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Abstract: In this paper, we introduced two types of fuzzy stabilizersSt⊗R (F) andSt⊕R (F) of a fuzzy setF and the stabilizerSt∨(F, G)
of F with respect toG in IMTL-algebras. We proved thatSt⊗R (F), St⊕R (F) andSt∨(F, G) are fuzzy filters ofM. We investigated some

properties of the stabilizers. By introducing the⊗̃ operation of two fuzzy filters, we prove that⊗̃ andSt∨(·, ·) form an adjoint pair and
the set of all fuzzy filtersF (M) is a residuated lattice.
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1 Introduction

Algebraic method plays a key role in studying fuzzy
logic, and any logical algebra systems corresponding to
various logical systems are established accordingly [1,2].
MTL-algebras are the corresponding algebraic structures
of Esteva and Godo’s monoidalt-norm based logic
(MTL). IMTL-algebras, which are the algebra structures
for monoidal t-norm based logic with an involutive
negation (IMTL), are the important sub-classes of MTL-
algebras. The main examples of IMTL-algebras are the
real unit interval [0, 1] endowed with the structure
induced by a left-continuoust-norm with an involutive
negation and the Lindenbaum algebra of the IMTL (the
quotient of the free algebra of formulas with respect to
the logical equivalence). MV-algebras and NM-algebras,
which is calledR0−algebras in [6], are the most known
classes of IMTL-algebras. For more details of these
algebras, we refer the reader to [3,4,5,6,7,8,9].

Up to now, these relevant logical algebra structures
have already been widely studied. In particular, emphasis
seems to have been put on filters theory. H ´ajek [3] proved
the completeness of basic logical system BL. Turunnen
[10,11] studied some properties of the filters and prime
filters of BL-algebras (he called them deductive systems
and prime deductive systems, respectively). In [12], he
introduced the notion of Boolean filters (Boolean
deductive systems) in BL-algebras and derived some
characterizations of Boolean filters. Xu, Qin and Jun [13,
14,15,16] proposed the notions of positive implicative
filter and fuzzy positive implicative filter, and derived

several characterizations of fuzzy positive implicative
filters in lattice implication algebras. Liu and Li [17,18]
proposed the notions of fuzzy Boolean filters and fuzzy
positive implicative filters of BL-algebras and
R0-algebras. Some properties of fuzzy Boolean filters and
fuzzy positive implicative filters of BL-algebras and
R0-algebras are derived. Recently, Zhang and Zhou [19]
proved that the filters set of a residuated lattice forms a
residuated lattice and the prime Boolean filters set is a
quasi-Boolean algebra by introducing some operations
among filters.

In the present paper, we studied two types of fuzzy
stabilizersSt⊗R (F) and St⊕R (F) of a fuzzy setF and the
fuzzy stabilizerSt∨(F, G) of F with respect toG, for
fuzzy subsetsF andG in IMTL-algebras. We investigated
some properties of the fuzzy stabilizers and show that
St⊗R (F), St⊕R (F) andSt∨(F, G) are fuzzy filters ofM. By
introducing the⊗̃ operation of two fuzzy filters, we prove
that⊗̃ andSt∨(·, ·) is an adjoint pair and the setF (M) of
all fuzzy filters forms a residuated lattice.

2 Preliminaries

Throughout this paper, letM denote an IMTL-algebra.
Here we recall some definitions and results about IMTL-
algebra which will be needed in the following.

Definition 2.1 (see [4]). A MTL-algebra is a bounded
residuated lattice(M,∨,∧,⊗,→,0,1), where∨ and∧ are
the lattice meet and join operations and(⊗,→) is a
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residuated pair, satisfying the pre-linearity equation

(x → y)∨ (y → x) = 1.

An IMTL-algebra is a MTL-algebra satisfying

¬¬x = x ,

where¬x = x → 0.
Let M be an IMTL-algebra. For anyx, y ∈ M, define

x⊕y=¬x→ y. It is easy to verify that⊕ are commutative,
associative andx⊕ y = ¬(¬x⊗¬y).

Example 2.2.Let [0,1] be the real unit interval.⊗ is a
left-continuoust-norm with an order-reversing involution
and→ is its residuum, then([0, 1],⊗,→) is an IMTL-
algebra called the IMTL-unit interval.

Lemma 2.3 (see [4,7]). Let M be an IMTL-algebra.
Then for anyx,y,z ∈ M,

(P1) (M,⊗, 1) is a commutative semigroup with the
unit element 1,

(P2) ⊕ is a monotone operator,
(P3) x⊗ y ≤ x∧ y ≤ x∨ y ≤ x⊕ y,
(P4) x⊗ y ≤ z if and only if x ≤ y → z,
(P5) x⊗ y → z = x → (y → z), x → (y → x⊗ y) = 1,
(P6) x → y ≤ x∨ z → y∨ z, x → y ≤ x⊗ z → y⊗ z,
(P7) x⊗ (x → y)≤ y, x ≤ y → x⊗ y,
(P8) x⊗¬x = 0, x⊕¬x = 1,
(P9) x⊗ (y∨ z) = (x⊗ y)∨ (x⊗ z),
(P10) x∨ (y⊗ z)≥ (x∨ y)⊗ (x∨ z),
(P11) (x ↔ y)⊗(y ↔ z)≤ x ↔ z, wherex ↔ y = (x →

y)∧ (y → x),
(P12) (x ↔ y)⊗ (z ↔ u) ≤ (x△z) ↔ (y△u), where

△∈ {∧, ∨,⊗,→}.
A subsetA of M is called a filter ofM if (i)1 ∈ A,

(ii)x ∈ A andx ≤ y imply y ∈ A, (iii)x, y ∈ A impliesx⊗
y ∈ A. It is easy to prove that a subsetA is a filter if and
only if A satisfies(i) and(iv)x, x → y ∈ A imply y ∈ A. A
filter A is called prime if(v)∀a, b ∈ M,x∨ y ∈ A implies
a ∈ A or b ∈ A [6,12].

Definition 2.4 (see [19]). A fuzzy setF of M is called
a fuzzy filter ofM if it satisfies:

(F1) F(1)≥ F(x), for anyx ∈ M,
(F2) if x ≤ y thenF(x)≤ F(y),
(F3) F(x⊗ y)≥ F(x)∧F(y), for anyx,y ∈ M.

The empty set /0 is also viewed as a fuzzy filter ofM, and
the set of all fuzzy filters of M is denoted byF (M).

Proposition 2.5 (see [19]). A fuzzy setF of M is a
fuzzy filter if and only ifF satisfies(F1) and

(F4) F(y)≥ F(x)∧F(x → y) for anyx,y ∈ M.
Definition 2.6 (see [19]). Let F be a fuzzy filter ofM.

F is called a fuzzy prime filter ifF(x∨ y) = F(x)∨F(y)
for anyx, y ∈ M.

Proposition 2.7 (see [19]). A fuzzy setF of M is a
fuzzy prime Boolean filter if and only ifF(x⊕y) = F(x)∨
F(y) for anyx, y ∈ M.

Definition 2.8 (see [19]). Let G be a fuzzy set ofM.
The fuzzy filter generated byG is defined as

〈G〉=
⋂

F∈F (M)
G⊆F

F .

Lemma 2.9 (see [19]).Let G be a nonempty fuzzy set
of M. Then forx ∈ M,

〈G〉(x) =
∨
{

n∧

k=1

G(ak) |a1, · · · ,an ∈M, x≥ a1⊗·· ·⊗an} .

Definition 2.10 (see [19]). A fuzzy subsetR on
M × M is called a fuzzy congruence relation ifR is a
fuzzy equivalent relation and satisfies

R(x△z, y△u)≥ R(x, y)∧R(z, u) ,

for all x, y, z, u ∈ M, where△∈ {∧, ∨,⊗,→}.
Proposition 2.11 (see [19]). Let R be a fuzzy

congruence relation onM. ThenR(x, y) = R(x ↔ y, 1) for
all x, y ∈ M

Proposition 2.12 (see [19]). Let R be a fuzzy
congruence relation onM. Then R(x, ·) is a fuzzy filter
for everyx ∈ M.

Proposition 2.13 (see [19]). Let F be a fuzzy filter of
IMTL-algebra M and F(1) = 1. By means ofF we can
generate a fuzzy congruence relationR(x, y) =
F((x → y)∧ (y → x)) on M×M.

Proposition 2.14. For a fuzzy congruence relationR
we haveR(x, y) = R(¬x, ¬y) for all x,y ∈ M.

Proof. On one hand,R(¬x, ¬y) = R(xto0, y → 0) ≥
R(x, y)∧R(0, 0) = R(x, y). On the other hand,R(x, y) =
R((x → 0) → 0, (y → 0) → 0) ≥ R(x → 0, y →
0)∧R(0, 0) = R(¬x, ¬y). HenceR(x, y) = R(¬x, ¬y).

3 Fuzzy stabilizer with respect to a fuzzy
congruence relationR in IMTL-algebras

Definition 3.1. Let F be a fuzzy set ofM and R be a
fuzzy congruence relation onM. The fuzzy⊗-stabilizer
and fuzzy⊕-stabilizer ofF with respect toR are defined
by:

St⊗R (F)(x) =
∧

z∈M

{F(z)→ R(z, z⊗ x)} ,

St⊕R (F)(x) =
∧

z∈M

{F(z)→ R(z⊕¬x, z)}, x ∈ M ,

where→ is the residuum implication with respect to a left-
continuoust-norm⊗ with an order-reversing involution on
[0, 1].

Remark 3.2. (1) Let R be an identity relation onM.
Then for anyx ∈ M,

St⊗Id(F)(x) =
∧

z∈M

{F(z)→ Id(z, z⊗ x)}=
∨

z 6=z⊗x

F(z)→ 0,

St⊕Id(F)(x)=
∧

z∈M

{F(z)→ Id(z⊕¬x, z)}=
∨

z 6=z⊕¬x

F(z)→0.

(2) If R is an identity relationId on M and X is a
classic subset ofM, i.e.,F = χX . Then
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St⊗Id(X) = {x ∈ M |∀z ∈ X , z⊗ x = z} = {x ∈ M |∀z ∈
X , x →¬z = ¬z} ,

St⊕Id(X) = {x ∈ M |∀z ∈ X , z⊕¬x = z}= {x ∈ M |∀z ∈
X , x → z = z} .

The above equations mean thatz ⊗ x identity with z
andz⊕¬x identity with z for every elementz ∈ X . From
logical point of view, if X is a formula set thenSt⊕Id(X)
corresponds to the set of formulae that every formula inX
that impliesz equals toz, St⊗Id(X) corresponds to the set of
formulaes that every formula inX that implies¬z equals
to ¬z for any formulaz ∈ X . This means that the formulas
in St⊗Id(X) andSt⊕Id(X) have some stability for implication
operation. HenceSt⊗Id(X) and St⊕Id(X) may be called
⊗-stabilizer and⊕-stabilizer of X respectively. Further
St⊗R (F) and St⊕R (F) are called fuzzy⊗-stabilizer and
fuzzy⊕-stabilizer of fuzzy setF respectively.

Example 3.3. Let M = {0, a, b, c, d, 1} be a set with
Fig.1 as a partial order. Define two binary operations “⊗ ”
and “→ ” on M as Table 1 and Table 2 respectively:

0
q@

@
@

d q

a q�
�
�

1
q

@
@
@ bq

cq
�

�
�

������

Fig. 1

⊗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a d 0 d a
b 0 d c c 0 b
c 0 0 c c 0 c
d 0 d 0 0 0 d
1 0 a b c d 1

Table 1

→ 0 a b c d 1
0 1 1 1 1 1 1
a c 1 b c b 1
b d a 1 b a 1
c a a 1 1 a 1
d b 1 1 b 1 1
1 0 a b c d 1

Table 2

ThenM is an IMTL-algebra. Define a fuzzy setF of M by

F(x) =





1, for x = 1,
0.7, for x ∈ {b, c},
0.3, for x ∈ {0, a, d}.

The fuzzy congruence relationR is generated byF . Then
fuzzy⊗-stabilizer and fuzzy⊕-stabilizer ofF are

St⊗R (F) =

{
0.9, for x ∈ {b, c, 1},
0.4, for x ∈ {0, a, d}.

St⊕R (F) =

{
0.9, for x ∈ {b, c, 1},
0.4, for x ∈ {0, a, d}.

In the following, we give some characterizations of
fuzzy prime Boolean filters.

Theorem 3.4. Let R be a fuzzy congruence relation
andF, G be two fuzzy sets ofM. Then

(1) Denote χ
{1}

(x) =

{
1, for x = 1
0, otherwise, then

St⊗R (χ
{1}
) = R(1, ·);

(2) Denote χ
{0}

(x) =

{
1, for x = 0
0, otherwise, then

St⊗R (χ
{0}
) = M;

(3) If F ⊆ G, thenSt⊗R (G) ⊆ St⊗R (F) and St⊕R (G) ⊆
St⊕R (F).

(4) St⊗R (F ∪ G) = St⊗R (F)∩ St⊗R (G), St⊕R (F ∪ G) =
St⊕R (F)∩St⊕R (G).

(5) St⊗R (F ∩ G) = St⊗R (F)∪ St⊗R (G), St⊕R (F ∩ G) =
St⊕R (F)∪St⊕R (G).

(6) If we define a fuzzy set̃F : F̃(x) = F(¬x), x ∈ M,
thenSt⊕R (F̃) = St⊗R (F) .

Proof. (1) St⊗R (χ
{1}
)(x) =

∧

z∈M

{χ
{1}
(z)→ R(z, z⊗ x)}

= 1→ R(1, 1⊗ x) = R(1, x) . HenceSt⊗R (χ
{1}
) = R(1, ·).

(2) St⊗R (χ
{0}
)(x) =

∧

z∈M

{χ
{0}
(z)→ R(z, z⊗ x)} = 1→

R(0, 0) = 1. HenceSt⊗R (χ
{0}
) = M.

(3) St⊗R (G) =
∧

z∈M

{G(z)→ R(z, z⊗x)} ≤
∧

z∈M

{F(z)→

R(z, z⊗ x)}= St⊗R (F),

St⊕R (G) =
∧

z∈M

{G(z) → R(z, z ⊕¬x)} ≤
∧

z∈M

{F(z) →

R(z, z⊕¬x)}= St⊕R (F) .

(4) St⊗R (F ∪ G) =
∧

z∈M

{F(x) ∨ G(z) → R(z, z ⊗ x)}

=
∧

z∈M

{F(z) → R(z, z ⊗ x)}
∧ ∧

z∈M

{G(z) → R(z, z ⊗ x)}

= St⊗R (F)∩St⊗R (G) ,

St⊕R (F ∪ G) =
∧

z∈M

{F(x) ∨ G(z) → R(z, z ⊕ ¬x)} =

∧

z∈M

{F(z) → R(z, z ⊕ ¬x)}
∧ ∧

z∈M

{G(z) → R(z, z ⊕ ¬x)}

= St⊕R (F)∩St⊕R (G) .
(5) The proof of (5) is similar to (4).
(6) By Proposition 2.14, we have

St⊕R (F̃)(x) =
∧

z∈M

{F̃(z)→ R(z, z⊕¬x)}
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=
∧

z∈M

{F(¬z)→ R(¬z, ¬(z⊕¬x))}

=
∧

z∈M

{F(¬z)→ R(¬z, ¬z⊗ x))}

=
∧

u=¬z,z∈M

{F(u)→ R(u, u⊗ x))}

=
∧

u∈M

{F(u)→ R(u, u⊗ x))}= St⊗R (F)(x) .

Theorem 3.5.Let F be a fuzzy set ofM. ThenSt⊗R (F)
andSt⊕R (F) are fuzzy filters ofM.

Proof. (1) St⊗R (F)(1) =
∧

z∈M

{F(z) → R(z, z ⊗ 1)} =

∧

z∈M

{F(z)→ R(z, z)}= 1≥ St⊗R (F)(x) ;

(2) Forx ≤ y, by Propositions 2.11 and 2.12 we have

St⊗R (F)(x) =
∧

z∈M

{F(z)→ R(z, z⊗ x)}

=
∧

z∈M

{F(z)→ R(z ↔ z⊗ x, 1)}

≤
∧

z∈M

{F(z)→ R(z ↔ z⊗ y, 1)}

≤
∧

z∈M

{F(z)→ R(z, z⊗ y)}= St⊗R (F)(y) ;

(3) ∀x,y,z ∈ M, we have

(z → z⊗ x)⊗ (z → z⊗ y)→ (z → z⊗ x⊗ y)

= (z → z⊗ x)→ [(z → z⊗ y)→ (z → z⊗ x⊗ y)]

= (z → z⊗ x)→ [z⊗ (z → z⊗ y)→ z⊗ x⊗ y]

= z⊗ (z → z⊗ x)⊗ (z → z⊗ y)→ z⊗ x⊗ y

≥ z⊗ x⊗ (z → z⊗ y)→ z⊗ x⊗ y

≥ x⊗ z⊗ y → z⊗ x⊗ y = 1.

This means that (z → z ⊗ x) ⊗ (z → z ⊗ y)
≤ (z → z⊗ x⊗ y). Then by Propositions 2.11 and 2.12 we
have

St⊗R (F)(x⊗y)=
∧

z∈M

{F(z)→R(z↔ z⊗x⊗y, 1)}

=
∧

z∈M

{F(z)→R(z→ z⊗x⊗y, 1)}

≥
∧

z∈M

{F(z)→R(z→ z⊗x, 1)∧R(z→ z⊗y, 1)}

=
∧

z∈M

{F(z)→R(z→ z⊗x,1)}
∧ ∧

z∈M

{F(z)→R(z→ z⊗y,1)}

=
∧

z∈M

{F(z)→R(z, z⊗x)}
∧ ∧

z∈M

{F(z)→R(z, z⊗y)}

= St⊗R (F)(x)∧St⊗R (F)(y) .

HenceSt⊗R (F) is a fuzzy filter ofM. The proof of that
St⊕R (F) is a fuzzy filter ofM is similar.

4 Stabilizer of a fuzzy set with respect to
another fuzzy set

Definition 4.1. Let F, G be two fuzzy sets ofM. The∨-
stabilizer ofF with respect toG is defined by:

St∨(F, G)(x) =
∧

z∈M

[F(z)→ G(z∨ x)] .

Example 4.2. The IMTL-algebraM is defined as in
Example 3.3. Given two fuzzy setsF and G of M as
follows:

F(x) =





0.9, for x = 1,
0.8, for x ∈ {b, c},
0.4, for x ∈ {0, a, d}.

G(x) =

{
0.9, for x ∈ {b, c, 1},
0.3, for x ∈ {0, a, d}.

Then the∨-stabilizer ofF with respect toG is

St∨(F, G)(x) =

{
1, for x ∈ {b, c, 1},
0.9, for x ∈ {0, a, d}.

In the above computing, the implication operator→ is
taken as Lukasiewicz implication operator, i.e.,a → b =
(1−a+b)∧1.

Theorem 4.3. (1) If St∨(F, G) = M then F ⊆ G.
Conversely, if F ⊆ G and F is a fuzzy filter then
St∨(F, G) = M, particularlySt∨(F, F) = M;

(2) If G is a fuzzy filter, thenG ⊆ St∨(F, G);
(3) St∨(χ

{0}
, G) = G;

(4) If G is a fuzzy filter and G(1) = 1, then
St∨(χ

{1}
, G) = M;

(5) If F1 ⊆ F2 and G1 ⊆ G2, then St∨(F2, G1)
⊆ St∨(F1, G2);

(6) St∨(F,
⋂

i∈Γ
Gi) =

⋂

i∈Γ
St∨(F, Gi);

(7) St∨(
⋃

i∈Γ
Fi, G) =

⋂

i∈Γ
St∨(Fi, G).

Proof. (1) SinceSt∨(F, G) = M, we have∀x ∈ M,

St∨(F, G)(x) =
∧

z∈M

[F(z)→ G(z∨ x)] = 1.

Hence∀z ∈ M, F(z)→ G(z∨ x) = 1, particularly,F(x)→
G(x∨x)=F(x)→G(x)= 1. SoF(x)≤G(x) for all x∈M.
That isF ⊆ G.

Conversely, letF ⊆ G. Then

St∨(F, G)(x) =
∧

z∈M

[F(z)→ G(z∨ x)]

≥
∧

z∈M

[F(z∨ x)→ G(z∨ x)] = 1.

HenceSt∨(F, G) = M.
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(2) Since∀z ∈ M, F(z)→ G(z∨x)≥ G(z∨x)≥ G(x),
we obtain

St∨(F, G)(x) =
∧

z∈M

[F(z)→ G(z∨ x)]≥ G(x) .

ThereforeG ⊆ St∨(F, G).
(3) For anyx ∈ M, St∨(χ

{0}
, G)(x) =

∧

z∈M

[χ
{0}
(z) →

G(z∨ x)] = G(x). HenceSt∨(χ
{0}
, G) = G.

(4) For anyx ∈ M, St∨(χ
{1}
, G)(x) =

∧

z∈M

[χ
{1}
(z) →

G(z∨ x)] = 1. HenceSt∨(χ
{1}
, G) = M.

(5) For any x ∈ M, St∨(F2, G1)(x) =
∧

z∈M

[F2(z) →

G1(z ∨ x)] ≤
∧

z∈M

[F1(z) → G2(z ∨ x)] . This means that

St∨(F2, G1)⊆ St∨(F1, G2).
(6) For anyx ∈ M,

St∨(F,
⋂

i∈Γ
Gi)(x) =

∧

z∈M

[F(z)→
∧

i∈Γ
Gi(z∨ x)]

=
∧

z∈M

∧

i∈Γ
[F(z)→ Gi(z∨ x)]

=
∧

i∈Γ

∧

z∈M

[F(z)→ Gi(z∨ x)] =
∧

i∈Γ
St∨(F, Gi)(x) .

Therefore (6) holds.
(7) For anyx ∈ M,

St∨(
⋃

i∈Γ
Fi, G)(x) =

∧

z∈M

[
∨

i∈Γ
Fi(z)→ G(z∨ x)]

=
∧

z∈M

∧

i∈Γ
[Fi(z)→ G(z∨ x)]

=
∧

i∈Γ

∧

z∈M

[Fi(z)→ G(z∨ x)] =
∧

i∈Γ
St∨(Fi, G)(x) .

Therefore (7) holds.
Theorem 4.4. If G is a fuzzy filter thenSt∨(F, G) is a

fuzzy filter. If G is also a fuzzy prime filter thenSt∨(F, G)
is a fuzzy prime filter.

Proof. Suppose thatG is a fuzzy filter. Then

(1) St∨(F, G)(1) =
∧

z∈M

[F(z)→ G(z∨1)]

=
∧

z∈M

[F(z)→ G(1)]≥
∧

z∈M

[F(z)→ G(z∨ x)]

= St∨(F, G)(x) .

(2) Let x ≤ y, we have

St∨(F, G)(x) =
∧

z∈M

[F(z)→ G(z∨ x)]

≤
∧

z∈M

[F(z)→ G(z∨ y)] = St∨(F, G)(y) .

(3) St∨(F, G)(x⊗y) =
∧

z∈M

[F(z)→ G(z∨ (x⊗y))]

≥
∧

z∈M

[F(z)→ G((z∨ x)⊗ (z∨ y))]

≥
∧

z∈M

[F(z)→ G(z∨ x)∧G(z∨ y)]

=
∧

z∈M

[(F(z)→ G(z∨ x))∧ (F(z)→ G(z∨ y))]

=
∧

z∈M

[F(z)→ G(z∨ x)]
∧ ∧

z∈M

[F(z)→ G(z∨ y)]

= St∨(F, G)(x)∧St∨(F, G)(y) .

This shows thatSt∨(F, G) is a fuzzy filter.
If G is also a fuzzy prime filter, then

(4) St∨(F, G)(x∨ y) =
∧

z∈M

[F(z)→ G(z∨ x∨ y)]

=
∧

z∈M

[F(z)→ G((z∨ x)∨ (z∨ y))]

≥
∧

z∈M

[F(z)→ G(z∨ x)∨G(z∨ y)]

=
∧

z∈M

[(F(x)→ G(z∨ x))∨ (F(x)→ G(z∨ y))]

≥
∧

z∈M

[F(z)→ G(z∨ x)]
∨ ∧

z∈M

[F(z)→ G(z∨ y)]

= St∨(F, G)(x)∨St∨(F, G)(y) .

This shows thatSt∨(F, G) is a fuzzy prime filter.
Definition 4.5. Let F, G be two fuzzy filters. For

fuzzy setF ⊗G : (F ⊗G)(x) = F(x)⊗G(x), ∀x ∈ M, the
generated fuzzy filter ofF ⊗G is denoted byF ⊗̃G, i.e.,
∀x ∈ M,

(F ⊗̃G)(x)=
∨
{

m∧

i=1

(F(ai)⊗G(ai)) |x≥ a1⊗·· ·⊗am} .

Theorem 4.6. Let F,G,H be three fuzzy filters ofM.
ThenF ⊗̃G ⊆ H if and only if F ⊆ St∨(G, H).

Proof. Suppose thatF ⊗̃G ⊆ H. Then∀x ∈ M, F(x)⊗
G(x)≤ (F ⊗̃G)(x)≤ H(x). Hence

St∨(G, H)(x) =
∧

z∈M

[G(z)→ H(z∨ x)]

≥
∧

z∈M

[G(z∨ x)→ H(z∨ x)]

≥
∧

z∈M

[G(z∨ x)→ F(z∨ x)⊗G(z∨ x)]

≥
∧

z∈M

F(z∨ x)≥ F(x) .

This means thatF ⊆ St∨(G, H).
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Conversely, suppose thatF ⊆ St∨(G, H). Then∀x ∈

M, F(x) ≤ St∨(G, H)(x) =
∧

z∈M

[G(z) → H(z∨ x)]. Hence

F(x) ≤ G(x) → H(x∨ x) = G(x) → H(x). It follows that
F(x)⊗G(x)≤ H(x) for all x ∈ M. Thus

(F ⊗̃G)(x) =
∨
{

m∧

i=1

(F(ai)⊗G(ai)) |x ≥ a1⊗·· ·⊗am}

≤
∨
{

m∧

i=1

(H(ai) |x ≥ a1⊗·· ·⊗am}

=
∨
{(H(a1⊗·· ·⊗am) |x ≥ a1⊗·· ·⊗am}

≤ H(x) .

This shows thatF ⊗̃G ⊆ H.
On the setF (M), if we denoteF ≤ G if and only if

F ⊆ G, F ∧ G = F ∩ G, F ∨ G = 〈F ∪ G〉, then
(F (M),≤, ∧,∨) is a bounded distributive lattice (see
[19]). By Theorem 4.6, we have the following conclusion.

Theorem 4.7. (F (M),≤, ∧, ∨, ⊗̃, St∨(· , ·)) is a
residuated lattice.

5 Conclusion

In this paper, we introduced two types of fuzzy stabilizers
St⊗R (F) and St⊕R (F) of a fuzzy setF and the stabilizer
St∨(F, G) of F with respect toG in an IMTL-algebra. We
investigated some properties of the stabilizers and shows
thatSt⊗R (F), St⊕R (F) andSt∨(F, G) are fuzzy filters ofM.
By introducing the⊗̃ operation of two fuzzy filters, we
prove that⊗̃ andSt∨(·, ·) form an adjoint pair and the set
of all fuzzy filtersF (M) is a residuated lattice.
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