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Abstract: As an extension of the classical set theory, rough set theory playscéalrole in uncertainty measurement. In this
paper, concepts of information entropy and mutual information-baseertainty measures are presented in both complete and
incomplete information/decision systems. Then, some important prapeftiinese measures are investigated, relationships among
them are established, and comparison analyses with several raptiegenncertainty measures are illustrated as well. Theoretical
analysis indicates that these proposed uncertainty measures candb® @smluate the uncertainty ability of different knowledge
in complete/incomplete decision systems, and then these results can hé feglphderstanding the essence of knowledge content
and uncertainty measures in incomplete information/decision systems, fhiese results have a wide variety of applications in rule
evaluation and knowledge discovery in rough set theory.
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1 Introduction for rough sets, which calculated the imprecision of a set
by using an excess entropy. However, this measure has a

Rough set theory, developed by Pawlak,[has become a complex mathematical form. Recently, Yabg] studied
useful mathematic tool for dealing with vague andtwo definitions of approximations and associated
uncertain information in many areas, such as patterrimeasures based on equivalence relations. To evaluate
recognition, feature selection, neural computing, deaisi uncertainty of a system, the entropy of a system was
support, data mining and knowledge discovery procesdntroduced by Shannon inlf]. It is a very useful
from big data setsZ3,4,5,6]. Uncertainty measure, as Mmechanism for characterizing the information content in
one of the most important issues in rough set theory, playgarious modes and has been applied in many diverse
an important role in artificial intelligence and reasoning fields [18,19,20,21]. The entropy and its variants were
with uncertainty 7,8,9,10,11]. As follows, we briefly ~ adapted to rough set theory ir2Z and information
review some relevant literatures. interpretation of rough set theory was given ihQJ.

To evaluate uncertainty of a set, Pawlak presentediowever, Shannon's entropy is not a fuzzy entropy, and
several numerical measures in pure rough set theoryg@nnot measure the fuzziness in rough set the2gy A
which are accuracy and roughness of a set andew information entropy was proposed by Liang ][
approximation accuracy of a rough classificatith The ~ and then some important properties of this entropy were
accuracy measure and the roughness measure aﬂ’QriVGd as well. Unlike the Iogarithmic behavior of
important numerical characterizations that quantify theShannon’s entropy, Liang’s entropy can be used to
imprecision of a rough set caused by its boundary regionmeasure the fuzziness of a rough set and a rough
Although these measures are effective, they have someglassification. Hu and Yu2] redefined the joint entropy
restrictions 12,13,14]. Therefore, the applications of and conditional entropy based on Yager's work. He
rough set theory in some fields are limited. For this €xtended measures and then successfully used them to

reason, Xu et a|][5] gave an improved accuracy measure reduce hybrid attribution and measure uncertainty of
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fuzzy probability approximation spaces. Mi et aR5 al. [39 presented a kind of conditional entropy for
introduced an uncertainty measure for partition-basedncomplete decision systems. However, their conditional
fuzzy-rough set model. Liang et ak§] proposed a new entropy is not monotonic, which makes it not so
method to measure the uncertainty of a set in anreasonable to evaluate the uncertainty in incomplete
information system and the approximation accuracy of adecision systems. Sun et aBf] also investigated rough
rough classification in a decision table. Shiand G&{§j[ entropy-based uncertainty measures to evaluate the
defined rough entropy and granulation of covering, androughness and accuracy of knowledge in incomplete
then used them to characterize the uncertainty of coveringlecision systems. So far, there are relatively few studies
for covering approximation space. Unlike most existing on uncertainty measures in incomplete decision systems.
information entropies, Qian and Liang/][ proposed Thus, further studies on uncertainty measures for
combination entropy to evaluate uncertainty of incomplete decision systems are necessary. Therefore, it
knowledge from an information system. The notion of is desirable to extend and hybridize these measures to
information systems provides a convenient tool for thedeal with complete/incomplete data and solve many real
representation of objects in terms of their attribute value world problems.
According to whether or not there are missing data (null  In this paper, the main objective is to construct
values), information systems can be classified into twoinformation entropy and mutual information-based
categories: complete and incompletd. [However, all  uncertainty measures for both complete and incomplete
these studies were dedicated to evaluating uncertainty of imformation/decision systems, and discuss their importan
set in terms of the partition ability of knowledge. Since properties and propositions by information theory
the equivalence classes are only regarded as the unit efpproach. Then, relationships among these measures are
information granule of a complete information system, investigated and comparison analyses with several
these measures cannot be used to deal with an incompletepresentative uncertainty measures are illustratedaiSo f
information system. Moreover, it is difficult to generalize however, the relationships have not been reported in an
the results of complete information systems to incompleteincomplete information/decision system, which would
information systems7]. In some cases, the uncertainty of baffle further research and application of information
a rough set cannot be well characterized by the existingentropy theory. Therefore, these proposed measures can
measures. In this paper, we aim at solving this problem. provide important approaches to measuring the
Classical rough set model is based on equivalencaincertainty ability of different knowledge in complete/
relation or partition, but this condition is difficult to be incomplete decision systems, and then these results may
satisfied in many information system&8]. Thus, the be helpful for rule evaluation and knowledge discovery in
corresponding uncertainty measures above are notomplete/incomplete information systems. The rest of
suitable for incomplete information systems. What's this paper is organized as follows. Some preliminary
more, there are few studies on uncertainty measure issueoncepts are briefly reviewed in Section 2. In Section 3,
in incomplete information/decision systems by purethe concepts of information entropy are introduced, and
rough set approach. To solve this issue, several integestinjoint information entropy and conditional information
and meaningful extensions to equivalence relation haventropy are presented to both complete and incomplete
been proposed, such as tolerance relatiang, 9,10, 28, information/decision systems. Then comparison analyses
29], covering rough set=2[7,30], dominance-based rough of the proposed measures with several representative
sets f1,31,32], neighborhood operators33,34], others  uncertainty measures are illustrated. Their important
[35]. However, the covering model is only suitable for properties and propositions are induced, and then
information systems that contain features with multiple relationships among these measures are investigated as
values, the dominance model is mainly suitable forwell. In Section 4, mutual information-based uncertainty
knowledge acquisition in the incomplete decision systemmeasures are proposed to measure the uncertainty of both
with preference-ordered domains of features, and theomplete and incomplete information/decision systems,
neighborhood model may be appropriate for dealing withand several useful properties are derived. Finally, Sectio
numerical and categorical features by assigning different concludes the paper.
thresholds for different kinds of feature8§. These
methods are usually considered as extensions of classical
rough set theory. In fact, its extended models have beelé S
increasingly drawing people’s attention. Based on the Preliminaries
consideration, Qian et al3f] proposed the conditional
combination entropy, mutual information and defined aln rough set theory, an information systeh®)(is a pair
variety of combination entropy with maximal consistent IS= (U,A), whereU is a non-empty finite set of objects,
block in incomplete information system. Dai and X38] Ais a non-empty finite set of attributes, and for any A,
extended Pawlak’s pure rough set uncertainty measures tihere is a mapping, a: U — V,, whereV, denotes the
incomplete information systems. However, thesevalue domain of attributa. With any subset of attributd3
measures mainly focus on incomplete information C A, there is a binary indistinguishable relatiddD(P) as
systems rather than incomplete decision systems. Dai dbllows: IND(P) = {(u,v) e U xU|Vae P,a(u) =a(v)}.

© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 4, 1973-1985 (2014)www.naturalspublishing.com/Journals.asp NS 2 1975

16

For any P C A, the relationIND(P) constitutes a in this paper. Also, a complete decision syst&@D¥) is a
partition of U, which is denoted byJ /IND(P) or just  special case of a complete information system.
U/P. For any objectu € U, let [u]p denote the
equivalence class of relatioND(P), i.e., [ulp = {v €

U.I(u,\g € 'ND(P),}]; Eacth eqUiva'ﬁncengS%}P IS 3 Information entropy-based uncertainty
viewed as an information granule. e an .
information system. We define a partial relatigrnon the measures in rough set theory

family {U/P|P C A} as follows:U /A=<U /P (U/P=U /A) L )
if and only if for everyX; € U/A, there existsf; € U /P As a measure of knowledge granularlty, |r_1format|c_)n
such thatX; C Y;, whereU /A = {Xy, X, ,Xm} and entropy-based measures in incomplete information
U/P =1V Yzi---]’Yn} are partitions ir;du’ced’b& andp  Systems can reflect this difference in knowledge
respectively. In this case, we say tifais coarser tha, expression. Based on this thought, information entropy-
or A is finer thanP. If U/A < U /P andU /P=U /A, we based uncertainty measures for both complete and
say thatP = Q. If U /A < U/f’ andU /A # UfP We’ say incomplete information/decision systems are presented by
thatP is strictly coarser thas (or A is strictly finer than ~ €Xtending the definitions of the measures in complete
P), denoted byJ /A < U /P (orU /P = U /A). information systems. Some important properties and
In an information system, it may occur that some of propositions of these measures are investigated and

the attribute values for an object are missing. Thesd€lationships among them are discussed as well.
missing values can be represented by the set of all

possible values for the attribute or equivalence by the

domain of the attribute. To indicate such a situation, a3.1 Information entropy and conditional
distinguished value is usually assigned to those attribute jnformation entropy in rough set theory

If V; contains a null value for at least one attribate A,

then thelS= (U, A) is called an incomplete information | ¢t cIS pe a complete information system abg/A =

system [(1S), otherwise it is a complete information {X1,%a, -+ ,Xm}. The information entropy of knowledge
system CIS). Further on, the symbol * denotes the A[29] is denoted by

missing value. LetllS be an incomplete information
system, P C A an attribute subset. The subsét
determines a binary relation dd as follows: SM(P) moX| XS X X
= {(u,v) € U xU|va € Pa(u) = a(v) or a(u) = * or E(A) :Z\||U|||XIU| :-Z\|||(1_I|U|)’ (1)
a(v) = *}. In fact, IM(P) is a tolerance relation oo = =
and the concepts of a tolerance relation have a wide . ) c |
variety of applications in classification. It shows that WhereXc is the complement oK;, i.e,, X* =U —X, 1
SIM(P) = NacpSIM({a}) easily. LetSp(u) denote the set  represents the probalbility of equivalence clXsithin
{ve U|(uv) € SM(P)}. Generally,Sp(u) denotes the the universeJ, and% represents the probability of the
maximal ~set of objects which are possibly complement set 0% within the universdJ.
indistinguishable byP with object u. Let U/SIM(P) . :
denote the family set&Sp(u)|u € U}, the classification or Property 3.1. Let CISbe a complete information system
the knowledge induced bP. A memberSe(u) from  @NdPQEAIfU/P=U/Q, thenE(Q) < E(P).
U /SIM(P) will be called a tolerance class or a granule of Proof. SinceU /P < U /Q, it follows thatU /P < U /Q and
information. It should be noted that the tolerance classe$) /P =U/Q. If U/P < U/Q, from Theorem 12 inZ9,
in U/SIM(P) do not constitute a partition &f in general. ~ one has thaE(Q) < E(P). If U/P =U/Q, it is obvious
They constitute a cover df, i.e., Sp(u) # 0, for every  thatE(Q) = E(P). Hence, ifU/P < U/Q, thenE(Q) <
ueU, andUyey Sp(u) =U. E(P) holds. This completes the proof.

Let I11S be an incomplete information system with LetlISbe an incomplete information system wRC
P,Q C A. We define a partial relatios on 2* as follows: A, andU/SIM(P) = {Sp(u1),S(Wp),--- ,Sp(uy))}. The
P is finer thanQ (or Q is coarser tharP), denoted by information entropy of knowledge [29] is defined as
P <Q (or Q> P), if and only if Sp(ui) C Sy(u;) for any

i€ {1,2,---,|U]}. In fact, P < Q < it follows that Ul 1S ()|
S(u) € S(u) for any i € {1,2,---,|U[}, and there 'E(P):,Z\m(l_ U] )- @)
existsj € {1,2,---,|U|} such thaSs(u;) C So(u;). =

An incomplete information systeihS= (U,CUD) is Let I1S be an incomplete information system with

called an incomplete decision systeh§) if condition P,Q C A. If there exists a one-to-one, onto functibn
attributes and decision attributes are distinguishedrevhe U /SIM(P) — U /SIM(Q) such thath(Sp(u))| = |Sp(ui)|

C is the condition attribute set and is the decision for anyi € {1,2,---,|U|}, thenlE(P) = 1E(Q). It can be
attribute set wittCN D = 0. Thus, an incomplete decision concluded that the above information entropy of
system is a special case of an incomplete informatiorknowledge is invariant with respect to different sets of
system, which is generally expressed BS= (U,C,D) tolerance classes bf that are size-isomorphic.
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Property 3.2. Let IIS be an incomplete information
system and®, Q C A. If P < Q, thenlE(Q) < IE(P).

Proof. SinceP < Q, one has tha&(u) C So(u), i.e.,
|Sp(w)| < |So(u)| for any u € U, Se(u) € U/SIM(P)
and Sp(ui) € U/SIM(Q), and there existg € {1,2,---,
[U[} such thatSe(uj) C So(uj), i.e., [Sp(uj)| < |So(uj)l.
Hence, we have that

[Sp(ui)| < [So(ui)], vui € U

Y1 sl Y1 s(w)
= (1 ) < (1 )
ot o s 2 ot

(U] \ )

i=11#]

U] ' )

i=11#]

U1 sl 1 se(w)
RPN TL e VRPN VIS VTR

i.e.,IE(Q) < IE(P). This completes the proof.

Proposition 3.1. Let CIS be a complete information
system withP C A. Information entropy of knowledge
degenerates into

:mw
5 V|

Faally

IE(P) U]

(4)
Proof. Suppose that) /P = {X1,Xz, -+, Xm}, U/SM(P)
= {S(W),S(U2), -, S(uy))}, and X = {uiz, Uiz, -,
ust (i € {1,2,---,m}), where|X| = s, and 3", s =

knowledge with the same universe. To do it in a much
clearer way, we introduce the following lemmas.

Lemma 3.1.Let CIS be a complete information system
andP,QCA. ThenU /PNU/Q=U/(PUQ)=U/(QUP).
Proof. It can be achieved by Theorem 3.1 #0].

Lemma 3.2.Let [ISbe an incomplete information system
andP,Q C A. Then the following properties hold
1) SIM(P)NIIM(Q) =SIM(PUQ);
(2) Sp(u) N So(u) = Spug(u) for anyu e U;
(3B)U/9IM(P)NU/IM(Q) =U/IM(PUQ);

i=[U]j=[U] i=[U]
4) u-u {Sp(u) NSQ(uj)} = Y {Sp(ui) NS(ui)}-

1= = 1=
Proof. It can be achieved by Lemma 1 and Proposition 5
in [36].
Definition 3.1. Let CISbe a complete information system
andP,QgA,U/P: {XlaX27"' 7Xm}:U/Q:{Y17Y2>"' )
Yn}. Joint information entropy o andQ is defined as

m n

ceva-3 3 ¥

U]

_YinX|
|

(1 ). (6)

Definition 3.2. Let IS be an incomplete information
SyStem and:)Q - A1 U/s M(P) = {S:’(ul)vs:’(UZ)f )
S(Uy))}, U/SM(Q) = {Sg(u1). Sp(uz), -+ Sp(u))}-

Joint information entropy o andQ is defined as

ul 4

|E(PUQ):_Z|U(1_SW‘SQ(“W

o @

U], and then the relationships among the elements irProposition 3.2. Let CIS be a complete information

U/SM(P) and the elements id /P are as followsX; =

Sp(Uin) = Sp(ui2) = -+ = Sp(Uis), i.e., [Xi| = [Sp(uin)| =
[Sp(uiz)| = -+ = [Sp(uis)|. Thus, one has thaf|(1—
oD = (0 ) + g - S+ -
‘37(5“5 ‘). Therefore, it can be easily obtained that
L 1Sp(uin)|, 1 [Sp(ui2)|
|E(p)_i;(m(l— U] )+m(l— U] )
1 1Sp(uis)|
(1
< Xl X
=y Al Al 5
i |U|( |U‘) v

Proposition 3.1 shows that the information entropy in
complete information systems is a special form of the

information entropy in incomplete information systems.

system and® Q C A. The joint information entropy oP
andQ degenerates into

m n

IE(PUQ) = i;;

YN X
U

_YinXi|
U]

(1 ). (8

Proof. The proof is similar to that of Proposition 3.1.

Corollary 3.2. Let CISbe a complete information system
andP,Q C A. ThenlE(PUQ) =E(PUQ).

Definition 3.3. Let CDS be a complete decision system
with P C C, U/P = {Xg,Xp,---,Xm}, andU /D = {V1,
Yo,--+,Yn}. Conditional information entropy d® relative
to D is defined as

T Y nXYE - X

E(D|P) :i;,;—IUIZ .

9)

Corollary 3.1. Let CISbe a complete information system Property 3.3.LetCDSbe a complete decision system with

with P C A. Thenl E(P) = E(P).

PQCC.IfU/P <U/Q, thenE(D|P) < E(D|Q).

In the following, we investigate the information Proof. Suppose that)/P = {X1,Xz,---,Xn}, U/Q =
entropy of new knowledge composed of two given {Z1,Zp,---,Z}, andU /D = {Y1,Ys,---,Ys}. SinceU /P
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< U/Q, it follows thatm > |, and then there exists a Proposition 3.3 illustrates that in the same universe, a
partition {I1,12,---,I}} of {1,2,---,m} such thatz, = knowledge cannot provide the system with any additional
U{Xlk € I;,i =1,2,---,1}. Hence, we can obtain that uncertainty (classification information) if it is coarser
than the original knowledge in complete decision
LD Yinzlz Y| systems. Here, the following propositions will establish
E(D|IQ) = ! U the relationships among the information entropy, the joint
i=1j=1 information entropy, and the conditional information
Lo YN U Xl U Xk —Yjl entropy in a complete decision system.
= Proposition 3.4.Let CDS be a complete decision system
i;J=1 \UIZ andP C C. ThenE(D|P) = E(PUD) —E(P).
. ( | Y N X)) kUI X« Y| Proof. It follows from Definitions 3.3 and 3.1 that
€li S
;le U1 E(D|P)
. § 5 MOXdX Y _ 3 g XXy
B k=1j=1 |U|2 i=1j=1 |U|2
CQIMOKIEX Lo g - XX =YX
k=1j=1 | | i=1j=1 | |
i.e.,E(D|P) < E(D|Q). This completes the proof. 22 YNX[U=YinX) — (U —X)|
Proposition 3.3.Let CDS be a complete decision system — £ j; U2
andP C C. E(D|P) =0 if and only ifU /P < U/D. Mmooy AXIU—Y. Xl ™0 XU X
Proof. = Suppose thaE(D|P) = 0, we need to prove =% % [Yi O Xl ! Xl Ziz M
U/P=<U/D.If U/P <U/D does not hold, then for any i=1j=1 Ui i=1j=1 |
Yj € U/D, there exists som¥; € U/P such that; CY; m o0y A | (U] =Y N %))
does not hold. LeXx € U/P, Ys € U/D, thenXcNYs # 0, = J|U| \UJ| —
XN Ys # Xy, and 1< [ XN Ys| < [X|. Hence, we have that i=1j=1
o < |YinX| (U] |X])
| i= J:]_ |U| ‘Ul
m n
le Ylﬁle);l YJ| B mn ‘YjﬁXj|(l_|YjﬂXi‘)_
2, “22 1 Ul
_ m n YJﬂX.HX. )(|ij| m n \ijﬁl L IXi|
Af P 2,2, o )
m n A A . _ X .
=55 YinXIX X O] 53 \Ymm(l_wjmm) & Xl X
fras VI & U] ol AU
i YO XX =X Y| [V Xl [ X — XN Y — E(PUD) —E(P). (13)
2 2
i=1j#s VI VI To further reveal some relationships between the
\YszkHXk XN Ys| 0 11 condition attributes and the decision attribute in an
= Uz >0, (11) incomplete decision system, we present following
i.e.,E(D|P) > 0. This yields a contradiction. Thud,/P < def',m,t',ons and relative propgrtles. .
U/D holds. Definition 3.4. LetIDSbe an incomplete decision system,

« SupposaJ /P < U/D, then, for anyX € U/P, there P € C, U/SM(P) = {S(u1), (), -, Sp(uy))}, and
exists someY; € U/D such thatX C Y;. It follows that ~U/SM(D)={S(u1),Sp(Uz),--,So(upy))}- Conditional
X NYj#0orX CY, for any X € U/P andY; ¢ U/D.  information entropy oP relative toD is defined as

Then, X NY; =X, i.e.,X — X NYj =0. Therefore, we can vl s s s
i i) — i) NS (Ui
T2 XY N
EDP) =5 > W Property 3.4. Let IDS be an incomplete decision system
i=1j=1 with PQCC. If P<Q, IE(D|P) < IE(D|Q).
- i YinX[IX—XnYil _ o (12)  Proof. Since P < Q it follows that Sp(u) < So(ui),
= =] U2 1Sp(U)] < [So(ui)], and thenSp(ui) NSp(ui) € So(ui)n

© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1978 NS 2 L. Sun, J. Xu: Information Entropy and Mutual Information-based..

S(ui) for any y; € U, and (y;) € U/SSIM(D). From
Definition 3.4, we have that

IE(D|Q) —IE(D|P)
Y So(w)] — 1Se(w))]

- 5 (R
[Solu) N So ()]~ [Sp(u) N So(w)|
P )

_ '%'llso(ui)lISP(Ui)IISD(Ui)ﬂ(SQ(Ui)SP(Ui))I
= Uz

>0, (15)

i.e.,|IE(D|P) <IE(D|Q). Thus, itis obvious thatE (D|P)
= 1E(DI|Q) if and only if {So(ui) — Sp(ui)} € Sp(ui) for
anyu; € U. This completes the proof.

Proposition 3.5. Let IDS be an incomplete decision
system withP C C. ThenlE(D|P) = IE(PUD) — IE(P).
Proof. It follows immediately from Definition 3.4 that

IE(D|P)

Y isw) Vs nsw) Y1 Y1
P VAP N v N VIR N

Y1 swnsw)l, ¥ 1 |sw)

D2V v/ R D N v K Vi

= IE(PUD) — IE(P). (16)

Proposition 3.6. Let IDS be an incomplete decision
system withP C C. IE(D|P) =0 if and only ifP < D.

Proof. = SupposdE(D|P) = 0, we need to prove® <

D. If P < D does not hold, then there exists some= U

such thatSp(uj) € Sp(uj) does not hold, i.e.|Sp(uj) N
SHUIES |S:(u,)| Hence we can obtain that

915 (u)] = 1Se(u) NS (W)

i=1T#] |U‘2
‘SD(UJ)‘—|S:(UJ)QSD(UJ)|

U2

< [Se(uj)[ —[Sp(uj) NSo(uj)]

fl |U‘2
)|~ Sy

>| (UJ)|U|2| (uj)|

E(DIP) =

=0, (17)

e., IE(D|P) > 0. This yields a contradiction. Thus,

P < D holds.

< SupposeP < D, then, for anyy; € U, it follows that
S(U) C (), ie,S(U)NS(u) = S(ui). Therefore,
we have thatlE(D|P) = 5V w = 0. This
completes the proof.

Proposition 3.6 states that any knowledge in the same
universe cannot provide the system with any additional
uncertainty if it is coarser than the original knowledge in
incomplete decision systems.

Proposition 3.7.Let CDS be a complete decision system
with P C C. The conditional information entropy d?
relative toD degenerates into

[Yi NG — X

E(D|P) = Z,Z T' (18)

Proof. Let X = {ui1,Ui,...,Uis} € U/P (i € {1,2,---,
m}), where[X| = s, 3% 5 = U], and Y} = {uj3,ujz,

'aujtj} € U/D (] € {1,2,"',“}), where |YJ| - tJ7
>_1tj = [U|. Similar to Proposition 3.1, the relationships
among the elements i /SM(P) and the elements in
U/P are as follows: X = S(u1) = S(upp) = -+ =
Slua). i€, 1X] = S(un)| = Su2)| = - = Sus)],
and the relationships among the element&ifSiM(D)
and the elements ib/D are as followsY; = S(uj1) =
So(Uj2) =+ = So(ujy), i-e..[Yj| = [So(uj1)| = |SD(U12)|
== \SD(ujtj )|. Therefore, we can obtain that

—[Sp(uk) NS (k)|
E(D|P) =
( | ) Zl] lukeZﬁX. ‘Ulz
nY;
zizmmm' ' |L'j“2 !
IYj NXi X =Yl

- 21,21 UP
Cam YA
BP2D N v (19)

Corollary 3.3. Let CDS be a complete decision system
with P C C. Thenl E(D|P) = E(D|P).

Proposition 3.7 and Corollary 3.3 state that the
conditional information entropy in complete decision
systems is a special instance of the conditional
information entropy in incomplete decision systems. In
other words, the conditional information entropy under
the equivalence relation is the extended formulation of the
conditional information entropy under the tolerance
relation. This means that the definition of conditional
information entropy in a complete decision system is a
consistent extension to that of conditional information
entropy in an incomplete decision system. Hence, it
follows that the conditional information entropy in
incomplete decision systems is equivalent to the
conditional information entropy in complete decision
systems, and the conditional information entropy
proposed above in incomplete decision systems is suitable
for measuring the uncertainty in both incomplete and
complete decision systems.
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3.2 Comparison analysis with several
representative uncertainty measures

Let CDS be a complete decision system dnd- C, U /P
= {X1, X2, , Xm}, U/D = {Y1,Y2,---, Y }. Conditional
information entropy oP relative toD [41] is denoted by

CSIXE S X 1Y
2101 2, X X

LetIISbe an incomplete information system wiRhC
A. Information entropy of knowledge [29] is denoted by

H1(DIP) = log, (20)

U] 1 |
Zw|2 5

Definition 3.5. Let IDSbe an incomplete decision system
with P C C. Conditional information entropy d? relative
to D is defined as

(21)

e Se(u m~'-‘:D(U|)|
Z IUI |Sp(ui)]
Property 3.5. Let IDS be an incomplete decision system
andP C C. ThenlE(D|P) < H{(D|P).

Proof. It follows immediately from Definition 3.4 that

Hi(D|P) = (22)

Ui
E(D|P) = ; o
= S (U]
g L [SW0SulSWl g
20t swl U
Assume that a functiofy, = W foranyu; € U,
then we have thatE(D|P) = L sl |S“° ull(1— fui). It

follows similarly from Definition 3.5 thaHl(D|P)
07 z,u‘ log, fy. It is obvious that because O f,, <1,

one has that % f;, < —log, f;, and |S‘°T( —fy) <
—log, fy, for any u; € U. Thus, it can be obtained that

UL IS 1 JSe(u)nSo(w) U] prors [Sp(u)1Sp ()
i— o A= T g ) S - islog g mr

i.e.,|IE(D|P) < H;(D|P). This completes the proof.
Proposition 3.8. Let IDS be an incomplete decision
system withP C C. ThenH; (D|P) = H{(PUD) — H{(P).
Proof. It follows immediately from Definition 5 that

H; (DIP)
_ NSNS W s,
2 ey ]
vl ISu)NSu) Y1 )|

- I;m logy—————

= H{(PUD) — Hj(P).

+
U] Zw|2 5

(24)

Proposition 3.9. Let IDS be an incomplete decision
systemP C Q C C. H{(D|Q) < H{(D|P) does not hold.

In the following, the performance of Proposition 3.9
in an incomplete decision system is shown through an
illustrative example.

Example 3.1.Consider an incomplete decision system
about several cars shown in Table 1, whete=
{Price,Mileage, Sze,Max — Speed} = {P,M,S X} and

= {Acceleration}.

Table 1: An incomplete decision system about cars

car P M S X D

1 High Low Full Low Good

2  Low * Full Low Good

3 * * Compact Low Poor

4 High * Full High Good

5 * * Full High Excellent

6 Low High Full * Good

Assume thatl /SIM(C) = {{1},{2,6},{3},{4,5},{4,5,

6}.{2,5.6}, U/SM({SX}) = {{1,2,6},{1,2,6},{3}.{4,
5,6},{4,5,6},{1,2,4,5,6}, andU/IM(D) = {{1,2,4.4,
{1,2,4,6,{3},{1,2,4,68,{5},{1,2,4,6}. Then, it is easily

computed thatH’(D|C) 9%3 and H}(D|{SX}) =
1963 _ 1065 _ 1 we haveH; (D|C) H;(DI{S X}) =
logy 5

+3, |.e.,H 1(DIC) > H{(D|{S X}). As a result, this
shows that{S,X} c C={PM,S X}, then one has that
Hi(D{P.M,S X}) > Hi(D{S X}).

Proposition 3.10.Let CDSbe a complete decision system
with P C C. The conditional information entropy d?
relative toD degenerates into

_ < Xl ¢ YinXi
21012, X

Proof. Similar to Proposition 3.7, we can obtain that

Yj NXi|

Hi(DIP) = %

(25)

log,

Sp(uk) NS (Uk)|
1(D|P) lo
I Z\J lukeZﬁx. ‘U| 92 |SP(uk)|
_ Qo] nX
i=1j=1 |U‘ 2 |XI|
IK\ - YinXx[ o [YinXi
. 26
20012, I % X (0)

Corollary 3.4. LetCDSbe a complete decision system and
P C C. ThenH](D|P) = Hy(D|P).

Proposition 3.11.Let CDSbe a complete decision system
andP C C. ThenE(D|P) < H1(D|P).

Proof. It can be achieved by Corollaries 3.3 and 3.4, and
Property 3.5.
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Let CDS be a complete decision system wikhC C.
Conditional information entropy d® relative toD [41] is

denoted by H2(D[P)
= H;(D|P) —IE(DUP)
L(OlP) = YKy g, MO _YinX]) = FaOIP) - EOUP
(DIP) ZZ UHOR TR T S g X g M0X] o MX
1) 20002 X X
Definition 3.6. Let IDSbe an incomplete decision system 22 YiNX| 1Y; N X
with P C C. Conditional information entropy d? relative - U] (1- U] )
to D is defined as - 1?1
) \U\ 1 IS0 (Ui) N So ()] i=1/=1 U] %] V|
' Corollary 3.6. Let CDS be a complete decision system
|S:(u|) mSD(ui)|) 28) with P C C. ThenH5(D|P) = Hy(D|P).
U] ' Proposition 3.15.Let CDSbe a complete decision system

b tion 3.12. Let IDS b ) | decist with P C C. ThenH,(D|P) < Hy(D|P).

roposmqr;P C C. He/tD P _eH/arIID :Qcorlné) eDte Peusmn Proof. It can be achieved by Corollaries 3.4, 3.5 and 3.6.
system withP € C. Hy(D| _)f 1(D[P) —IE(DUP). Let CDS be a complete decision system wikhC C.
Proof. It follows from Definitions 3.6, 3.5 and 3.2 that Conditional information entropy d® relative toD [43] is

denoted by
J [Sp(u) NSo(w)]
H5(D|P) : -
HOP) == 5 5% ey R P
! PPN R R
b 1 So(U) NS (W) 2 M=
2ot
Definition 3.7. Let IDSbe an incomplete decision system
= Hy(DIP) -~ IE(DUP). (29)  with P C C. Conditional information entropy d? relative
) . to D is defined as
Corollary 3.5. Let IDSbe an incomplete decision system
andP C C. ThenH,(D|P) < H;(DIP).
Proof. It can be achieved by Proposition 3.12 di&qD U | Sp(u) NS (i)
1(D|P) = — ). 33
P) 0. CR=2 10" sw S ®

Proposition 3.13. Let IDS be an incomplete decision
systemP C Q C C. Hy(D|Q) < Hy(D|P) does nothold.  property 3.6. Let IDS be an incomplete decision system
The following example illustrates the performance of andp C C. ThenlE(D|P) < I}(D|P) < H{(D|P).

Proposition 3.13 in an incomplete decision system. Proof. It follows immediately from Property 3.5 that

Example 3.2.(Contlnued from Example S&g , IE(D|P) = ilUllui(l S Uépmfo u) )\Sp Wl Then from
By computing, we have thai(D|C) = °%2 — T and Ul ISp(u)] i)l
Hy(D[{S X}) = |0923 _ log5 10 then HZ(D|C) Definition 3.7, it is clear thatE(DI|P) —| 1(DIP) ‘U‘ )

| (ui)]
HL(D{S X}) = |0925+ lie. ,H,(DIC) > HL(D|{S, X}). Since 0< U Lf < 1, one has thatE(D|P) < I1(D|P).

As a result, this ‘shows thaiSX} c C = (PM.SX}.  Similar to Property 3.5, let a functiof, — S40% )]
then one has thad;(D|{P.M,S X}) > H’(D|{3X}) BREIOIN

for any u; € U. Thus, it is obvious that & f, < 1. We
Proposition 3.14.Let CDSbe a complete decision system have that 1- f, < —log, f,. It can be obtained that
with P C C. The conditional information entropy d? U] (1- 5o (u; mSD(u, ) < - Yl 1og, [0Sl o
relative toD degenerates into i=1 ISp (ui)] ~2i21'0% gm0 e

I/(D|P) < Hj(D|P). Hence, IE(D|P) < I4(DIP) <
H;(D|P) holds. This completes the proof.

H(D|P) = ZZ Af ﬂX.| (1+log, [YinX| [YjnXi| _ Proposition 3.16. Let IDS be an incomplete decision
%] U] systemP c Q C C. 1{(D|Q) < 14(D|P) does not hold.
(30) In what follows, we show the performance of

Proof. Suppose thaEDS is a complete decision system, Proposition 3.16 in an incomplete decision system
and then it follows from Proposition 3.12, and Corollaries through an illustrative example.
3.4 and 3.2 that Example 3.3.(Continued from Example 3.1)
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By computing, we have thatj(D|C) = ‘—11 and  Proposition 3.21.LetCDSbe a complete decision system

I1(D|{S X}) = %, i.e., 15(DIC) > I4(D|{SX}). As a with P C C. The conditional information entropy d®
result, it shows tha{S X} ¢ C = {PM,S X}, then one  relative toD degenerates into
has that}(D|{P.M,S X}) > I{(D|{S.X}).

Proposition 3.17.Let CDS = (U,C,D) be a complete m X2 DY X Y |
decision system witl® C C. The conditional information 4(D|P) = Zl > Z ! (1— 2 ). (38)
entropy ofP relative toD degenerates into Ui i= 1%l Xl
m x| Y mx|| \Yj AX| Proof. Similar to Proposition 3.7, it can be obtained that
1(D — . (34)
CP=2 102 X
Proof. Similar to Proposition 3.7, it can be obtained that 2 == Z U2
m n ‘Y ﬁx{|

m — Yi mx||7J
I1(DIP) = le Z i(l_M) ;Z J U2

iI=1j=1ueY;nX ‘Ul |S:’(uk)|

|><||2 . |YJﬁX||(|X|| \ijﬁl)

STV i ¢ y Mol P (a9
g MO MOX] g Z\UF 2, K] X[

"L XK
- Corollary 3.8. LetCDSbe a complete decision system and
Corollary 3.7. LetCDSbhe a complete decision system and P C C. Thenl}(D|P) = I2(D|P).

P C C. Thenl{(D|P) =11(D|P).
Proposition 3.18.Let CDSbe a complete decision system
andP C C. ThenE(D|P) < 11(D|P) < H1(D|P).
Proof. It can be achieved by Corollaries 3.3, 3.4 and 3.
and Property 3.6.

Let CDS be a complete decision system wRhC C. Proposition 3.23.Let CDSbe a complete decision system
Conditional information entropy d? relative toD [44] is andP C C. Thenl(D|P) < 11(D|P) < H1(DIP).

denoted by Proof. It can be achieved by Corollaries 3.4, 3.7 and 3.8,
and Proposition 3.19.

Proposition 3.22.Let CDSbe a complete decision system
andP C C. Thenl,(D|P) = E(D|P).

7, Proof. It can be achieved by Corollaries 3.3 and 3.8, and
"Property 3.7.

|X||2 2 |Y;NXil

2(D|P) =
OP=3 02, K . |
4 Mutual information-based uncertainty

Definition 3.8. Let IDSbe an incomplete decision system Measures in rough set theory
with P C C. Conditional information entropy d® relative
to D is defined as As we all know, mutual information can be considered as
advanced statistics to rank the salient attributes. When
Ul applied in attribute reduction, mutual information plays a
[Sp(u)] — |Sp(ui) NS (u;)| key role in measuring the relevance and redundancy
2(DIP) :_Z U2 : (37) among attributes4p]. The main advantages of mutual
= information are its robustness to noise and transformation
In the following, we investigate mutual information in
both complete and incomplete information/decision
systems, and discuss some relationships between mutual

IY; N Xi|
X

(1— ). (36)

Property 3.7. Let IDS be an incomplete decision system
andP C C. Thenl,(D|P) = IE(D|P).

Proof. It can be achieved by Definitions 3.4 and 3.8. information and information entropy.

Proposition 3.19. Let IDS be an incomplete decision - ; :

system an C C. Theny(DIP) < (DIP) < H{(DIP).  oeamiion 41, LetCl be a complete information system
Proof. It can be achieved by Properties 3.6 and 3.7. Yn}. Mutual information betwee® andP is defined as
Proposition 3.20. Let IDS be an incomplete decision

system and®,Q C C. If P < Q, thenl}(D|Q) < 15(D|P). E(Q:P) - m i Y XY NXE| (40)
Proof. It can be achieved by Properties 3.7 and 3.4. ' ;lzl U2 ’
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Definition 4.2. Let CDS be a complete decision system, Definition 4.4.LetIDSbe an incomplete decision system,
P C C. Mutual information betweeb andP is defined as P C C. Mutual information betweed andP is defined as

< o YinX|YFnXe

E(D;P) = — 1 (41) :
R N EO:P
Uu|— u)|— ui)| + Ui) NS (Ui
Here, the following propositions will establish the = Z' il =2CH |SD|(U'|)2| )%l ')‘~ (44)
relationships among the information entropy, the =

conditional information entropy and the mutual - ) o
information in a complete decision system. Proposition 4.2. Let IDS be an incomplete decision
- . systemP CC.IE(D;P)=1E(P)+IE(D)— IE(PUD).

Property 4.1.LetCDSbe a complete decision system with y Pe ( ) (P)+1E(D) ( )

P C C.E(D;P) = E(D)—E(D|P) = E(P) — E(P|D). Proof. It follows immediately from Definition 4.4 that
Proof. It follows from Definitions 4.2 and 3.3 that
R () [So(w)]
— + 1— —
E(D) Zilu\ \UI )+ | )
n c i)N i
Z Y| 1 sp<u>|u|so<u>|))
~ ul g ul g (w)|
. mX.l Y7l
=2 ; of ol -3, e T+ 3 e
|Vl . _
- IY; N X) Y] e 1 1 |Sp(ui) N Sp(ui)]
- le Ul Ul 2,10 o)
0y A [(YENXE) U (YE - XO) = IE(P)+1E(D) — IE(PUD). (45)
- 'ZIJ 1 |Vl U] Corollary 4.2. Let IDSbe an incomplete decision system,
m 0y NX| |ycmx10| |Y1ﬂx|\ |yc XE| PCC.IE(D;P)=IE(P)—1E(P|D) =IE(D) —IE(D|P).
- Zi U| U] le \U| Proof. From Propositions 3.5 and 4.1, we have that
== IE(D;P) = IE(P) + IE(D) — IE(P U D) = IE(D)—
= E(D;P) +E(DIP), (42)  (IE(PUD)—IE(P)) = IE(D) — IE(DI|P). Similarly, the

_ o ) equationE(D;P) = IE(P) — IE(P|D) can be proved.
.e., E(D;P) = E(D) — E(D|P). Similarly, the equation  Thjs completes the proof.

E(D;P) = E(P) —E(P|D) can be proved. This completes It should be noted that these equations cannot be
the proof. satisfied by some existing measures in incomplete
Corollary 4.1. Let CDS be a complete decision system decision systems. Furthermore, these relationships will b
with P C C. ThenE(D;P) = E(D) +E(P) —E(PUD). helpful for understanding the essence of the knowledge

Proof. It can be achieved by Property 4.1 and PropositionContent and _the uncertainty in both incomplete and
34. complete decision systems.

Proposition 4.3.Let CDS be a complete decision system
with P C C. The mutual information betweeb and P
degenerates into

Proposition 4.1.Let CDS be a complete decision system
andP,QCC.IfU/P<U/Q, thenE(D;Q) < E(D;P).
(D;

Proof. It follows from Property 4.1 thaE(D;P) = E(D)

—E(D|P) and E(D;Q) = E(D)— E(D|Q). Then from m YN [YENXE|

Property 3.3, one has thatE(D|Q) < —E(DI|P). Thus, it IE(D;P) = le JW (46)
o=

is obvious thateE(D)— E(D|Q) < E(D) — E(D|P), i.e
E(D;Q) < E(D;P). This completes the proof.

( ' ,Q_)_ (b:P) P ) P ) i Proof. From Corollary 4.2, we have that
Definition 4.3. Let 1S be an incomplete information IE(D;P) = IE(D) — IE(D|P). It follows from

system and®,Q C A. Mutual information betwee and - ;| IY;|
Pis defined as Propositions 3.1 and 3.7 thE#E(D) = 3 \u'\( ﬁ)

= 2?:1%% and IE(DIP) = Zi:lij:l%

IE(Q:P) From Corollary 4.2, we havelE(D;P) C: E(D)—

u IE(DIP) = 5]y M — 5y 7, MO Thus,
_ 5 V=S =[S +[Su) N Su)l — 4q 21101 0T ~ 21211 0T e

721 |U|? ' it is obvious from Property 4.1 thap'_ 1—'“ﬁ =
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Y01y “or wor T oXmadieagr oroe €. information/ decision systems. However, most of the
=1 p— v existing entropies and their extensions in incomplete
SISy ‘YJISTWJ‘UT :ZT=1%ﬁ—Zin;12?=1 |YJ‘S‘X" information/decision systems can not establish the
YeX¢| ) relationships a_bove. Therefore, these uncertainty
o~ = |E(D;P). This completes the proof. measures mentioned above may be much better for

measuring the knowledge content of incomplete

Corollary 4.3. Let CDS be a complete decision system ,¢--mation/ decision systems.

with P C C. ThenlE(D;P) = E(D;P).

Proposition 4.3 and Corollary 4.3 state that the mutual
information in complete decision systems is a special
instance of the mutual information in incomplete decision

systems. Until now, most of the existing uncertainty

measures cannot be used in incomplete decision system¥! many real-world tasks, data available are incomplete,
According to the properties mentioned and the but decisions must be made with the incomplete data for

corresponding discussions above, it is known that theN€ time being. Most decision systems are incomplete for
conditional information entropy and the mutual V&rious subjective and objective reasons. Therefore, it is
information proposed above can well characterize the!€cessary to develop a theory which can handle
uncertainty of knowledge in incomplete decision systems.ncomplete data. In this article, we introduce concepts of
Hence, it can be shown that these measures which ar@formation entropy and mutual information-based
proposed provide important approaches to measuring thencertainty measures, and then some important properties
uncertainty ability of different knowledge in incomplete ©f them are discussed. From these properties, it can be
information/decision systems. But so far, these Shown that these proposed uncertainty measures can be
uncertainty measures and the relationships among thefiS€d 0 evaluate the uncertainty ability of different
above have not been reported in incomplete informationknowledge in complete/incomplete decision systems.
decision systems. In fact, given any binary relation, oneFurthermore, the relationships among these proposed
can induce a cover of the universe and determine dneasures are estabhshgd, and then compared with several
particular information system. Furthermore, through€Presentative uncertainty measures, these proposed
using the idea of the information theory, we may use theUncertainty measures may be much better measures to
information entropy, the mutual information and their €v@luate the uncertainty of the knowledge content of
variants to measure the uncertainty of the information'”complete '|nform.at|on/deC|S|on systems. However, this
systems induced by a given binary relation. In otherPaPer is mainly oriented towards theory and methodology
words, these proposed uncertainty measure approachd&Stead of specific applications. Thus, these results will
can not only characterize the uncertainty of an incomplete'ave & wide variety of applications in rule evaluation and

information system, but also measure those of some mor§nowledge discovery in rough set theory. Future work
kinds of information systems. will therefore focus on how to use (some of) these

. - approaches or improved versions of them to solve specific
Remark. Unlike most of the existing measures for the problems, such as measuring the knowledge content,

%?gfr::{?c%/d eI(r:]isi Ogoté‘h stecggqplt?\f re;r;i%ns;\?cgngr)rlgﬁ constructing a decision tree, and building a heuristic
y ’ P %unction in a heuristic reduct algorithm for incomplete

these concepts (the information entropy, the conditionaldata, and acquiring rules or extracting features from

information entropy, and the mutual information) can be enaineering data

established, which are formally expressed Id&S(P) 9 9 '

= E(P) and IE(PUQ) = E(PUQ) in a CIS with P,Q

C A E(D|P) = E(PUD) — E(P), IE(D|P) = E(D|P),

H(D|P) = Hy(D|P), E(D|P) < Hy(D|P), Hy(D|P) = Acknowledgement
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