(x)= A\ [F(2) = G(zvx)] =1.

zeM

Hencevze M, F(z) — G(zV x) = 1, particularly,F (x) —
G(xVx) =F(x) = G(x) = 1. SoF (x) < G(x) for all x e M.
ThatiskF C G.

Conversely, leF C G. Then

SY(F,G)(x) = A [F(2) = G(zvx)]
zeM
> N\ [F(zvx) — G(zvx)] =1.

zeM

HencexV(F, G) =

© 2014 NSP
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(2) Sincevze M, F(z) — G(zVvx) > G(zVx) > G(x), (3) Y(F, G)(x®y) = /\ [F(z2) — G(zv (x®Y))]
we obtain zeM
2V(F,G)(x) = A\ [F(2) = G(zvX)] > G(X). > A[F G((zvx) @ (zVy))]
zeM zeM
ThereforeG C Y (F, G). > A\ [F(2) = G(zvX) AG(zVY)]
(3) For anyx € M, §¥(x,,. G)(X) = /A [X,, (2) — zM
zeM = N [(F(2) = G(zvX) A (F(2) = G(zVvy))]
G(zVx)] = G(x). HenceSt"(x,q, , G) = G. 7eM
(4) Foranyx e M, S (x,, G)(x) = /}A[X{l} (2) = = AIF@ —GzvI A\ A\ [F@ — GzVvy)
zc
G(zvx)] = 1. Hencext" (x,,,, G) = M. Ze“v/' , zM
(5) For anyx e M, S'(F, G1)(¥) = A [R(2) — = (REINITR G)Y)-
zeM This shows that" (F, G) is a fuzzy filter.
Gi(zvX)] < A [Fi(2) = Gz(zV x)]. This means that If Gis also a fuzzy prime filter, then
zeM
Y (R, G1) C &Y(Fy, Gp). (4) 2V(F, G)(xVy) = A\ [F(2) = G(zVxVy)]
(6) Foranyx e M, 7eM
SR NG = AF@—~ A Gi(zvx) = AF G((zvx)V (zvy))]
iel zeM el zeM
= A AIF@ = Gi(zvx)] > N [F(2) = G(zvXx)VG(zVy)]
zeMier zeM
— A AF@ = Gilzvx] = A SV(F. G)(). = ALF(X) = Gzvx) V (F(x) = G(zVy))]
ier zeM ier zeM
Therefore (6) holds. > ANF@ —G(zvx)]\/ \[F(2 — G(zVy)]
(7) For anyx € M, zeM zeM
_qQqV \Y
3Y(UR,6)(x = AV F(®@ — G(zvx)] =3 (F,G)(x) VS (F,G)(y)-
ier zeM el This shows thag&" (F, G) is a fuzzy prime filter.
Definition 4.5. Let F, G be two fuzzy filters. For
= A\ AR@ — G(zvx)] fuzzy setF G : (F® G)(X) = F(xX) ® G(X), Vx € M, the
zeMier generated fuzzy filter oF ® G is denoted byF ®G, i.e.,
= A\ A\[R(@—Gzvx)]= A\ 2'(FR, G)(x vxeM,
el zeM ier
Therefore (7) holds. (FOG)( \/{/\ ) IX>a®:--@am} .
Theorem 4.4.1f G is a fuzzy filter ther®" (F, G) is a
, . L »
fuzzy filter. h-c G |s_also afuzzy prime filter the®t(F, G) Theorem 4.6. Let F,G,H be three fuzzy filters of.
is a fuzzy prime filter. ThenE &G  H if and onlvif E © SV(G. H
Proof. Suppose thab is a fuzzy filter. Then enF@GC Hifand only ifF € 3¥(G, H).
Proof. Suppose that © G C H. Thenvx € M, F(x) ®
(1) 2Y(F,G)(1) = A\ [F(2 = G(zV1)] G(x) < (F®G)(x) <H(x). Hence
zeM
SY(G,H)(x) = A [G(z) = H(zVX)]
= A\[F(2—G(1)]> AI[F(2 = G(zVX) zeM
zeM zeM
_3'(F.G)x). > N\ [G(zVX) = H(zVX)]

zeM

(2) Letx <y, we have > A\ [6(zv¥) — F(2v3) & G(zvx)

3'(F,6)(x) = A\ [F(2) = G(zVx)] zeM
< > A\ F(zvx) > F(x).
\Y% zeM
- zé}/l[F(Z) ~ GV =R E)- This means thae C V(G, H).
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Conversely, suppose thBtC SV(G,H). ThenVx €
M, F(x) < 2Y(G,H)(x) = A [G(2) = H(zVX)]. Hence
zeM
F(x) < G(X) = H(xVx) = G(x) — H(x). It follows that
F(x) ® G(x) < H(x) for all x e M. Thus

\/{/\

(FG)( a))|[x>a®---@an}

< \/{/\
= V{(H

<H(x).

This shows thaF @ G C H.

On the setZ (M), if we denoteF < G if and only if
FCG FAG=FnNG, FVG = (FUG), then
(Z(M), <, A,V) is a bounded distributive lattice (see
[19]). By Theorem 4.6, we have the following conclusion.

Theorem 4.7. (Z(M), <, A, V,®,2Y(-,-)) is a
residuated lattice.

g)|[x>a1®---®@am}

(®- ®am)[X>a®- - @am}

5 Conclusion

In this paper, we introduced two types of fuzzy stabilizers
SR (F) and S5 (F) of a fuzzy setF and the stabilizer
3V (F, G) of F with respect tdG in an IMTL-algebra. We

investigated some properties of the stabilizers and show

that S5 (F), S5 (F) andSY(F, G) are fuzzy filters oM.
By introducing the® operation of two fuzzy filters, we
prove thatz andSt"(-, -) form an adjoint pair and the set
of all fuzzy filters.# (M) is a residuated lattice.
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