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Abstract: Statistical tests are very important for researchers to make decisions. In particular, when the tests are non-
parametric, they are of greater importance because they can be applied to a wide range of data sets regardless of knowing 
the distribution of these data. Researchers are therefore racing to obtain efficient tests for making good decisions based on 
the results of these tests. In this study, NBU (2)L was used based on the goodness of fit approach to present an efficient 
statistical test. The efficiency of the proposed test was computed, and the results were compared to those of other tests. 
Critical values were computed and tabulated, and the power of this test was estimated. Finally, this test was applicable to 
both real, complete data and censored data. 
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1 Introduction 

Recently, Reliability has become more crucial across every sector. especially in the field of industrial Engineering as it is 
defined as the ability of an operating system performs its mission successfully over a period of time. The single product 
now contains a large group of components that work as one system, which increases the possibility of its failure in the 
event of the failure of one of its components. Therefore, a product that does not fail to be used within the specified time 
period is considered reliable. Thus, how to measure, analyses, and evaluate the product’s ability is the basis of the 
reliability theory. To read more about reliability, see Barlow and Proschan [1]. A product, system, component, or element’s 
reliability may be assessed using statistical tests, and through these tests, we can search for faults and work to ensure that 
they do not occur during the specified time period for this product (see Abu- Youssef et al [2] and Hassan and Said [3]). 

Exponential distribution has numerous uses outside industrial engineering, it is used to determine how far apart DNA 
mutations are from one another, see Duan et al [4]. Moreover, the exponential distribution is appreciable for figuring out how 
long it will take the radioactive particle to decay, see Poston [5]. Also, aids in determining the height of various molecules in a 
gas under steady conditions of pressure and temperature in a constant gravitational field, see Beckers et al [6]. Data resulting 
from regular rainfall and river discharge volumes can be modeled to the Exponential distribution, see Tomy et al [7].  

The exponential test plays a vital role in reliability theory, and it was applied to different life distributions to represent 
phenomena that are not limited by the statute of limitations because it ensures that the longevity of the phenomenon is not 
affected by its previous duration. The exponential distribution has been tested against many other classes of life 
distribution; for example, Gadallah et al [8], EL-Sagheer et al [9] and Mansour [10] submitted a paper to examine the use 
of the idea of testing exponentiality in medical research. 

 For the exponential test against many life distributions and their applications in various fields of science such as medical, 
industrial, economic, life sciences, etc. (see Bakr et al [11], El-Morshedy et al [12]). Based on the goodness of fit 
methodology, Abu-Youssef and Silvana [13] developed a non-parametric test and applied it to real data. For testing against 
new better than used in second order (NBU (2)), see Kayid et al [14]. Mansour [15] developed a new method of 
exponential testing to evaluate the effectiveness of all different treatment modalities in all medical fields. These are some of 
the basic definitions that smoothed the way for deriving our class: 

Definition 1 If and only if, a continuous random variable Y with a cumulative distribution function (CDF), F, meets the 
following criteria, it is said to be NBU: 

F"(t + y) ≤ F"(t)F"(y)				, ∀	t, y > 0                                                      (1) 

 Definition 2 In the case of a continuous random variable Y with a CDF, F is said to be NBU (2) if: 

V(t + y) − V(t) ≤ F"(t)V(y)			, ∀		t, y > 0               (2) 
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where  				V(y) = ∫23 F"(u)du,  F"(u) = 1 − F (u). 

The duration life of a new item is stochastically longer than that of a consumed one at age, t > 0, according to the definition 
provided by Kayid et al. [14]. A new class of life distribution, known as new better than used in second order and the 
Laplace formula (NBU (2)L), is shown in the definition below: 

Definition 3 Y is said to be NBU (2)L if: 

s8 ∫93 e;<2V=(t + y)dy ≥ s		V=(t) 	− F"(t)	?1 − ϕ(s)A, ∀	y, t > 0, s ≥ 0.            (3) 

Where,  V=(t) = ∫9C F"(u)du ,ϕ(s) = E[e;<F] = ∫93 e;<2dF(y). 

In the current study, using goodness of fit, we tested the exponential against (NBU (2)L). Asymptotic features of our test 
are explored in Section 2 based on the U-statistic. Monte Carlo simulations of the critical points for null distributions with 
sample sizes of n=10,11,…,50,63 and estimations of the test's power are reported as well. The information in Section 3 has 
been right-censored. Finally, we explore a few examples in Section 4 to show how the suggested test may be used in 
survival analysis. 

2 Testing exponentiality against NBU (2)L 

In order to compare exponentiality to NBU (2)L in this part, a test statistic built on the goodness of fit approach is 
developed. The subsequent lemma is necessary: 

Lemma 1. A random variable Y with CDF, F, and it is a member of the NBU (2)L class, then:  

ϕ(1)?1 − ϕ(s)A ≤ s		ϕ(s)?1 − ϕ(1)A	,						s ≥ 0				, s ≠ 1.																																																																																																														(4)    

Where,  ϕ(s) = Ee;<F = ∫93 e;<2dF(y), ϕ(1) = Ee;F = ∫93 e;2dF(y). 

Proof: 

Since F is NBU (2)L then, 

s8 J
9

3
e;<2V=(t + y)dy ≥ s		V=(t) 	− F"(t)	?1 − ϕ(s)A, ∀	y, t > 0, s ≥ 0. 

where,            v"(y) = ∫92 		F"(u) du 

At this point, we multiply both sides by  𝑒;M and implement the integral over (0,∞)  with respect to t, we get: 

s8 ∫93 ∫93 V=(t + y)e;C		e;<2dy		dt		 ≥ 	s	 ∫93 e;CV=(t)dt		 − ?1 − ϕ(s)A	∫93 e;CF"		(t)dt																																						(5)											
                      	
We put 

𝐼P = J
9

3
𝑒;M𝐹"(𝑡)𝑑𝑡 = 𝐸J

9

3
𝑒;M𝐼(𝑌 > 𝑡)𝑑𝑡 

 

				= 𝐸J
V

3
𝑒;M𝑑𝑡 = (1 − 𝐸𝑒;V), 

 

it’s easy to show  

IP = (1 − ϕ(1)).                                                                              (6) 

We put, 

𝐼8 = J
9

3
𝑒;M𝑉"(𝑡)𝑑𝑡 = J

9

3
J
9

M
𝑒;M𝐹"(𝑢)𝑑𝑢		𝑑𝑡 

 

					= J
9

3
J
M

3
𝑒;Z𝐹"(𝑡)𝑑𝑢𝑑𝑡 = J

9

3
(−(𝑒;M − 1)𝐹"(𝑡)𝑑𝑡 
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⇒ 						𝐼8 = −?1 − 𝜙(1)A + 𝜇									                                                                                                                               (7) 
We put 

𝐼 = J
9

3
J
9

3
𝑉"(𝑡 + 𝑦)𝑒;M		𝑒;`V𝑑𝑦		𝑑𝑡		 

 

𝐼 	can so be expressed as follows: 

𝐼 = J
9

3
J
9

a
𝑉"(𝑢)𝑒;b𝑒;`(Z;b)𝑑𝑢𝑑𝑣 

 

= J
9

3
J
b

3
𝑉"(𝑣)𝑒;Z		𝑒;`bd`Z𝑑𝑢		𝑑𝑣 

 

=
−1
1 − 𝑠J

9

3
𝑒;b				𝑉"(𝑣)𝑑𝑣		 +

1
1 − 𝑠J

9

3
𝑒;`b		𝑉"(𝑣)𝑑𝑣 

 

therefore 

𝐼 = P
(P;`)

?1 − 𝜙(1)A	− P
(P;`)

𝜇 − P
`!(P;`)

?1 − 𝜙(𝑠)A + f
`(P;`)

																								                    (8) 
                        

Substituting (6), (7) and (8) into (5), we get 

		𝜙(1)(1 − 𝜙(𝑠)) ≤ 𝑠		𝜙(𝑠)(1 − 𝜙(1))		,					𝑠 ≥ 0				, 𝑠 ≠ 1.  

This completes the proof. 

2.1 Test procedures based on complete data 

Let,  𝑌P, 𝑌8, … , 𝑌h a sample drawn at random from the distribution F. the issue is to verify: 

𝐻3  : F is exponential against 𝐻P: F is NBU (2)L and not exponential.  

The criterion of deviation from	𝐻3  in the return of 𝐻P  can be considered to define the proposed test as follows: 

𝜁(𝑠) = 𝑠		𝜙(𝑠)(1 − 𝜙(1)) − 		𝜙(1)(1 − 𝜙(𝑠))  

Therefore, under 𝐻3 it is   ζ(s) = 0 , under  HP  it is  ζ(s) > 	0  . 

Define the test statistic  ζmn(s) as follows: 

𝜁mh(𝑠) =
1
𝑛8p	

h

qrP

p	
h

srP

[𝑠𝑒;`V"(1 − 𝑒;V#) − 𝑒;V"(1 − 𝑒;`V#)]. 

To ensure the invariant of the test, let  

𝚫h(𝑠) =
		𝜁h(𝑠)
𝜇8 , 

which estimated by 

𝚫uh(𝑠) =
		𝜁mh(𝑠)
	V"!

, 

Where,  y" = ∑nwrP
2$
n
	 is the sample mean. 

Then, 

Δun(s) =
		P

	%!&'!
∑w ∑y ϕ(yw, yz),                    (9)            

where 

𝜙?𝑦q, 𝑦sA = 𝑠𝑒;`V"(1 − 𝑒;V#) − 𝑒;V"(1 − 𝑒;`V#)																															           (10) 
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The test's asymptotic characteristics are enumerated in the subsequent theorem. 

Theorem   As n → ∞,√n �Δun(s) − Δ(s)�	is asymptotically normal with mean 0 and variance σ8(s)  where  σ8(s) is stated 
in (11). Under  𝐻3  , the variance yields to (12). 

Proof 

One can note that using the conventional U-statistic theory (see Lee [16]),  

σ8 = 𝑉{𝐸[𝜙(𝑦P, 𝑦8)|𝑦P] + 𝐸[𝜙(𝑦P, 𝑦8)|𝑦8]}. 
Recall the definition of  ϕ(yw, yz)  in Equation (10), thus it is easy to show that: 

𝐸[𝜙(𝑦P, 𝑦8)|𝑦P] = 𝑠𝑒;`V − 𝑠𝑒;`V J
9

3
𝑒;V𝑑𝐹(𝑦) − 𝑒;V + 𝑒;V J

9

3
𝑒;`V𝑑𝐹(𝑦)					 

Similarly, 

[𝜙(𝑦P, 𝑦8)|𝑦8] = 𝑠J
9

3
𝑒;`V𝑑𝐹(𝑦) − 𝑠𝑒;V J

9

3
𝑒;`V𝑑𝐹(𝑦) − J

9

3
𝑒;V𝑑𝐹(𝑦) + 𝑒;`V J

9

3
𝑒;V𝑑𝐹(𝑦).	 

 
Hence, 

𝜎8(𝑠) = 𝑣𝑎𝑟 �𝑠		𝑒;`V − 𝑒;V + (𝑒;`V − 𝑠𝑒;V − 1)J
9

3
𝑒;V𝑑𝐹(𝑦) +		(𝑒;V − 𝑠𝑒;V + 𝑠)J

9

3
𝑒;`V𝑑𝐹(𝑦)�			.																				(11) 

 
 

Under 𝐻3 
 

σ38(s)=	 s2(s−1)2(3s+2)
12(s+1)2(2s+1)(s+2)

                                                                                                                                      (12) 

 
2.2 The Pitman asymptotic efficiency 

To assess the effectiveness of this procedure, we compare the asymptotic Pitman efficiency (PAE) for this test with a 
number of other tests in Table 1 to see how effective this approach is based on the following three alternatives: 

i)  The Weibull distribution: 𝐹"P(𝑦) = 𝑒;V( , 𝑦 ≥ 0, 𝜃 ≥ 1. 

ii)  The linear failure rate distribution (LFR): F"8(y) = e;2;
)
!2
!
, y ≥ 0, θ ≥ 0. 

iii)  The Makeham distribution: F"^(y) = e;2;�(2d�*&;P), y ≥ 0, θ ≥ 0. 

Note that for case (i), when θ=1 it reduces to the exponential distribution while cases (ii) and (iii) are shortened to the 
exponential case when θ = 0. The PAE is defined by: 

𝑃𝐴𝐸		(Δh(𝑠)) =
1

		ó∘(𝑠)
�
𝑑
𝑑𝜃 𝜁

(𝑠)�
	(→(∘

.		 

  

𝐴𝑡			𝑠 = 0.05	 ⇒ 		 𝜎∘ = 0.0127515	 
     

This leads to:   

𝑃𝐴𝐸		[Δh(0.05),𝑊𝑒𝑖𝑏𝑢𝑙𝑙] = 1.20314, 						𝑃𝐴𝐸 [Δh(0.05), 𝐿𝐹𝑅] = 0.844686  
 
						and 				𝑃𝐴𝐸		[Δh(0.05),𝑀𝑎𝑘𝑒ℎ𝑎𝑚] = 0.288429. 
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Table 1: The proposed test's PAE in exchange for other tests' PAEs 

Test Wiebull LFR Makeham 
Mahmoud and Abdul Alim [17] 0.405 0.433 0.289 

Kaid		[14] 2.3238 0.5809 0.2582 
Walid et al	[18] 1.046 0.932 0.233 

Our test Δn(0.05) 1.20314 0.844686 0.288429 

Our test is clearly the most effective in most cases. It is noted that the proposed test Δn(0.05) has a high efficiency that was 
calculated with different values of s to obtain the best efficiency for all alternatives. Furthermore, notably at s = 0.05 its 
effectiveness was superior to other tests for all alternatives. 

 

2.3 Monte Carlo null distribution critical points 

Using 10000 samples drawn from the standard exponential distribution via the Mathematica 13 programme, this subsection 
simulates the critical points of the Monte Carlo null distribution for the test statistic  Δh(0.05). Table 2 lists the Critical 
points as separators among the rejection and acceptance regions for  Δh(0.05) at n = 10,11,…,50,63. 

Table 2: Critical points as separators among the rejection and acceptance regions for Δh(0.05) 
 

𝐧 𝟗𝟎% 𝟗𝟓% 𝟗𝟗% 𝐧 𝟗𝟎% 𝟗𝟓% 𝟗𝟗% 
10 0.00612915 0.00760218 0.00989814 31 0.00333719 0.00406059 0.00543005 
11 0.00588476 0.00714011 0.00953379 32 0.00318551 0.00391056 0.00530333 
12 0.00555664 0.00678451 0.00918894 33 0.0031573 0.00388968 0.00523328 
13 0.00519294 0.00636804 0.00859580 34 0.00307764 0.00382248 0.0051996 
14 0.00509508 0.00623100 0.00836150 35 0.00299854 0.003777753 0.00513871 
15 0.00 494740 0.00599825 0 .00797861 36 0.00297054 0.00366989 0 .00499191 
16 0 .00482736 0 .00585247 0 .00782165 37 0 .00295291 0 .00366769 0 .00501863 
17 0.00444979 0.00553989 0.00740572 38 0.00285803 0.00352807 0.00498007 
18 0.0044503 0.00548825 0.00719673 39 0.00285756 0.00353565 0.00475777 
19 0.00432873 0.00520294 0.00716689 40 0.00282486 0.0034995 0.00476739 
20 0.00419273 0.00510081 0.00684665 41 0.00271959 0.00343164 0.0046395 
21 0.00403961 0.00494897 0.00667254 42 0.00275841 0.00346057 0.00468684 
22 0.00390940 0.00481833 0.00649891 43 0.00274193 0.00339537 0.00465622 
23 0.00382211 0.00471217 0.00624157 44 0.00267388 0.00333365 0.00450734 
24 0.00393391 0.004586677 0.00614525 45 0.0026659 0.00329629 0.00450942 
25 0 .00360499 0.00450507 0.00609004 46 0 .00265002 0.00328499 0.00444521 
26 0 .00354129 0.00438897 0.00602348 47 0 .00254544 0.00316547 0.00424521 
27 0.00353747 0.00434625 0.00578534 48 0.00256074 0.00319813 0.00436355 
28 0.00346002 0.00427667 0.00565991 49 0.00257031 0.00315432 0.00425847 
29 0.00433247 0.00422013 0.00580109 50 0.00250879 0.00311966 0.00426324 
30 0.00329124 0.00410801 0.00544473 63 0.00223175 0.00278172 0.00371889 
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Fig. 1: Relation between critical values, sample size and confidence level. 

Table 2 and Figure 1 make it evident that while the critical values are decreasing as sample numbers increase, they are 
increasing as confidence levels grow. 

2.4 Power of the test 

In this subsection, the power of our test Δh(0.05) will be calculated at a significance level   α = 0.05 based on 10000 
samples generated from linear failure rate (LFR), Weibull, and gamma distributions. The power estimates with parameters   
θ = 2, 3 and 4 for n = 10 , 20 , and  30 are shown in Table 3. 

Table 3: The Power Estimates of the test  Δn(0.05) 
 

n	 θ	 LFR	 Weibull	 Gamma	
10	 2	 0.7418	 0.6486	 0.8803	

3	 0.8715	 0.9894	 0.9814	
4	 0.9159	 0.9999	 0.9973	

20	 2	 0.9899	 0.9834	 0.9499	
3	 0.9962	 1.0000	 0.9966	
4	 0.9979	 1.0000	 1.0000	

30	 2	 0.9998	 0.9992	 0.9753	
3	 0.9999	 1.0000	 0.9994	
4	 1.0000	 1.0000	 0.9998	

	

It is evident that the sample size increases, the power estimates increase for each value of the parameter θ. 

3 Test procedures using censored data 

In this section, using data that has been randomly right censored, a test statistic is suggested to compare H3  with HP . In a 
clinical trial or life test model where patients may be lost before the study is finished (censored), such censored data are 
typically the only information available. This experimental situation can be formulated as follows: suppose n objects to be 
tested, and let  XP ,	X8, … , Xn connote their actual lifetimes. Let  XP ,	X8, … , Xn  be independently and identically distributed 
(i.i.d) according to the continuous lifetime distribution F. Let  YP ,	Y8, … , Yn be (i.i.d) according to a continuous life 
distribution G. Also, we assume that X's and Y's are independent. The pairs (𝜓s		, 𝛿s), j = 1, 2, …, n,   are observed in the 
randomly right-censored model, where  	ψz = min	(	ψz	, 𝛿s) ,  

and ,      δz = �
1, if 						ψz = Xz		(j − thobservation	is	uncensored)
0, if ψz = Yz		(j − thobservation	is	censored)		

 

Let  ψ3 = 0 < ψP  <ψ8	 < …  < ψhconnote the orderd  𝜓,s and  ẟ(s) is  ẟs	corresponding to ψ(s). 

Using the censored data  (𝜓s		, 𝛿s) ,  j = 1, 2, …, n. The following is how Kaplan and Meier [19] suggested the product limit 
estimator: 
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𝐹"(𝑋) =[s:¿(#)ÀÁ] {(𝑛 − 𝑗) 		∕ (𝑛 − 𝑗 + 1)}𝛿(s)		,Ä∈3,Æ(/)] 
 

Now, for testing  H3  :	ζÇ(s) = 0	,	  against HP: ζÇ(s) > 	0    based on the censored scenario, we recommend the following 

test statistic:   

𝜁mh(𝑠) = 𝑠		𝜙È(𝑠)(1 − 𝜙È(1)) −	𝜙È(1)(1 − 𝜙È(𝑠)). 
 

for computational purpose,   𝜁mh(𝑠)  may be rewritten as 

𝜁mh(𝑠) = 𝑠		𝜂(1 − 𝜏) − 		𝜏(1 − 𝜂),			𝑤ℎ𝑒𝑟𝑒 
 

𝜂 = 𝑒;`Ì(#)[∑s;8ÍrP 𝐶Í
Ï(Í) − ∑s;PÍrP 𝐶Í

Ï(Í)]								, 𝜏 = ∑hsrP 𝑒;Ì(#)[∑
s;8
ÍrP 𝐶Í

Ï(Í) − ∑s;PÍrP 𝐶Í
Ï(Í)]       and 

 

𝑑𝐹h(𝜓s) = 𝐹"h(𝜓s;P) − 𝐹"h(𝜓s), 𝐶Ð = [𝑛 − 𝑘][𝑛 − 𝑘 + 1];P 
To ensure the invariant of the test, let 

ΔuÑ(𝑠) =
𝜁mÑ(𝑠)
𝜓"8

,where		𝜓" =p
h

qrP

𝜓(q)
𝑛 . 

 
3.1 Critical values of the Monte Carlo null distribution in the censored scenario 

Using Mathematica 13 program, the Monte Carlo null distribution critical values of  Δn at   s = 0.05 for sample sizes   n = 
5, 10, …, 50, 60, 70, 80, and 81with 10000 replications are simulated from the standard exponential distribution. Table 4 
reviews the upper percentile points of the statistic   Δuh(0.05). 

Table 4: The Upper critical values of ΔÓ(0.05) 
 

n	 90%	 95%	 99%	
5	 1.51731	×	10Õ	 2.29620	 ×	10Õ	 5.02146	×	10Õ	
10	 1.22997	×	10Õ	 1.61204	×	10Õ	 2.90207	×	10Õ	
15	 1.09461	×	10Õ	 1.35370	×	10Õ	 2.02127	×	10Õ	
20	 1.02951	×	10Õ	 1.25058	×	10Õ	 1.78230	×	10Õ	
25	 9.78957	×	10Ö	 1.16134	×	10Õ	 1.57300	×	10Õ	
30	 9.52259	×	10Ö	 1.10444	×	10Õ	 1.46502	×	10Õ	
35	 9.29083	×	10Ö	 1.04983	×	10Õ	 1.34740	×	10Õ	
40	 8.97560	×	10Ö	 1.01687	×	10Õ	 1.29630	×	10Õ	
45	 8.87678	×	10Ö	 1.00519	×	10Õ	 1.28349	×	10Õ	
50	 8.66336	×	10Ö	 9.68911	×	10Ö	 1.19124	×	10Õ	
51	 8.60768	×	10Ö	 9.55256	×	10Ö	 1.15565	×	10Õ	
60	 8.43037	×	10Ö	 9.30341	×	10Ö	 1.13702	×	10Õ	
70	 8.32422	×	10Ö	 9.18085	×	10Ö	 1.07699	×	10Õ	
80	 8.12362	×	10Ö	 8.86478	×	10Ö	 1.03852	×	10Õ	
81	 8.12972	×	10Ö	 8.87211	×	10Ö	 1.04341	×	10Õ	

 

According to Table 4, the key spots grow as confidence levels rise and shrink as sample sizes grow. 

4 Real-Data Applications 

In this section, our test is run with a 95% confidence level on a few real data sets. 

4.1 Case of Complete Data 

In this subsection, three examples are provided with the assumption that s = 0.05. 
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Example 1 Numbers in cells below indicate the cumulative information on how long it takes a patient to feel better after 
taking an analgesic (in minutes). The data was provided by Gross and Clark [20] and it contains the following twenty 
observations: 

1.10 1.40 1.70 1.30 1.90 
1.60 2.20 1.70 2.70 4.10 
1.50 1.20 1.40 3.00 1.70 
1.60 2.00 1.80 1.80 2.30 

Since Δn(0.05) = 0.00596368 which is more than Table 2's critical value. The conclusion is that the NBU (2)L property 
applies to this data collection. 

Example 2 Tensile strengths of 1.5 cm glass fibers were tested at the National Physical Laboratory in England, and those 
results are shown in the data. This data set has been discussed by Adepoju et al [21]. 

0.55	 0.93	 1.25	 1.36	 1.49	 1.52	 1.58	 1.61	 1.64	
1.68	 1.73	 1.81	 1.04	 1.27	 1.39	 1.49	 1.53	 1.59	
1.61	 1.66	 1.68	 1.76	 1.82	 2.01	 0.77	 1.11	 1.28	
1.42	 1.50	 1.54	 1.60	 1.62	 1.66	 1.69	 1.76	 1.84	
2.24	 0.81	 1.13	 1.29	 1.48	 1.50	 1.55	 1.61	 1.62	
1.66	 1.70	 1.77	 1.84	 0.84	 1.24	 1.30	 1.48	 1.51	
1.55	 1.61	 1.63	 1.67	 1.70	 1.78	 1.89	 0.74	 2.00	

 

Since   Δn(0.05) = 0.00814731 and this number surpasses Table 2's percentile. The conclusion is thus that the provided 
data set has the NBU (2)L property. 

Example 3 Take into account the data from Abouammoh et al [22]. This information pertains to a group of 40 Saudi 
Arabian Ministry of Health hospitals patients who had (leukemia), a kind of blood cancer. 

2.211	 2.162	 2.370	 0.315	 0.496	 0.616	 1.145	 1.208	
1.263	 1.414	 2.025	 2.532	 2.693	 2.805	 2.910	 2.912	
3.912	 3.263	 3.348	 3.348	 3.427	 3.499	 3.34	 3.767	
3.751	 3.858	 3.986	 4.049	 4.244	 4.323	 4.381	 4.392	
4.397	 4.647	 4.753	 4.929	 4.973	 5.074	 4.381	 2.036	

 

Since   Δn(0.05) = 0.00232696 and this value is less than the critical value in Table 2. Then we accept the null hypothesis 
(exponential) and we reject the alternative hypothesis (NBU (2)L). 

Case of Incomplete Data  

In this subsection two examples are provided with the assumption that s = 0.05. 

Example 1 Consider the data from Susarla and Vanryzin [23]. These numbers indicate 81 melanoma patient survival 
periods. Of these, 35 represent censored (incomplete) data and 46 represent entire life histories (complete data). These 
values were noticed: 

13	 14	 19	 19	 20	 21	 23	 23	 25	 26	 26	 27	
27	 31	 32	 34	 34	 37	 38	 38	 40	 46	 50	 53	
54	 57	 58	 59	 60	 65	 65	 66	 70	 85	 90	 98	
102	 103	 110	 118	 124	 130	 136	 138	 141	 234	 16 +	 21 +	
44 +	 50 +	 55 +	 67 +	 73 +	 76 +	 80 +	 81 +	 86 +	 93 +	 100 +	 108 +	
114 +	 120 +	 124 +	 125 +	 129 +	130 +	132 +	134 +	 140 +	 147 +	 148 +	 151 +	
152 +	 152 +	 158 +	 181 +	 190 +	193 +	194 +	213 +	 215 +	

	 	 	

(+  indicates censored observations) 

We get ΔÑ(0.05) = 4.92514 × 10;Ö		which is less than the critical value of Table 4. Then we reject the alternative 
hypothesis of NBU (2)L property and accept the null hypothesis of exponentiality property. 

Example 2 The data shows the estimated death times (in weeks) for tongue cancer patients with aneuploidy DNA profiles. 
Previous users of the data include sickle-Santanello et al. [24]., Klein and Moeschaberger [25]. the 51 observations make 
up the data: 
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1	 3	 3	 4	 10	 13	 16	 16	 24	
28	 30	 30	 32	 41	 51	 61+	 65	 67	
72	 73	 74+	 77	 79+	 80+	 81+	 87+	 87+	
89+	 91	 93+	 96	 97+	 100	 101+	 104	 104+	
109+	 120+	 150+	 131+	 157	 167	 13	 231+	 240+	
24	 27	 70	 88+	 108+	 400	 	 	 	

(+ indicates censored observations) 

We get ΔÓ(0.05) = 7.81316 × 10;Ö		 which is below Table 4's critical threshold. The alternative hypothesis (NBU (2)L) is 
therefore rejected, and the exponentiality property null hypothesis is accepted. 

Conclusion 

An efficient non-parametric statistical test is introduced based on a developed class of life distributions, NBU (2)L, for 
testing the exponential property to a wide range of real data sets in different applied fields. The features of this test have 
been studied whether the PAE criterion or the power of the proposed test. Furthermore, a comparison study is introduced 
between the proposed test and other previous tests to emphasize the impact of the proposed test in the field of testing 
exponentiality. The test is applied to the cases of complete and censored data. As the introduced test is efficient, it is 
recommended to be applied in practical studies. 
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