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Abstract: As an extension of the classical set theory, rough set theory plays a crucial role in uncertainty measurement. In this
paper, concepts of information entropy and mutual information-baseduncertainty measures are presented in both complete and
incomplete information/decision systems. Then, some important properties of these measures are investigated, relationships among
them are established, and comparison analyses with several representative uncertainty measures are illustrated as well. Theoretical
analysis indicates that these proposed uncertainty measures can be used to evaluate the uncertainty ability of different knowledge
in complete/incomplete decision systems, and then these results can be helpful for understanding the essence of knowledge content
and uncertainty measures in incomplete information/decision systems. Thus, these results have a wide variety of applications in rule
evaluation and knowledge discovery in rough set theory.
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1 Introduction

Rough set theory, developed by Pawlak [1] , has become a
useful mathematic tool for dealing with vague and
uncertain information in many areas, such as pattern
recognition, feature selection, neural computing, decision
support, data mining and knowledge discovery process
from big data sets [2,3,4,5,6]. Uncertainty measure, as
one of the most important issues in rough set theory, plays
an important role in artificial intelligence and reasoning
with uncertainty [7,8,9,10,11]. As follows, we briefly
review some relevant literatures.

To evaluate uncertainty of a set, Pawlak presented
several numerical measures in pure rough set theory,
which are accuracy and roughness of a set and
approximation accuracy of a rough classification [1]. The
accuracy measure and the roughness measure are
important numerical characterizations that quantify the
imprecision of a rough set caused by its boundary region.
Although these measures are effective, they have some
restrictions [12,13,14]. Therefore, the applications of
rough set theory in some fields are limited. For this
reason, Xu et al. [15] gave an improved accuracy measure

for rough sets, which calculated the imprecision of a set
by using an excess entropy. However, this measure has a
complex mathematical form. Recently, Yao [16] studied
two definitions of approximations and associated
measures based on equivalence relations. To evaluate
uncertainty of a system, the entropy of a system was
introduced by Shannon in [17]. It is a very useful
mechanism for characterizing the information content in
various modes and has been applied in many diverse
fields [18,19,20,21]. The entropy and its variants were
adapted to rough set theory in [22] and information
interpretation of rough set theory was given in [10].
However, Shannon’s entropy is not a fuzzy entropy, and
cannot measure the fuzziness in rough set theory [23]. A
new information entropy was proposed by Liang in [10],
and then some important properties of this entropy were
derived as well. Unlike the logarithmic behavior of
Shannon’s entropy, Liang’s entropy can be used to
measure the fuzziness of a rough set and a rough
classification. Hu and Yu [24] redefined the joint entropy
and conditional entropy based on Yager’s work. He
extended measures and then successfully used them to
reduce hybrid attribution and measure uncertainty of
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fuzzy probability approximation spaces. Mi et al. [25]
introduced an uncertainty measure for partition-based
fuzzy-rough set model. Liang et al. [26] proposed a new
method to measure the uncertainty of a set in an
information system and the approximation accuracy of a
rough classification in a decision table. Shi and Gong [27]
defined rough entropy and granulation of covering, and
then used them to characterize the uncertainty of covering
for covering approximation space. Unlike most existing
information entropies, Qian and Liang [7] proposed
combination entropy to evaluate uncertainty of
knowledge from an information system. The notion of
information systems provides a convenient tool for the
representation of objects in terms of their attribute values.
According to whether or not there are missing data (null
values), information systems can be classified into two
categories: complete and incomplete [7]. However, all
these studies were dedicated to evaluating uncertainty of a
set in terms of the partition ability of knowledge. Since
the equivalence classes are only regarded as the unit of
information granule of a complete information system,
these measures cannot be used to deal with an incomplete
information system. Moreover, it is difficult to generalize
the results of complete information systems to incomplete
information systems [7]. In some cases, the uncertainty of
a rough set cannot be well characterized by the existing
measures. In this paper, we aim at solving this problem.

Classical rough set model is based on equivalence
relation or partition, but this condition is difficult to be
satisfied in many information systems [28]. Thus, the
corresponding uncertainty measures above are not
suitable for incomplete information systems. What’s
more, there are few studies on uncertainty measure issues
in incomplete information/decision systems by pure
rough set approach. To solve this issue, several interesting
and meaningful extensions to equivalence relation have
been proposed, such as tolerance relations [7,8,9,10,28,
29], covering rough sets [27,30], dominance-based rough
sets [4,31,32], neighborhood operators [33,34], others
[35]. However, the covering model is only suitable for
information systems that contain features with multiple
values, the dominance model is mainly suitable for
knowledge acquisition in the incomplete decision system
with preference-ordered domains of features, and the
neighborhood model may be appropriate for dealing with
numerical and categorical features by assigning different
thresholds for different kinds of features [36]. These
methods are usually considered as extensions of classical
rough set theory. In fact, its extended models have been
increasingly drawing people’s attention. Based on the
consideration, Qian et al. [37] proposed the conditional
combination entropy, mutual information and defined a
variety of combination entropy with maximal consistent
block in incomplete information system. Dai and Xu [38]
extended Pawlak’s pure rough set uncertainty measures to
incomplete information systems. However, these
measures mainly focus on incomplete information
systems rather than incomplete decision systems. Dai et

al. [39] presented a kind of conditional entropy for
incomplete decision systems. However, their conditional
entropy is not monotonic, which makes it not so
reasonable to evaluate the uncertainty in incomplete
decision systems. Sun et al. [36] also investigated rough
entropy-based uncertainty measures to evaluate the
roughness and accuracy of knowledge in incomplete
decision systems. So far, there are relatively few studies
on uncertainty measures in incomplete decision systems.
Thus, further studies on uncertainty measures for
incomplete decision systems are necessary. Therefore, it
is desirable to extend and hybridize these measures to
deal with complete/incomplete data and solve many real
world problems.

In this paper, the main objective is to construct
information entropy and mutual information-based
uncertainty measures for both complete and incomplete
information/decision systems, and discuss their important
properties and propositions by information theory
approach. Then, relationships among these measures are
investigated and comparison analyses with several
representative uncertainty measures are illustrated. So far,
however, the relationships have not been reported in an
incomplete information/decision system, which would
baffle further research and application of information
entropy theory. Therefore, these proposed measures can
provide important approaches to measuring the
uncertainty ability of different knowledge in complete/
incomplete decision systems, and then these results may
be helpful for rule evaluation and knowledge discovery in
complete/incomplete information systems. The rest of
this paper is organized as follows. Some preliminary
concepts are briefly reviewed in Section 2. In Section 3,
the concepts of information entropy are introduced, and
joint information entropy and conditional information
entropy are presented to both complete and incomplete
information/decision systems. Then comparison analyses
of the proposed measures with several representative
uncertainty measures are illustrated. Their important
properties and propositions are induced, and then
relationships among these measures are investigated as
well. In Section 4, mutual information-based uncertainty
measures are proposed to measure the uncertainty of both
complete and incomplete information/decision systems,
and several useful properties are derived. Finally, Section
5 concludes the paper.

2 Preliminaries

In rough set theory, an information system (IS) is a pair
IS = (U,A), whereU is a non-empty finite set of objects,
A is a non-empty finite set of attributes, and for anya ∈ A,
there is a mappinga, a: U → Va, whereVa denotes the
value domain of attributea. With any subset of attributesP
⊆ A, there is a binary indistinguishable relationIND(P) as
follows: IND(P) = {(u,v) ∈U ×U |∀a ∈ P,a(u) = a(v)}.
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For any P ⊆ A, the relation IND(P) constitutes a
partition of U , which is denoted byU/IND(P) or just
U/P. For any object u ∈ U , let [u]P denote the
equivalence class of relationIND(P), i.e., [u]P = {v ∈
U |(u,v) ∈ IND(P)}. Each equivalence class[u]P is
viewed as an information granule. LetIS be an
information system. We define a partial relation� on the
family {U/P|P ⊆ A} as follows:U/A�U/P (U/P�U/A)
if and only if for everyXi ∈ U/A, there existsYj ∈ U/P
such thatXi ⊆ Yj, where U/A = {X1,X2, · · · ,Xm} and
U/P = {Y1,Y2, · · · ,Yn} are partitions induced byA andP
respectively. In this case, we say thatP is coarser thanA,
or A is finer thanP. If U/A � U/P andU/P�U/A, we
say thatP = Q. If U/A � U/P andU/A 6= U/P, we say
that P is strictly coarser thanA (or A is strictly finer than
P), denoted byU/A ≺U/P (or U/P ≻U/A).

In an information system, it may occur that some of
the attribute values for an object are missing. These
missing values can be represented by the set of all
possible values for the attribute or equivalence by the
domain of the attribute. To indicate such a situation, a
distinguished value is usually assigned to those attributes.
If Va contains a null value for at least one attributea ∈ A,
then theIS = (U,A) is called an incomplete information
system (IIS), otherwise it is a complete information
system (CIS). Further on, the symbol * denotes the
missing value. LetIIS be an incomplete information
system, P ⊆ A an attribute subset. The subsetP
determines a binary relation onU as follows: SIM(P)
= {(u,v) ∈ U ×U |∀a ∈ P,a(u) = a(v) or a(u) = * or
a(v) = *}. In fact, SIM(P) is a tolerance relation onU
and the concepts of a tolerance relation have a wide
variety of applications in classification. It shows that
SIM(P) = ∩a∈PSIM({a}) easily. LetSP(u) denote the set
{v ∈ U |(u,v) ∈ SIM(P)}. Generally,SP(u) denotes the
maximal set of objects which are possibly
indistinguishable byP with object u. Let U/SIM(P)
denote the family sets{SP(u)|u ∈U}, the classification or
the knowledge induced byP. A member SP(u) from
U/SIM(P) will be called a tolerance class or a granule of
information. It should be noted that the tolerance classes
in U/SIM(P) do not constitute a partition ofU in general.
They constitute a cover ofU , i.e., SP(u) 6= /0, for every
u ∈U , and∪u∈U SP(u) =U .

Let IIS be an incomplete information system with
P,Q ⊆ A. We define a partial relation� on 2A as follows:
P is finer thanQ (or Q is coarser thanP), denoted by
P � Q (or Q � P), if and only if SP(ui) ⊆ SQ(ui) for any
i ∈ {1,2, · · · , |U |}. In fact, P ≺ Q ⇔ it follows that
SP(ui) ⊆ SQ(ui) for any i ∈ {1,2, · · · , |U |}, and there
exists j ∈ {1,2, · · · , |U |} such thatSP(u j)⊂ SQ(u j).

An incomplete information systemIIS = (U,C∪D) is
called an incomplete decision system (IDS) if condition
attributes and decision attributes are distinguished, where
C is the condition attribute set andD is the decision
attribute set withC∩D = /0. Thus, an incomplete decision
system is a special case of an incomplete information
system, which is generally expressed asIDS = (U,C,D)

in this paper. Also, a complete decision system (CDS) is a
special case of a complete information system.

3 Information entropy-based uncertainty
measures in rough set theory

As a measure of knowledge granularity, information
entropy-based measures in incomplete information
systems can reflect this difference in knowledge
expression. Based on this thought, information entropy-
based uncertainty measures for both complete and
incomplete information/decision systems are presented by
extending the definitions of the measures in complete
information systems. Some important properties and
propositions of these measures are investigated and
relationships among them are discussed as well.

3.1 Information entropy and conditional
information entropy in rough set theory

Let CIS be a complete information system andU/A =
{X1,X2, · · · ,Xm}. The information entropy of knowledge
A [29] is denoted by

E(A) =
m

∑
i=1

|Xi|

|U |

|Xc
i |

|U |
=

m

∑
i=1

|Xi|

|U |
(1−

|Xi|

|U |
), (1)

whereXc
i is the complement ofXi, i.e., Xc

i = U −Xi,
|Xi|
|U |

represents the probability of equivalence classXi within

the universeU , and
|Xc

i |
|U | represents the probability of the

complement set ofXi within the universeU .

Property 3.1. Let CIS be a complete information system
andP,Q ⊆ A. If U/P �U/Q, thenE(Q)≤ E(P).

Proof. SinceU/P �U/Q, it follows thatU/P ≺U/Q and
U/P = U/Q. If U/P ≺ U/Q, from Theorem 12 in [29],
one has thatE(Q) < E(P). If U/P = U/Q, it is obvious
that E(Q) = E(P). Hence, ifU/P � U/Q, thenE(Q) ≤
E(P) holds. This completes the proof.

Let IIS be an incomplete information system withP ⊆
A, andU/SIM(P) = {SP(u1),SP(u2), · · · ,SP(u|U |)}. The
information entropy of knowledgeP [29] is defined as

IE(P) =
|U |

∑
i=1

1
|U |

(1−
|SP(ui)|

|U |
). (2)

Let IIS be an incomplete information system with
P,Q ⊆ A. If there exists a one-to-one, onto functionh:
U/SIM(P)→U/SIM(Q) such that|h(SP(ui))|= |SP(ui)|
for any i ∈ {1,2, · · · , |U |}, thenIE(P) = IE(Q). It can be
concluded that the above information entropy of
knowledge is invariant with respect to different sets of
tolerance classes ofU that are size-isomorphic.
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Property 3.2. Let IIS be an incomplete information
system andP,Q ⊆ A. If P ≺ Q, thenIE(Q)< IE(P).
Proof. SinceP ≺ Q, one has thatSP(ui) ⊆ SQ(ui), i.e.,
|SP(ui)| ≤ |SQ(ui)| for any ui ∈ U , SP(ui) ∈ U/SIM(P)
and SQ(ui) ∈ U/SIM(Q), and there existsj ∈ {1,2, · · · ,
|U |} such thatSP(u j) ⊂ SQ(u j), i.e., |SP(u j)| < |SQ(u j)|.
Hence, we have that

|SP(ui)| ≤ |SQ(ui)|,∀ui ∈U

⇒
|U |

∑
i=1,i 6= j

1
|U |

(1−
|SQ(ui)|

|U |
)≤

|U |

∑
i=1,i 6= j

1
|U |

(1−
|SP(ui)|

|U |
)

⇒
|U |

∑
i=1,i 6= j

1
|U |

(1−
|SQ(ui)|

|U |
)+

1
|U |

(1−
|SQ(u j)|

|U |
)

<
|U |

∑
i=1,i 6= j

1
|U |

(1−
|SP(ui)|

|U |
)+

1
|U |

(1−
|SP(u j)|

|U |
)

⇒
|U |

∑
i=1

1
|U |

(1−
|SQ(ui)|

|U |
)<

|U |

∑
i=1

1
|U |

(1−
|SP(ui)|

|U |
), (3)

i.e., IE(Q)< IE(P). This completes the proof.
Proposition 3.1. Let CIS be a complete information
system withP ⊆ A. Information entropy of knowledgeP
degenerates into

IE(P) =
m

∑
i=1

|Xi|

|U |
(1−

|Xi|

|U |
). (4)

Proof. Suppose thatU/P = {X1,X2, · · · ,Xm}, U/SIM(P)
= {SP(u1),SP(u2), · · · ,SP(u|U |)}, and Xi = {ui1,ui2, · · · ,
uisi} (i ∈ {1,2, · · · ,m}), where |Xi| = si, and ∑m

i=1 si =
|U |, and then the relationships among the elements in
U/SIM(P) and the elements inU/P are as follows:Xi =
SP(ui1) = SP(ui2) = · · · = SP(uisi), i.e., |Xi| = |SP(ui1)| =

|SP(ui2)| = · · · = |SP(uisi)|. Thus, one has that|Xi|
|U | (1−

|Xi|
|U | ) =

1
|U | (1−

|SP(ui1)|
|U | )+ 1

|U | (1−
|SP(ui2)|

|U | )+ · · ·+ 1
|U | (1−

|SP(uisi )|

|U | ). Therefore, it can be easily obtained that

IE(P) =
m

∑
i=1

(
1
|U |

(1−
|SP(ui1)|

|U |
)+

1
|U |

(1−
|SP(ui2)|

|U |
)

+ · · ·+
1
|U |

(1−
|SP(uisi)|

|U |
))

=
m

∑
i=1

|Xi|

|U |
(1−

|Xi|

|U |
). (5)

Proposition 3.1 shows that the information entropy in
complete information systems is a special form of the
information entropy in incomplete information systems.
Corollary 3.1. Let CIS be a complete information system
with P ⊆ A. ThenIE(P) = E(P).

In the following, we investigate the information
entropy of new knowledge composed of two given

knowledge with the same universe. To do it in a much
clearer way, we introduce the following lemmas.

Lemma 3.1. Let CIS be a complete information system
andP,Q⊆A. ThenU/P∩U/Q=U/(P∪Q)=U/(Q∪P).

Proof. It can be achieved by Theorem 3.1 in [40].

Lemma 3.2.Let IIS be an incomplete information system
andP,Q ⊆ A. Then the following properties hold
(1) SIM(P)∩SIM(Q) = SIM(P∪Q);
(2) SP(u)∩SQ(u) = SP∪Q(u) for anyu ∈U ;
(3) U/SIM(P)∩U/SIM(Q) =U/SIM(P∪Q);

(4)
i=|U |⋃

i=1

j=|U |⋃

j=1
{SP(ui)∩SQ(u j)}=

i=|U |⋃

i=1
{SP(ui)∩SQ(ui)}.

Proof. It can be achieved by Lemma 1 and Proposition 5
in [36].

Definition 3.1. Let CIS be a complete information system
andP,Q⊆A,U/P= {X1,X2, · · · ,Xm},U/Q= {Y1,Y2, · · · ,
Yn}. Joint information entropy ofP andQ is defined as

E(P∪Q) =
m

∑
i=1

n

∑
j=1

|Yj ∩Xi|

|U |
(1−

|Yj ∩Xi|

|U |
). (6)

Definition 3.2. Let IIS be an incomplete information
system andP,Q ⊆ A, U/SIM(P) = {SP(u1),SP(u2), · · · ,
SP(u|U |)}, U/SIM(Q) = {SQ(u1),SQ(u2), · · · ,SQ(u|U |)}.
Joint information entropy ofP andQ is defined as

IE(P∪Q) =
|U |

∑
i=1

1
|U |

(1−
|SP(ui)∩SQ(ui)|

|U |
). (7)

Proposition 3.2. Let CIS be a complete information
system andP,Q ⊆ A. The joint information entropy ofP
andQ degenerates into

IE(P∪Q) =
m

∑
i=1

n

∑
j=1

|Yj ∩Xi|

|U |
(1−

|Yj ∩Xi|

|U |
). (8)

Proof. The proof is similar to that of Proposition 3.1.

Corollary 3.2. Let CIS be a complete information system
andP,Q ⊆ A. ThenIE(P∪Q) = E(P∪Q).

Definition 3.3. Let CDS be a complete decision system
with P ⊆ C, U/P = {X1,X2, · · · ,Xm}, and U/D = {Y1,
Y2, · · · ,Yn}. Conditional information entropy ofP relative
to D is defined as

E(D|P) =
m

∑
i=1

n

∑
j=1

|Yj ∩Xi||Y c
j −Xc

i |

|U |2
. (9)

Property 3.3.LetCDS be a complete decision system with
P,Q ⊆C. If U/P ≺U/Q, thenE(D|P)≤ E(D|Q).

Proof. Suppose thatU/P = {X1,X2, · · · ,Xm}, U/Q =
{Z1,Z2, · · · ,Zl}, andU/D = {Y1,Y2, · · · ,Yn}. SinceU/P
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≺ U/Q, it follows that m > l, and then there exists a
partition {I1, I2, · · · , Il} of {1,2, · · · ,m} such thatZi =
∪{Xk|k ∈ Ii, i = 1,2, · · · , l}. Hence, we can obtain that

E(D|Q) =
l

∑
i=1

n

∑
j=1

|Yj ∩Zi||Zi −Yj|

|U |2

=
l

∑
i=1

n

∑
j=1

|Yj ∩
⋃

k∈Ii
Xk||

⋃

k∈Ii
Xk −Yj|

|U |2

=
l

∑
i=1

n

∑
j=1

( ∑
k∈Ii

|Yj ∩Xk|)|
⋃

k∈Ii
Xk −Yj|

|U |2

≥
m

∑
k=1

n

∑
j=1

|Yj ∩Xk||Xk −Yj|

|U |2

=
m

∑
k=1

n

∑
j=1

|Yj ∩Xk||Y c
j −Xc

k |

|U |2
= E(D|P), (10)

i.e.,E(D|P)≤ E(D|Q). This completes the proof.
Proposition 3.3.Let CDS be a complete decision system
andP ⊆C. E(D|P) = 0 if and only ifU/P �U/D.
Proof. ⇒ Suppose thatE(D|P) = 0, we need to prove
U/P � U/D. If U/P � U/D does not hold, then for any
Yj ∈ U/D, there exists someXi ∈ U/P such thatXi ⊆ Yj
does not hold. LetXk ∈U/P, Ys ∈U/D, thenXk ∩Ys 6= /0,
Xk ∩Ys 6= Xk, and 1≤ |Xk ∩Ys|< |Xk|. Hence, we have that

E(D|P)

=
m

∑
i=1

n

∑
j=1

|Yj ∩Xi||Xi −Yj|

|U |2

=
m

∑
i=1

n

∑
j=1

|Yj ∩Xi||Xi −Xi ∩Yj|

|U |2

=
m

∑
i=1,i 6=k

n

∑
j=1

|Yj ∩Xi||Xi −Xi ∩Yj|

|U |2
+

n

∑
j=1, j 6=s

|Yj ∩Xk||Xk −Xk ∩Yj|

|U |2
+

|Ys ∩Xk||Xk −Xk ∩Ys|

|U |2

≥
|Ys ∩Xk||Xk −Xk ∩Ys|

|U |2
> 0, (11)

i.e.,E(D|P)> 0. This yields a contradiction. Thus,U/P �
U/D holds.
⇐ SupposeU/P � U/D, then, for anyXi ∈ U/P, there
exists someYj ∈ U/D such thatXi ⊆ Yj. It follows that
Xi ∩Yj 6= /0 or Xi ⊆ Yj for any Xi ∈ U/P andYj ∈ U/D.
Then,Xi ∩Yj = Xi, i.e.,Xi −Xi ∩Yj = /0. Therefore, we can
obtain that

E(D|P) =
m

∑
i=1

n

∑
j=1

|Yj ∩Xi||Xi −Yj|

|U |2

=
m

∑
i=1

n

∑
j=1

|Yj ∩Xi||Xi −Xi ∩Yj|

|U |2
= 0. (12)

Proposition 3.3 illustrates that in the same universe, a
knowledge cannot provide the system with any additional
uncertainty (classification information) if it is coarser
than the original knowledge in complete decision
systems. Here, the following propositions will establish
the relationships among the information entropy, the joint
information entropy, and the conditional information
entropy in a complete decision system.
Proposition 3.4.Let CDS be a complete decision system
andP ⊆C. ThenE(D|P) = E(P∪D)−E(P).
Proof. It follows from Definitions 3.3 and 3.1 that

E(D|P)

=
m

∑
i=1

n

∑
j=1

|Yj ∩Xi||Xi −Yj|

|U |2

=
m

∑
i=1

n

∑
j=1

|Yj ∩Xi||Xi −Yj ∩Xi|

|U |2

=
m

∑
i=1

n

∑
j=1

|Yj ∩Xi||(U −Yj ∩Xi)− (U −Xi)|

|U |2

=
m

∑
i=1

n

∑
j=1

|Yj ∩Xi||U −Yj ∩Xi|

|U |2
−

m

∑
i=1

n

∑
j=1

|Yj ∩Xi||U −Xi|

|U |2

=
m

∑
i=1

n

∑
j=1

|Yj ∩Xi|

|U |

(|U |− |Yj ∩Xi|)

|U |
−

m

∑
i=1

n

∑
j=1

|Yj ∩Xi|

|U |

(|U |− |Xi|)

|U |

=
m

∑
i=1

n

∑
j=1

|Yj ∩Xi|

|U |
(1−

|Yj ∩Xi|

|U |
)−

m

∑
i=1

(
n

∑
j=1

|Yj ∩Xi|

|U |
)(1−

|Xi|

|U |
)

=
m

∑
i=1

n

∑
j=1

|Yj ∩Xi|

|U |
(1−

|Yj ∩Xi|

|U |
)−

m

∑
i=1

|Xi|

|U |
(1−

|Xi|

|U |
)

= E(P∪D)−E(P). (13)

To further reveal some relationships between the
condition attributes and the decision attribute in an
incomplete decision system, we present following
definitions and relative properties.
Definition 3.4.Let IDS be an incomplete decision system,
P ⊆ C, U/SIM(P) = {SP(u1),SP(u2), · · · ,SP(u|U |)}, and
U/SIM(D) = {SD(u1),SD(u2), · · · ,SD(u|U |)}. Conditional
information entropy ofP relative toD is defined as

IE(D|P) =
|U |

∑
i=1

|SP(ui)|− |SP(ui)∩SD(ui)|

|U |2
. (14)

Property 3.4. Let IDS be an incomplete decision system
with P,Q ⊆C. If P � Q, IE(D|P)≤ IE(D|Q).
Proof. Since P � Q, it follows that SP(ui) ⊆ SQ(ui),
|SP(ui)| ≤ |SQ(ui)|, and thenSP(ui) ∩ SD(ui) ⊆ SQ(ui)∩
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SD(ui) for any ui ∈ U , and SD(ui) ∈ U/SIM(D). From
Definition 3.4, we have that

IE(D|Q)− IE(D|P)

=
|U |

∑
i=1

(
|SQ(ui)|− |SP(ui)|

|U |2
−

|SQ(ui)∩SD(ui)|− |SP(ui)∩SD(ui)|

|U |2
)

=
|U |

∑
i=1

|SQ(ui)|− |SP(ui)|− |SD(ui)∩ (SQ(ui)−SP(ui))|

|U |2

≥ 0, (15)

i.e., IE(D|P)≤ IE(D|Q). Thus, it is obvious thatIE(D|P)
= IE(D|Q) if and only if {SQ(ui)− SP(ui)} ⊆ SD(ui) for
anyui ∈U . This completes the proof.

Proposition 3.5. Let IDS be an incomplete decision
system withP ⊆C. ThenIE(D|P) = IE(P∪D)− IE(P).

Proof. It follows immediately from Definition 3.4 that

IE(D|P)

=
|U |

∑
i=1

|SP(ui)|

|U |2
−

|U |

∑
i=1

|SP(ui)∩SD(ui)|

|U |2
+

|U |

∑
i=1

1
|U |

−
|U |

∑
i=1

1
|U |

=
|U |

∑
i=1

1
|U |

(1−
|SP(ui)∩SD(ui)|

|U |
)−

|U |

∑
i=1

1
|U |

(1−
|SP(ui)|

|U |
)

= IE(P∪D)− IE(P). (16)

Proposition 3.6. Let IDS be an incomplete decision
system withP ⊆C. IE(D|P) = 0 if and only ifP � D.

Proof. ⇒ SupposeIE(D|P) = 0, we need to proveP �
D. If P � D does not hold, then there exists someu j ∈ U
such thatSP(u j) ⊆ SD(u j) does not hold, i.e.,|SP(u j)∩
SD(u j)|< |SP(u j)|. Hence, we can obtain that

IE(D|P) =
|U |

∑
i=1,i 6= j

|SP(ui)|− |SP(ui)∩SD(ui)|

|U |2

+
|SP(u j)|− |SP(u j)∩SD(u j)|

|U |2

≥
|SP(u j)|− |SP(u j)∩SD(u j)|

|U |2

>
|SP(u j)|− |SP(u j)|

|U |2
= 0, (17)

i.e., IE(D|P) > 0. This yields a contradiction. Thus,
P � D holds.
⇐ SupposeP � D, then, for anyui ∈ U , it follows that
SP(ui)⊆ SD(ui), i.e.,SP(ui)∩SD(ui) = SP(ui). Therefore,

we have thatIE(D|P) = ∑|U |
i=1

|SP(ui)|−|SP(ui)|
|U |2

= 0. This
completes the proof.

Proposition 3.6 states that any knowledge in the same
universe cannot provide the system with any additional
uncertainty if it is coarser than the original knowledge in
incomplete decision systems.

Proposition 3.7.Let CDS be a complete decision system
with P ⊆ C. The conditional information entropy ofP
relative toD degenerates into

IE(D|P) =
m

∑
i=1

n

∑
j=1

|Yj ∩Xi||Y c
j −Xc

i |

|U |2
. (18)

Proof. Let Xi = {ui1,ui2, ...,uisi} ∈ U/P (i ∈ {1,2, · · · ,
m}), where |Xi| = si, ∑m

i=1 si = |U |, andYj = {u j1,u j2,
· · · ,u jt j} ∈ U/D ( j ∈ {1,2, · · · ,n}), where |Yj| = t j,

∑n
j=1 t j = |U |. Similar to Proposition 3.1, the relationships

among the elements inU/SIM(P) and the elements in
U/P are as follows:Xi = SP(ui1) = SP(ui2) = · · · =
SP(uisi), i.e.,|Xi|= |SP(ui1)|= |SP(ui2)|= · · ·= |SP(uisi)|,
and the relationships among the elements inU/SIM(D)
and the elements inU /D are as follows:Yj = SD(u j1) =
SD(u j2) = · · ·= SD(u jt j), i.e.,|Yj|= |SD(u j1)|= |SD(u j2)|

= · · ·= |SD(u jt j)|. Therefore, we can obtain that

IE(D|P) =
n

∑
i=1

m

∑
j=1

∑
uk∈Y j∩Xi

|SP(uk)|− |SP(uk)∩SD(uk)|

|U |2

=
n

∑
i=1

m

∑
j=1

|Yj ∩Xi|
|Xi|− |Xi ∩Yj|

|U |2

=
n

∑
i=1

m

∑
j=1

|Yj ∩Xi||Xi −Yj|

|U |2

=
n

∑
i=1

m

∑
j=1

|Yj ∩Xi||Y c
j −Xc

i |

|U |2
. (19)

Corollary 3.3. Let CDS be a complete decision system
with P ⊆C. ThenIE(D|P) = E(D|P).

Proposition 3.7 and Corollary 3.3 state that the
conditional information entropy in complete decision
systems is a special instance of the conditional
information entropy in incomplete decision systems. In
other words, the conditional information entropy under
the equivalence relation is the extended formulation of the
conditional information entropy under the tolerance
relation. This means that the definition of conditional
information entropy in a complete decision system is a
consistent extension to that of conditional information
entropy in an incomplete decision system. Hence, it
follows that the conditional information entropy in
incomplete decision systems is equivalent to the
conditional information entropy in complete decision
systems, and the conditional information entropy
proposed above in incomplete decision systems is suitable
for measuring the uncertainty in both incomplete and
complete decision systems.
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3.2 Comparison analysis with several
representative uncertainty measures

Let CDS be a complete decision system andP ⊆ C, U/P
= {X1,X2, · · · ,Xm}, U/D = {Y1,Y2, · · · ,Yn}. Conditional
information entropy ofP relative toD [41] is denoted by

H1(D|P) =−
m

∑
i=1

|Xi|

|U |

n

∑
j=1

|Yj ∩Xi|

|Xi|
log2

|Yj ∩Xi|

|Xi|
. (20)

Let IIS be an incomplete information system withP ⊆
A. Information entropy of knowledgeP [29] is denoted by

H ′
1(P) =−

|U |

∑
i=1

1
|U |

log2
|SP(ui)|

|U |
. (21)

Definition 3.5. Let IDS be an incomplete decision system
with P ⊆C. Conditional information entropy ofP relative
to D is defined as

H ′
1(D|P) =−

|U |

∑
i=1

1
|U |

log2
|SP(ui)∩SD(ui)|

|SP(ui)|
. (22)

Property 3.5. Let IDS be an incomplete decision system
andP ⊆C. ThenIE(D|P)≤ H ′

1(D|P).
Proof. It follows immediately from Definition 3.4 that

IE(D|P) =
|U |

∑
i=1

1− |SP(ui)∩SD(ui)|
|SP(ui)|

|U |2

|SP(ui)|

=
|U |

∑
i=1

1
|U |

(1−
|SP(ui)∩SD(ui)|

|SP(ui)|
)
|SP(ui)|

|U |
. (23)

Assume that a functionfui =
|SP(ui)∩SD(ui)|

|SP(ui)|
for anyui ∈U ,

then we have thatIE(D|P) = 1
|U | ∑|U |

i=1
|SP(ui)|
|U | (1− fui). It

follows similarly from Definition 3.5 thatH ′
1(D|P) = −

1
|U | ∑|U |

i=1 log2 fui . It is obvious that because 0≤ fui ≤ 1,

one has that 1− fui ≤ − log2 fui and |SP(ui)|
|U | (1− fui) ≤

− log2 fui for any ui ∈ U . Thus, it can be obtained that

∑|U |
i=1

|SP(ui)|
|U | (1− |SP(ui)∩SD(ui)|

|SP(ui)|
)≤−∑|U |

i=1 log2
|SP(ui)∩SD(ui)|

|SP(ui)|
,

i.e., IE(D|P)≤ H ′
1(D|P). This completes the proof.

Proposition 3.8. Let IDS be an incomplete decision
system withP ⊆C. ThenH ′

1(D|P) = H ′
1(P∪D)−H ′

1(P).
Proof. It follows immediately from Definition 5 that

H ′
1(D|P)

= −
|U |

∑
i=1

1
|U |

(log2
|SP(ui)∩SD(ui)|

|U |
− log2

|SP(ui)|

|U |
)

= −
|U |

∑
i=1

1
|U |

log2
|SP(ui)∩SD(ui)|

|U |
+

|U |

∑
i=1

1
|U |

log2
|SP(ui)|

|U |

= H ′
1(P∪D)−H ′

1(P). (24)

Proposition 3.9. Let IDS be an incomplete decision
system,P ⊂ Q ⊆C. H ′

1(D|Q)< H ′
1(D|P) does not hold.

In the following, the performance of Proposition 3.9
in an incomplete decision system is shown through an
illustrative example.

Example 3.1. Consider an incomplete decision system
about several cars shown in Table 1, whereC =
{Price,Mileage,Size,Max − Speed} = {P,M,S,X} and
D = {Acceleration}.

Table 1: An incomplete decision system about cars
car P M S X D
1 High Low Full Low Good
2 Low * Full Low Good
3 * * Compact Low Poor
4 High * Full High Good
5 * * Full High Excellent
6 Low High Full * Good

Assume thatU/SIM(C) = {{1},{2,6},{3},{4,5},{4,5,
6},{2,5,6}}, U/SIM({S,X}) = {{1,2,6},{1,2,6},{3},{4,
5,6},{4,5,6},{1,2,4,5,6}}, andU/SIM(D) = {{1,2,4,6},
{1,2,4,6},{3},{1,2,4,6},{5},{1,2,4,6}}. Then, it is easily
computed thatH ′

1(D|C) =
log2 3

3 and H ′
1(D|{S,X}) =

log2 3
3 −

log2 5
6 − 1

2. We haveH ′
1(D|C)− H ′

1(D|{S,X}) =
log2 5

6 + 1
2, i.e.,H ′

1(D|C) > H ′
1(D|{S,X}). As a result, this

shows that{S,X} ⊂ C = {P,M,S,X}, then one has that
H ′

1(D|{P,M,S,X})> H ′
1(D|{S,X}).

Proposition 3.10.Let CDS be a complete decision system
with P ⊆ C. The conditional information entropy ofP
relative toD degenerates into

H ′
1(D|P) =−

m

∑
i=1

|Xi|

|U |

n

∑
j=1

|Yj ∩Xi|

|Xi|
log2

|Yj ∩Xi|

|Xi|
. (25)

Proof. Similar to Proposition 3.7, we can obtain that

H ′
1(D|P) = −

m

∑
i=1

n

∑
j=1

∑
uk∈Y j∩Xi

1
|U |

log2
|SP(uk)∩SD(uk)|

|SP(uk)|

= −
m

∑
i=1

n

∑
j=1

|Yj ∩Xi|

|U |
log2

|Yj ∩Xi|

|Xi|

= −
m

∑
i=1

|Xi|

|U |

n

∑
j=1

|Yj ∩Xi|

|Xi|
log2

|Yj ∩Xi|

|Xi|
. (26)

Corollary 3.4. LetCDS be a complete decision system and
P ⊆C. ThenH ′

1(D|P) = H1(D|P).

Proposition 3.11.Let CDS be a complete decision system
andP ⊆C. ThenE(D|P)≤ H1(D|P).

Proof. It can be achieved by Corollaries 3.3 and 3.4, and
Property 3.5.
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Let CDS be a complete decision system withP ⊆ C.
Conditional information entropy ofP relative toD [41] is
denoted by

H2(D|P)=−
m

∑
i=1

n

∑
j=1

|Yj ∩Xi|

|U |
(1+ log2

|Yj ∩Xi|

|Xi|
−
|Yj ∩Xi|

|U |
).

(27)

Definition 3.6. Let IDS be an incomplete decision system
with P ⊆C. Conditional information entropy ofP relative
to D is defined as

H ′
2(D|P) = −

|U |

∑
i=1

1
|U |

(1+ log2
|SP(ui)∩SD(ui)|

|SP(ui)|
−

|SP(ui)∩SD(ui)|

|U |
). (28)

Proposition 3.12. Let IDS be an incomplete decision
system withP ⊆C. H ′

2(D|P) = H ′
1(D|P)− IE(D∪P).

Proof. It follows from Definitions 3.6, 3.5 and 3.2 that

H ′
2(D|P) = −

|U |

∑
i=1

1
|U |

log2
|SP(ui)∩SD(ui)|

|SP(ui)|

−
|U |

∑
i=1

1
|U |

(1−
|SP(ui)∩SD(ui)|

|U |
)

= H ′
1(D|P)− IE(D∪P). (29)

Corollary 3.5. Let IDS be an incomplete decision system
andP ⊆C. ThenH ′

2(D|P)≤ H ′
1(D|P).

Proof. It can be achieved by Proposition 3.12 andIE(D∪
P)≥ 0.
Proposition 3.13. Let IDS be an incomplete decision
system,P ⊂ Q ⊆C. H ′

2(D|Q)< H ′
2(D|P) does not hold.

The following example illustrates the performance of
Proposition 3.13 in an incomplete decision system.
Example 3.2.(Continued from Example 3.1)

By computing, we have thatH ′
2(D|C) = log2 3

3 − 7
9 and

H ′
2(D|{S,X}) =

log2 3
3 −

log2 5
6 − 10

9 , then H ′
2(D|C)−

H ′
2(D|{S,X}) =

log2 5
6 + 1

3, i.e.,H ′
2(D|C) > H ′

2(D|{S,X}).
As a result, this shows that{S,X} ⊂ C = {P,M,S,X},
then one has thatH ′

2(D|{P,M,S,X})> H ′
2(D|{S,X}).

Proposition 3.14.Let CDS be a complete decision system
with P ⊆ C. The conditional information entropy ofP
relative toD degenerates into

H ′
2(D|P)=−

m

∑
i=1

n

∑
j=1

|Yj ∩Xi|

|U |
(1+ log2

|Yj ∩Xi|

|Xi|
−
|Yj ∩Xi|

|U |
).

(30)

Proof. Suppose thatCDS is a complete decision system,
and then it follows from Proposition 3.12, and Corollaries
3.4 and 3.2 that

H ′
2(D|P)

= H ′
1(D|P)− IE(D∪P)

= H1(D|P)−E(D∪P)

= −
m

∑
i=1

|Xi|

|U |

n

∑
j=1

|Yj ∩Xi|

|Xi|
log2

|Yj ∩Xi|

|Xi|

−
m

∑
i=1

n

∑
j=1

|Yj ∩Xi|

|U |
(1−

|Yj ∩Xi|

|U |
)

= −
m

∑
i=1

n

∑
j=1

|Yj ∩Xi|

|U |
(1+ log2

|Yj ∩Xi|

|Xi|
−

|Yj ∩Xi|

|U |
). (31)

Corollary 3.6. Let CDS be a complete decision system
with P ⊆C. ThenH ′

2(D|P) = H2(D|P).

Proposition 3.15.Let CDS be a complete decision system
with P ⊆C. ThenH2(D|P)≤ H1(D|P).

Proof. It can be achieved by Corollaries 3.4, 3.5 and 3.6.
Let CDS be a complete decision system withP ⊆ C.

Conditional information entropy ofP relative toD [43] is
denoted by

I1(D|P) =
m

∑
i=1

|Xi|

|U |

n

∑
j=1

|Yj ∩Xi|

|Xi|
(1−

|Yj ∩Xi|

|Xi|
). (32)

Definition 3.7. Let IDS be an incomplete decision system
with P ⊆C. Conditional information entropy ofP relative
to D is defined as

I′1(D|P) =
|U |

∑
i=1

1
|U |

(1−
|SP(ui)∩SD(ui)|

|SP(ui)|
). (33)

Property 3.6. Let IDS be an incomplete decision system
andP ⊆C. ThenIE(D|P)≤ I′1(D|P)≤ H ′

1(D|P).

Proof. It follows immediately from Property 3.5 that
IE(D|P) = ∑|U |

i=1
1
|U | (1−

|SP(ui)∩SD(ui)|
|SP(ui)|

) |SP(ui)|
|U | . Then, from

Definition 3.7, it is clear thatIE(D|P) = I′1(D|P) |SP(ui)|
|U | .

Since 0≤ |SP(ui)|
|U | ≤ 1, one has thatIE(D|P) ≤ I′1(D|P).

Similar to Property 3.5, let a functionfui =
|SP(ui)∩SD(ui)|

|SP(ui)|

for any ui ∈ U . Thus, it is obvious that 0≤ fui ≤ 1. We
have that 1− fui ≤ − log2 fui . It can be obtained that

∑|U |
i=1(1 − |SP(ui)∩SD(ui)|

|SP(ui)|
) ≤ −∑|U |

i=1 log2
|SP(ui)∩SD(ui)|

|SP(ui)|
, i.e.,

I′1(D|P) ≤ H ′
1(D|P). Hence, IE(D|P) ≤ I′1(D|P) ≤

H ′
1(D|P) holds. This completes the proof.

Proposition 3.16. Let IDS be an incomplete decision
system,P ⊂ Q ⊆C. I′1(D|Q)< I′1(D|P) does not hold.

In what follows, we show the performance of
Proposition 3.16 in an incomplete decision system
through an illustrative example.

Example 3.3.(Continued from Example 3.1)
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By computing, we have thatI′1(D|C) = 1
4 and

I′1(D|{S,X}) = 1
5, i.e., I′1(D|C) > I′1(D|{S,X}). As a

result, it shows that{S,X} ⊂ C = {P,M,S,X}, then one
has thatI′1(D|{P,M,S,X})> I′1(D|{S,X}).

Proposition 3.17. Let CDS = (U,C,D) be a complete
decision system withP ⊆ C. The conditional information
entropy ofP relative toD degenerates into

I′1(D|P) =
m

∑
i=1

|Xi|

|U |

n

∑
j=1

|Yj ∩Xi|

|Xi|
(1−

|Yj ∩Xi|

|Xi|
). (34)

Proof. Similar to Proposition 3.7, it can be obtained that

I′1(D|P) =
m

∑
i=1

n

∑
j=1

∑
uk∈Y j∩Xi

1
|U |

(1−
|SP(uk)∩SD(uk)|

|SP(uk)|
)

=
m

∑
i=1

n

∑
j=1

|Yj ∩Xi|

|U |
(1−

|Yj ∩Xi|

|Xi|
)

=
m

∑
i=1

|Xi|

|U |

n

∑
j=1

|Yj ∩Xi|

|Xi|
(1−

|Yj ∩Xi|

|Xi|
). (35)

Corollary 3.7. LetCDS be a complete decision system and
P ⊆C. ThenI′1(D|P) = I1(D|P).

Proposition 3.18.Let CDS be a complete decision system
andP ⊆C. ThenE(D|P)≤ I1(D|P)≤ H1(D|P).

Proof. It can be achieved by Corollaries 3.3, 3.4 and 3.7,
and Property 3.6.

Let CDS be a complete decision system withP ⊆ C.
Conditional information entropy ofP relative toD [44] is
denoted by

I2(D|P) =
m

∑
i=1

|Xi|
2

|U |2

n

∑
j=1

|Yj ∩Xi|

|Xi|
(1−

|Yj ∩Xi|

|Xi|
). (36)

Definition 3.8. Let IDS be an incomplete decision system
with P ⊆C. Conditional information entropy ofP relative
to D is defined as

I′2(D|P) =
|U |

∑
i=1

|SP(ui)|− |SP(ui)∩SD(ui)|

|U |2
. (37)

Property 3.7. Let IDS be an incomplete decision system
andP ⊆C. ThenI′2(D|P) = IE(D|P).

Proof. It can be achieved by Definitions 3.4 and 3.8.

Proposition 3.19. Let IDS be an incomplete decision
system andP ⊆C. ThenI′2(D|P)≤ I′1(D|P)≤ H ′

1(D|P).

Proof. It can be achieved by Properties 3.6 and 3.7.

Proposition 3.20. Let IDS be an incomplete decision
system andP,Q ⊆C. If P � Q, thenI′2(D|Q)≤ I′2(D|P).

Proof. It can be achieved by Properties 3.7 and 3.4.

Proposition 3.21.Let CDS be a complete decision system
with P ⊆ C. The conditional information entropy ofP
relative toD degenerates into

I′2(D|P) =
m

∑
i=1

|Xi|
2

|U |2

n

∑
j=1

|Yj ∩Xi|

|Xi|
(1−

|Yj ∩Xi|

|Xi|
). (38)

Proof. Similar to Proposition 3.7, it can be obtained that

I′2(D|P) =
m

∑
i=1

n

∑
j=1

∑
uk∈Y j∩Xi

|SP(uk)|− |SP(uk)∩SD(uk)|

|U |2

=
m

∑
i=1

n

∑
j=1

|Yj ∩Xi|
|Xi|− |Yj ∩Xi|

|U |2

=
m

∑
i=1

|Xi|
2

|U |2

n

∑
j=1

|Yj ∩Xi|

|Xi|

(|Xi|− |Yj ∩Xi|)

|Xi|

=
m

∑
i=1

|Xi|
2

|U |2

n

∑
j=1

|Yj ∩Xi|

|Xi|
(1−

|Yj ∩Xi|

|Xi|
). (39)

Corollary 3.8. LetCDS be a complete decision system and
P ⊆C. ThenI′2(D|P) = I2(D|P).

Proposition 3.22.Let CDS be a complete decision system
andP ⊆C. ThenI2(D|P) = E(D|P).

Proof. It can be achieved by Corollaries 3.3 and 3.8, and
Property 3.7.

Proposition 3.23.Let CDS be a complete decision system
andP ⊆C. ThenI2(D|P)≤ I1(D|P)≤ H1(D|P).

Proof. It can be achieved by Corollaries 3.4, 3.7 and 3.8,
and Proposition 3.19.

4 Mutual information-based uncertainty
measures in rough set theory

As we all know, mutual information can be considered as
advanced statistics to rank the salient attributes. When
applied in attribute reduction, mutual information plays a
key role in measuring the relevance and redundancy
among attributes [45]. The main advantages of mutual
information are its robustness to noise and transformation.
In the following, we investigate mutual information in
both complete and incomplete information/decision
systems, and discuss some relationships between mutual
information and information entropy.

Definition 4.1. Let CIS be a complete information system
andP,Q⊆A,U/P= {X1,X2, · · · ,Xm},U/Q= {Y1,Y2, · · · ,
Yn}. Mutual information betweenQ andP is defined as

E(Q;P) =
m

∑
i=1

n

∑
j=1

|Yj ∩Xi||Y c
j ∩Xc

i |

|U |2
. (40)
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Definition 4.2. Let CDS be a complete decision system,
P ⊆C. Mutual information betweenD andP is defined as

E(D;P) =
m

∑
i=1

n

∑
j=1

|Yj ∩Xi||Y c
j ∩Xc

i |

|U |2
. (41)

Here, the following propositions will establish the
relationships among the information entropy, the
conditional information entropy and the mutual
information in a complete decision system.

Property 4.1.LetCDS be a complete decision system with
P ⊆C. E(D;P) = E(D)−E(D|P) = E(P)−E(P|D).

Proof. It follows from Definitions 4.2 and 3.3 that

E(D)

=
n

∑
j=1

|Yj|

|U |

|Y c
j |

|U |

=
n

∑
j=1

(
m

∑
i=1

|Yj ∩Xi|

|U |
)
|Y c

j |

|U |

=
m

∑
i=1

n

∑
j=1

|Yj ∩Xi|

|U |

|Y c
j |

|U |

=
m

∑
i=1

n

∑
j=1

|Yj ∩Xi|

|U |

|(Y c
j ∩Xc

i )∪ (Y c
j −Xc

i )|

|U |

=
m

∑
i=1

n

∑
j=1

|Yj ∩Xi|

|U |

|Y c
j ∩Xc

i |

|U |
+

m

∑
i=1

n

∑
j=1

|Yj ∩Xi|

|U |

|Y c
j −Xc

i |

|U |

= E(D;P)+E(D|P), (42)

i.e., E(D;P) = E(D)− E(D|P). Similarly, the equation
E(D;P) = E(P)−E(P|D) can be proved. This completes
the proof.

Corollary 4.1. Let CDS be a complete decision system
with P ⊆C. ThenE(D;P) = E(D)+E(P)−E(P∪D).

Proof. It can be achieved by Property 4.1 and Proposition
3.4.

Proposition 4.1.Let CDS be a complete decision system
andP, Q ⊆C. If U/P ≺U/Q, thenE(D;Q)≤ E(D;P).

Proof. It follows from Property 4.1 thatE(D;P) = E(D)
−E(D|P) and E(D;Q) = E(D)− E(D|Q). Then, from
Property 3.3, one has that−E(D|Q)≤ −E(D|P). Thus, it
is obvious thatE(D)− E(D|Q) ≤ E(D)− E(D|P), i.e.,
E(D;Q)≤ E(D;P). This completes the proof.

Definition 4.3. Let IIS be an incomplete information
system andP,Q ⊆ A. Mutual information betweenQ and
P is defined as

IE(Q;P)

=
|U |

∑
i=1

|U |− |SP(ui)|− |SQ(ui)|+ |SP(ui)∩SQ(ui)|

|U |2
. (43)

Definition 4.4.Let IDS be an incomplete decision system,
P ⊆C. Mutual information betweenD andP is defined as

IE(D;P)

=
|U |

∑
i=1

|U |− |SP(ui)|− |SD(ui)|+ |SP(ui)∩SD(ui)|

|U |2
. (44)

Proposition 4.2. Let IDS be an incomplete decision
system,P ⊆C. IE(D;P) = IE(P)+ IE(D)− IE(P∪D).

Proof. It follows immediately from Definition 4.4 that

IE(D;P) =
|U |

∑
i=1

1
|U |

((1−
|SP(ui)|

|U |
)+(1−

|SD(ui)|

|U |
)−

(1−
|SP(ui)∩SD(ui)|

|U |
))

=
|U |

∑
i=1

1
|U |

(1−
|SP(ui)|

|U |
)+

|U |

∑
i=1

1
|U |

(1−
|SD(ui)|

|U |
)

−
|U |

∑
i=1

1
|U |

(1−
|SP(ui)∩SD(ui)|

|U |
)

= IE(P)+ IE(D)− IE(P∪D). (45)

Corollary 4.2. Let IDS be an incomplete decision system,
P ⊆C. IE(D;P) = IE(P)− IE(P|D) = IE(D)− IE(D|P).

Proof. From Propositions 3.5 and 4.1, we have that
IE(D;P) = IE(P) + IE(D) − IE(P ∪ D) = IE(D)−
(IE(P∪D)− IE(P)) = IE(D)− IE(D|P). Similarly, the
equation IE(D;P) = IE(P) − IE(P|D) can be proved.
This completes the proof.

It should be noted that these equations cannot be
satisfied by some existing measures in incomplete
decision systems. Furthermore, these relationships will be
helpful for understanding the essence of the knowledge
content and the uncertainty in both incomplete and
complete decision systems.

Proposition 4.3.Let CDS be a complete decision system
with P ⊆ C. The mutual information betweenD and P
degenerates into

IE(D;P) =
m

∑
i=1

n

∑
j=1

|Yj ∩Xi||Y c
j ∩Xc

i |

|U |2
. (46)

Proof. From Corollary 4.2, we have that
IE(D;P) = IE(D) − IE(D|P). It follows from

Propositions 3.1 and 3.7 thatIE(D) = ∑n
j=1

|Y j |

|U | (1−
|Y j |

|U | )

= ∑n
j=1

|Y j |

|U |

|Y c
j |

|U | and IE(D|P) = ∑m
i=1 ∑n

j=1
|Y j∩Xi||Y c

j −Xc
i |

|U |2
.

From Corollary 4.2, we haveIE(D;P) = IE(D)−

IE(D|P) = ∑n
j=1

|Y j |

|U |

|Y c
j |

|U | −∑m
i=1 ∑n

j=1
|Y j∩Xi|

|U |

|Y c
j −Xc

i |

|U | . Thus,

it is obvious from Property 4.1 that∑n
j=1

|Y j |

|U |

|Y c
j |

|U | =
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∑m
i=1

n
∑
j=1

|Y j∩Xi|

|U |

|Y c
j −Xc

i |

|U | + ∑m
i=1 ∑n

j=1
|Y j∩Xi|

|U |

|Y c
j ∩Xc

i |

|U | , i.e.,

∑m
i=1 ∑n

j=1
|Y j∩Xi|

|U |

|Y c
j ∩Xc

i |

|U | = ∑n
j=1

|Y j |

|U |

|Y c
j |

|U | −∑m
i=1 ∑n

j=1
|Y j∩Xi|

|U |
|Y c

j −Xc
i |

|U | = IE(D;P). This completes the proof.

Corollary 4.3. Let CDS be a complete decision system
with P ⊆C. ThenIE(D;P) = E(D;P).

Proposition 4.3 and Corollary 4.3 state that the mutual
information in complete decision systems is a special
instance of the mutual information in incomplete decision
systems. Until now, most of the existing uncertainty
measures cannot be used in incomplete decision systems.
According to the properties mentioned and the
corresponding discussions above, it is known that the
conditional information entropy and the mutual
information proposed above can well characterize the
uncertainty of knowledge in incomplete decision systems.
Hence, it can be shown that these measures which are
proposed provide important approaches to measuring the
uncertainty ability of different knowledge in incomplete
information/decision systems. But so far, these
uncertainty measures and the relationships among them
above have not been reported in incomplete information/
decision systems. In fact, given any binary relation, one
can induce a cover of the universe and determine a
particular information system. Furthermore, through
using the idea of the information theory, we may use the
information entropy, the mutual information and their
variants to measure the uncertainty of the information
systems induced by a given binary relation. In other
words, these proposed uncertainty measure approaches
can not only characterize the uncertainty of an incomplete
information system, but also measure those of some more
kinds of information systems.
Remark. Unlike most of the existing measures for the
uncertainty in both complete and incomplete
information/decision systems, the relationships among
these concepts (the information entropy, the conditional
information entropy, and the mutual information) can be
established, which are formally expressed asIE(P)
= E(P) and IE(P ∪ Q) = E(P ∪ Q) in a CIS with P,Q
⊆ A, E(D|P) = E(P ∪ D)− E(P), IE(D|P) = E(D|P),
H ′

1(D|P) = H1(D|P), E(D|P) ≤ H1(D|P), H ′
2(D|P) =

H2(D|P), H2(D|P) ≤ H1(D|P), I′1(D|P) = I1(D|P),
E(D|P) ≤ I1(D|P) ≤ H1(D|P), I′2(D|P) = I2(D|P),
I2(D|P) = E(D|P), I2(D|P) ≤ I1(D|P) ≤ H1(D|P),
E(D;P) = E(D)−E(D|P) = E(P)−E(P|D), E(D;P) =
E(D) + E(P)− E(P ∪ D), and IE(D;P) = E(D;P) in a
CDS with P ⊆ C, and IE(D|P) = IE(P ∪ D)− IE(P),
IE(D|P) ≤ H ′

1(D|P), H ′
1(D|P) = H ′

1(P ∪ D) − H ′
1(P),

H ′
2(D|P) = H ′

1(D|P)− IE(D ∪ P), H ′
2(D|P) ≤ H ′

1(D|P),
IE(D|P) ≤ I′1(D|P) ≤ H ′

1(D|P), I′2(D|P) = IE(D|P),
I′2(D|P) ≤ I′1(D|P) ≤ H ′

1(D|P), IE(D;P) = IE(P)+
IE(D) − IE(P ∪ D), IE(D;P) = IE(P) − IE(P|D) =
IE(D) − IE(D|P) in an IDS with P ⊆ C. These
relationships are very significant for reasonably applying
an uncertainty measure in both complete and incomplete

information/ decision systems. However, most of the
existing entropies and their extensions in incomplete
information/decision systems can not establish the
relationships above. Therefore, these uncertainty
measures mentioned above may be much better for
measuring the knowledge content of incomplete
information/ decision systems.

5 Conclusions

In many real-world tasks, data available are incomplete,
but decisions must be made with the incomplete data for
the time being. Most decision systems are incomplete for
various subjective and objective reasons. Therefore, it is
necessary to develop a theory which can handle
incomplete data. In this article, we introduce concepts of
information entropy and mutual information-based
uncertainty measures, and then some important properties
of them are discussed. From these properties, it can be
shown that these proposed uncertainty measures can be
used to evaluate the uncertainty ability of different
knowledge in complete/incomplete decision systems.
Furthermore, the relationships among these proposed
measures are established, and then compared with several
representative uncertainty measures, these proposed
uncertainty measures may be much better measures to
evaluate the uncertainty of the knowledge content of
incomplete information/decision systems. However, this
paper is mainly oriented towards theory and methodology
instead of specific applications. Thus, these results will
have a wide variety of applications in rule evaluation and
knowledge discovery in rough set theory. Future work
will therefore focus on how to use (some of) these
approaches or improved versions of them to solve specific
problems, such as measuring the knowledge content,
constructing a decision tree, and building a heuristic
function in a heuristic reduct algorithm for incomplete
data, and acquiring rules or extracting features from
engineering data.
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