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Abstract: A solution methodology for the design of digital infinite impulse response (IIR) filter considering multiple conflicting
objectives has been proposed. The nucleus of the method is that multiple objectives can be attuned suitably, to optimize the performance
in pass bands, stop bands and transition bands of IIR digital filters. The proposed method uses multiobjective optimization approach
for designing stable IIR filter using real-coded genetic algorithm (RCGA).Digital IIR filters are designed by minimizing magnitude
response and phase response simultaneously, using weighted sum approach. The value of weights are searched using RCGA along
with filter coefficients thus assigning different weight vector to each individual population thereby finding multiple pareto-optimal
solutions in one simulation run. The order of the filter is controlled by a control gene whose value is also optimized along with the
filter coefficients to obtain optimum order of designed IIR filter. The computational experiments show that the proposed approach gives
better digital IIR filters than the existing genetic algorithm based methods.

Keywords: infinite-impulse response (IIR) filters, genetic algorithms (GAs), multiple criteria, optimization.

1 Introduction

Infinite-impulse-response (IIR) digital filters are effective
in wide range of applications where high selectivity and
efficient processing of discrete signals are desirable. IIR
filters with approximate linear phase response are difficult
to design as compared to finite impulse response (FIR)
filter, but IIR filter requires lower order than FIR filter to
get the desired amplitude response. Digital IIR filter
design primarily follows two approaches: transformation
approach and optimization approach. Several well-known
filter design techniques, such as Butterworth, Chebyshev,
and the Elliptic function, have been developed using
transformation techniques [1, 2]. Filter designed with
transformation techniques are not efficient in terms of
phase response, filter structure and coefficient
quantization error. To implement optimization technique
with some criteria, various optimization methods have
been applied where p-error, mean-square-error and ripple
magnitudes (tolerances) of both pass-band and stop-band
are used to measure performance for the design of digital
IIR filters [3–6]. Conventional gradient-based design may
easily stick in the local minima due to non-linear and

multimodal nature of error surface of IIR filters.
Therefore, researchers have developed design
methods [7–18], based on modern heuristics optimization
algorithms.

The main hindrance in the design of recursive digital
filters is to establish the lowest order for the purpose of
obtaining specified magnitude response and linear phase
response. In most of the research work IIR filter
designing problem is taken as a single objective problem
in terms of magnitude response or phase response without
considering filter structure, which means that the order of
IIR filter must be determined in advance. In Hierarchical
genetic algorithm (HGA) [7] filter order and magnitude
response error are considered, but phase response error is
neglected. The IIR filter with linear phase response is
important in most of practical applications because
non-linear phase response alter the frequency components
of the signal, which causes distortion. The cooperative
co-evolutionary genetic algorithm (CCGA) [8] considers
the magnitude response error, phase response error, and
lowest order simultaneously and uses NSGA-II [10] to
maintain the diversity in the three objectives. A new local
search operator enhanced multi-objective evolutionary
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algorithm (LS-MOEA) [9] simultaneously optimizes the
structure and coefficients of digital IIR filter to obtain
relatively better linear phase response and lower order,
besides the good magnitude response.
In many multidimensional and multimodal engineering
design problems, the GA has been used as a robust and
proficient search technique. GA requires less iterative
computational equations as compared to traditional search
algorithms like calculus based searches, dynamic
programming, random searches and gradient methods.

Out of various existing coding schemes used for
coding of search space solutions, real coding technique
seems particularly natural when tackling optimization
problems. Handling of continues search space is very
easy with real-coded genetic algorithm (RCGA) and
solution representation is very close to natural
formulation of real-world problems. Because of these
reasons, most of real-world multi-objective optimization
problems are solved using RCGA [19, 20]. Whenever a
parameter is binary coded, there is a poor precision as it
does not represent parameter values that produce the best
solution. The RCGA improves the final local tuning
capabilities of a binary-coded genetic algorithm, which is
a must for high precision optimization problems.

The intent of this paper is to apply a real-coded
genetic algorithm with arithmetic-average-bound-blend
(AABBX) crossover [23, 24] and wavelet mutation
operator [22] for the design of digital IIR filter. The
values of the filter coefficients are optimized with RCGA
approach to simultaneously achieve minimum magnitude
response error and phase response error alongwith
optimal order of the filter. Multiobjective constrained
optimization problem is converted into scalar objective
constrained optimization problem employing weighting
method. The weighting technique is used to generate
non-inferior solutions, which allow explicit trade-off
between conflicting objective levels. The weighting
patterns are either presumed on the basis of decision
makers intuition or simulated with suitable step size
variation. Further, the weightage pattern can also be
searched in the non-inferior domain. In the paper, the
weightage pattern is searched using RCGA search
technique along with the decision vector. On violation of
inequality constraints, decision variables are updated
randomly till inequality constraints are satisfied.

The paper is structured as follows. Section 2 describes
the IIR filter design problem statement. The real-coded
genetic algorithm for designing the optimal digital IIR
filters is described in Section 3. In Section 4, the
performance of the proposed method has been evaluated
and achieved results are compared with the design
obtained in [7–9] for the low-pass (LP), high-pass (HP),
band-pass (BP), and band-stop (BS) filters. Finally, the
conclusions and discussions are outlined in Section 5.

2 IIR Filter Design Problem

The transfer function of IIR is represented by cascading
first and second order sections to avoid the coefficient
quantization problem which causes instability. In cascade
realization coefficient range is limited. The structure of
cascading type digital IIR filter [13] is:

H (z) = x1×
(

m

∏
k=1

1+x2kz−1

1+x2k+1z−1 ×
n

∏
i=1

1+x4i+2m−2z−1+x4i+2m−1z−2

1+x4i+2mz−1+x4i+2m−1z−2

)

(1)

X = [x1,x2, .......,x2m+4n+1]
T
V×1 is a vector decision

variable of dimensionV × 1 with V = 2m+ 4n+ 1. x1
represents the gain,[x1,x2, .......,x2m+4n+1] denotes the
filter coefficients of first and second order sections.

2.1 Magnitude response error

To design IIR filter, main aim is to minimize the
magnitude response of defined frequency band in which
either frequency is allowed to pass or restricted.
Magnitude response error for passband frequency is
stated as [7–9]:

∆HP (ω) =











∣

∣H
(

ejω)∣
∣−1,

∣

∣H
(

ejω)∣
∣> 1

1−δP−
∣

∣H
(

ejω)∣
∣ ,

∣

∣H
(

ejω)∣
∣< 1−δP

0,
∣

∣H
(

ejω)∣
∣≥ 1−δP

(2)
whereω represents passband frequency and∆Hp (ω) is
the magnitude response error in passband.

Similarly magnitude response error is stated below for
stopband frequency.

∆Hs(ω) =

{

∣

∣H
(

ejω)∣
∣−δs,

∣

∣H
(

ejω)∣
∣> δs

0,
∣

∣H
(

ejω)∣
∣≤ δs

(3)

whereω represents stop band frequency and∆Hs(ω) is
the magnitude response error in stop band.

The first objective is to minimize the magnitude
response error in passband and stopband. Mathematically
the objective 1 is defined as:

MinimizeO1 =
1
An

An

∑
j=1

∆HP (ω j)+
1
Bn

Bn

∑
k=1

∆Hs(ωk) (4)

whereAn and Bn are the sampling frequency points in
passband and stopband, respectively. The best fitness
function value is achieved when magnitude response of
the designed IIR filter lies within the prescribed range in
passband and stopband.
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2.2 Phase response error

The linear phase response is optimized for both passband
and transition band [9], because sometimes non-linearity
in phase response of transition band may cause distortion.
The phase response is calculated at different frequency
sampling points (α1,α2, ......,αl ) . The first order
difference in phase response can be calculated as:

O2 = ∆ phase= {∆α1,∆α2, .........,∆αl−1} (5)

where ∆αl = ∆αl+1 − ∆αl ; l is the total number of
sampling points in passband and transition band. The
phase response is linear if all the elements of∆ phase
have the same value. The second objective function in
terms of linear phase response error is represented as
variance of phase differences.

MinimizeO2 = var{α∆l} (6)

whereαl ∈ passband∪ transitionband

2.3 Multiobjective IIR filter design problem
formulation

The IIR filter design task is to find optimum structure
having optimal order, minimum magnitude and minimum
phase response error. Mathematically, multiobjective
optimization problem for the design of IIR filter is stated
below:

Minimize{O1 (X) ,O2 (X)} (7)

Subject to: Stability constraints [21]

1+x2k+1 ≥ 0(k= 1,2, .....,m) (7a)

1−x2k+1 ≥ 0(k= 1,2, .....,m) (7b)

1−x4i+2m+1 ≥ 0(i = 1,2, .....,n) (7c)

1+x4i+2m+x4i+2m+1 ≥ 0(i = 1,2, .....,n) (7d)

1−x4i+2m+1 ≥ 0(i = 1,2, .....,n) (7e)

where O1 (X) given by equation (4) is magnitude
response error, andO2 (X) given by equation (6) is
variance of phase difference.X is a vector decision
variable of dimensionV × 1 with V = 2m+ 4n+ 1. The
aim is to find the value of filter coefficients being decision
variables, X which optimizes all the objective functions,
simultaneously.
The multiobjective constrained optimization problem for
the design of digital IIR filter is converted into a scalar
constrained optimization problem by using a weighted
sum of the objectives ofO1 (X) and O2 (X) to generate
non-inferior solutions.

F =
M

∑
j=1

w jO j (X) (8a)

Subject to:

(i)
M

∑
j=1

w j = 1,w j ≥ 0 and wj =
α j

∑M
j=1

( j = 1,2, ....,M)

(8b)

(ii)Satisfaction of stability constraint given by equation
(7a) to equation (7e).
where O j (X) is the j th objective function, andα is
non-negative real number weight between 0 to 100,
assigned toj th objective andM is number of objectives.

The population-based approach of RCGA is exploited
to search the value of weights, assigned to different
objectives corresponding to each individual particle. This
approach yields multiple pareto-optimal solutions in one
simulation run. The decision variable becomes
X = [x1,x2, .......,x2m+4n+1,x2m+4n+2,x2m+4n+3]

T
V×1where

V = 2m+ 4n = 3. x2m+4n+2 corresponds tow1 and
x2m+4n+3 corresponds to w2.

Fig. 1: Activation / Deactivation of filter coefficients with
control gene.

2.4 Order

The order of the IIR filter is determined as follows:

Order=
m

∑
j=1

p j +2
n

∑
k=1

qk (9)

wherep j andqk are j th andkth control genes respectively
for corresponding first order and second order blocks, m
and n are the number of first and second order blocks
respectively. The maximum order of the filter ism+2n.

The order of digital IIR filter is represented by control
gene (Figure 1). The coding method followed has been
inherited from [7–9]. The control genes determine
activation/deactivation of corresponding blocks of filter
coefficients by setting 1/0, respectively. The value of
binary bits used to generate control genes is evaluated
based on the integer value of real variable,x2m+4n+4 of
decision vectorX. The integer value of real variable
x2m+4n+4 is optimized along with the filter coefficients to
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obtain optimum Order of designed IIR filter.
X = [x1,x2, .......,x2m+4n+1,x2m+4n+2,x2m+4n+3]

T
V×1

is the final decision variable whereV = 2m+4n+4

2.5 Constraint handling

The design of causal recursive filters requires the
inclusion of stability constraints. Therefore, the stability
constraints are obtained by using the Jury method [21] on
the coefficients of the digital IIR filter in equation (1).

The stability constraints given by equation (7a) to
equation (7e) have been forced to satisfy by updating the
coefficients with random variation as given below. The
variation is given as small so that the characteristic of
population should not be changed.

x2k+1 =



















x2k+1 (1− r) ; (1+x2k+1)< 0
or
(1−x2k+1)< 0

x2k+1, Otherwise

(10a)

x4i+2m+1 =



















x4i+2m+1 (1− r)2 ; (1+x4i+2m+1)< 0
or
(1−x4i+2m+1)≥ 0

x4i+2m+1, Otherwise
(10b)

x4i+2m =



















x4i+2m(1− r)2 ; (1+x4i+2m+x4i+2m+1)< 0
or
(1−x4i+2m+x4i+2m+1)< 0

x4i+2m Otherwise
(10c)

where r is any uniform random number which is varied
between [0, 1]. Square term has been used in random
variation to give small increment.

3 Solution Methodology

RCGA search for many points in the search space at once,
and continually narrow the focus of the search to the areas
of the observed best performance. The basic elements of
RCGA are reproduction, selection, crossover and
mutation. In reproduction operation, the individuals
possessing higher fitness values are selected from the
existing population. In the crossover operation, two
individuals are selected at random from the mating pool
and a crossover is performed using mathematical
relations. Mutation is an important part of genetic search,
it helps to prevent the population from stagnating at any
local optima. Mutation is intended to prevent the search
falling into local optimum of the search space.

In this paper, a RCGA with genetic operators
including arithmetic-average-bound-blend (AABBX)
crossover [23, 24] and wavelet mutation is applied for

optimizing the filter coefficients to simultaneously
minimize magnitude response error, phase response error
and order of the filter by employing stability constraints.
The arithmetic-average-bound-blend crossover operator
combines the arithmetic, average, bound and blend
crossover operators. The arithmetic crossover operation
produces some children with their parents features;
average crossover manipulates the genes of the selected
parents and the minimum and maximum possible values
of the genes and bound crossover is capable of moving
the offspring near the domain boundary. The offspring
such obtained spreads over the domain so that a higher
chance of reaching the global optimum can be obtained.

The wavelet mutation operation based on wavelet
theory is a powerful tool for fine tuning of the genes to
search the solution space locally. This property of wavelet
mutation operation enhances the searching performance
and provides a faster convergence than conventional
RCGA. Short pseudocode for RCGA is given below:
1. Generate initial population strings randomly.
2. Calculate fitness values of population members.
3. Search for solution among the population? If yes then
GOTO Step 8.
4. Using stochastic remainder roulette wheel selection
choose highly fit member of population as parents and
generate off-springs according to their fitness.
5. Breed new strings by mating current off-springs. Apply
AABBX crossover and wavelet mutation operator to
introduce variations and generate offsprings.
6. Substitute existing offsprings with new offsprings by
applying competition and selection.
7. GOTO Step 3 and repeat.
8. Stop.

3.1 Initialization

Random search is applied to record the starting point.
Global search is applied to explore the starting point and
then the starting point is perturbed in local search space to
record the best starting point. The search process is
started by initializing the variable using equation (11).

x0
i j = xmin

1 + rand()
(

xmax
i −xmin

i

)

(11)

(i = 1,2, .....V; j = 1,2, ....NV)
whereNV is size of population,t represents an iteration of
RCGA, and represents the maximum and minimum limits
of ith decision variable of vectorX.

3.2 Fitness function

Expected fitness function,f is derived from the objective
function and is used in successive genetic operations. The
expected fitness function used to solve design of IIR filter
is given below:

f t
j = max

{

1
1+F t

j (X)

}

( j = 1,2, ....,NV) (12)
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whereF t
j (x) is obtained from equation (8a).

3.3 Reproduction

The initial and most important genetic algorithm operator
is reproduction. In reproduction good members from
population are selected to form a mating pool. The
reproduction operator is also known as selection operator.
Many reproduction operators exist and they all essentially
pick the strings of above average from the current
population and insert their multiple copies in the mating
pool in a probabilistic manner. The commonly used
reproduction operator is the proportionate reproduction
operator where a string is selected for the mating pool
with a probability proportional to its fitness. The basic
roulette wheel selection method is stochastic sampling
with replacement (SSR). The segment size and selection
probability remain same throughout the selection phase
and individuals are selected accordingly. Stochastic
sampling with partial replacement (SSPR) extends upon
SSR by resizing an individual’s segment if it is selected.
After the selection of each individual, the size of its
segment is reduced by one. If the segment size becomes
negative, then it is set to zero. Remainder sampling
methods involve two distinct phases. In the integral phase,
the individuals are selected deterministically accordingto
the integer part of their expected trials. The remaining
individuals are then selected probabilistically from
fractional part of the individuals expected values. In this
paper the stochastic remainder roulette wheel selection
has been applied [23].

3.4 Crossover operators

The arithmetic-average-bound-blend crossover has been
used for the selection of chromosomes and is based on the
stochastic remainder Roulette-wheel mechanism [23].
The AABBX operator is the combination of arithmetic
crossover, average crossover, bound and blend crossovers.
Suppose two vectors are selected chromosomes in thetth

iteration of the RCGA execution. Each chromosome has
V genes, which are real numbers. The AABBX operator
creates ten children from the parentsxt

iv and xt
iu as

follows:
(i) Arithmetic crossover

xt+1
i1 = wαxt

iv +(1−wα)xt
iu (i = 1,2....,V) (13)

xt+1
i2 = (1−wα)xt

iv +wαxt
iu (i = 1,2....,V) (14)

xt+1
i3 = Min

[

xt
iv,x

t iu
]

(i = 1,2....,V) (15)

xt+1
i4 = Max

[

xt
iv,x

t iu
]

(i = 1,2....,V) (16)

(ii) Average crossover

xt+1
i5 =

1
2

(

xt
iv,x

t
iu

)

(i = 1,2....,V) (17)

xt+1
i6 = 1

2

[

wb

(

xt
iv +xt

iy

)

+(1−wb)
(

xmin
i +xmax

i

)

]

(i = 1,2....,V)

(18)
(iii) Bound crossover

xt+1
i7 = wcMin

[

xt
iv,x

t
iu

]

+(1−wc)xmin
i (i = 1,2....,V)

(19)

xt+1
i8 = wcMin

[

xt
i v,x

t
iu

]

+(1−wc)xmax
i (i = 1,2....,V)

(20)
(iv) Blend crossover

xt+1
i9 = wdxt

iv +(1−wd)xt
iu (i = 1,2....,V) (21)

xt+1
i10 = (1−wd)xt

iv +wdxt
iu (i = 1,2....,V) (22)

wa,wb and wc are constant weights. The values are
adjusted such that 0< wa,wb,wc < 1. wd is also constant
weight such that 1≤ wd < 2. Two children having the
highest fitness values are selected as the offspring
chromosomes for the crossover operation. These two
offspring chromosomes are added to the previous
population including the parents. The enlarged population
formed after the execution of the crossover operator is
considered for the mutation.

3.5 Mutation operator

Mutation is a genetic operator used to maintain genetic
diversity from one generation of population of
chromosomes to next. Mutation alters one or more gene
values in a chromosome from its initial state. This can
result in entirely new gene values being added to the gene
pool. With the new gene values, the genetic algorithm
may be able to arrive at better solution than was
previously available. Each gene of the chromosome is
given an opportunity to mutate, governed by the
probability of the mutationpm. For each gene of the
chromosome, a random number in the range of [0, 1] is
generated. If the random number is less thanpm, that gene
is selected for the mutation, otherwise it is not selected. In
this algorithm,pm is set at 0.2. The new gene,xt

i j after
mutation will be as follows:

xt
i j =







xt
i j +∆ (φ , t, tmax)

(

xmax
i −xt

i j

)

i f ∆ ≥ Pm

xt
i j +∆ (φ , t, tmax)

(

xt
i j −xmin

i j

)

i f ∆ < Pm

(23)

where (i = 1,2, ....V; j = 1,2, ....,NV) tmax is the
maximum number of iterations of the RCGA and t is the
current iteration number.

Morlet wavelet as the mother wavelet can be rewritten
as

∆ (φ , t, tmax) = ψd (φ) =
1√
d

e
−φ2

2 cos5φ (24)
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where φ is randomly generated in the range of [-4, 4]
because this wavelet has [-4, 4] as its effective support.
The dilation parameterd is set to vary with the value of
(t/tmax), giving the adaptive search capability to the
proposed real coded genetic algorithm.

d = exp

(

lng

(

1−
(

1− t
tmax

)ξ)
)

(25)

where ξ is the shape parameter of the monotonic
increasing function ofd. g is the upper limit of the
dilation parameter. The dilation parameterd is a function
of t andtmax, and soδ is really a function ofφ , t andtmax.

3.6 Competition and selection

Each individual in the combined population has to
compete with some other individuals to have a chance to
be copied to the next iteration. The score for each trial
vector after stochastic competition is given by

wt
i =

NV

∑
n=1

wt
n;(1,2, ......NV) (26)

where

wt
n =

{

1, i f u1 <
f t
r

f t
i + f t

r
0, otherwise (27)

NV is the population size.
f t
r is the fitness value of the randomly selected competitor

in the combined population.
f t
i is the fitness value ofxt

i .
u1 and u2 are randomly selected from a uniform
distribution setu (0, 1)
m= int (2×NV×u2+1)

After competing, the trial 2NV solutions, including
the parents and the offspring, are ranked in descending
order of the score obtained in equation (26). The firstNV
trial solutions survive and are copied along with their
objective functions into survivor set as the individuals of
the next iteration..

4 Design Examples and Comparisons

Digital IIR filter have been realized by taking 200 equally
spaced points within the frequency domain[0,π]. The
design parameters followed for the design of IIR filter are
presented in Table 1. The control parameter values such
as population size, crossover, and mutation rate employed
for the RCGA algorithm are given in Table 2. The
magnitude and phase response diagrams of LP and HP
filters are presented in figure 2 and figure 3 presents
magnitude and phase response diagrams of BP and BS
filters. The pole zero diagrams for LP, HP, BP and BS

filters are presented in figure 4 for all types of digital IIR
filters. It can be observed from figure 4 that the designed
filters follow the stability constraints imposed in the
design procedure as all the poles lie inside the unit circle.
The stability of filter is not influenced by the zeros lying
outside the unit circle. The designed IIR filter models
obtained by the RCGA approach for LP, HP, BP and BS
are given by equation (28), equation (29), equation (30)
and equation (31) respectively.

HLP (z) = 0.211090× (z+0.230950)
(

z2−0.950127z+0.949332
)

(z+0.403023)(z2−1.207782z+0.643844)
(28)

HHP (z) = 0.196099× (z−0.519345)
(

z2+0.932477z+0.929194
)

(z+0.332503)(z2+1.171756z+0.616812)
(29)

HBS(z) = 0.475804×
(

z2+0.300735+0.873221
)(

z2−0.306113z+0.862739
)

(z2+0.737646z+0.468787)(z2−0.743670z+0.478598)
(30)

HBS= 0.475804×
(

z2+0.300735z+0.873221
)(

z2−0.306113z+0.862739
)

(z2+0.737646z+0.468787)(z2−0.743670z+0.478598)
(31)

Table 1: Table 1. Prescribed Design Conditions on LP
HP, BP and BS Filters.

Filter Pass-band Stop-band Order
type

(

δp = 0.1088
) (

δp = 0.17783
)

LP 0≤ ω ≤ 0.2π 0.3π ≤ ω ≤ π 11
HP 0.8π ≤ ω ≤ π 0≤ ω ≤ 0.7π 11
BP 0.4π ≤ ω ≤ 0.6π 0≤ ω ≤ 0.25π

0.75≤ ω ≤ π
BS 0≤ ω ≤ 0.25π 0.4π ≤ ω ≤ 0.6π 11

0.75≤ ω ≤ π

Table 2: Value of Control Parameters.

Population Size 50
Represenation Real number representation
Crossover Arithmetic-average-

bound-blend crossover
Crossover Rate 0.9
Mutation Wavelet Mutation
Mutation Rate 0.01
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Fig. 2: Magnitude and phase response of LP and HP filter.

Fig. 3: Magnitude and phase response of BP and BS filter.

Fig. 4: Pole-zero plots for LP, HP, BP and BS filters.
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Table 3. Comparison of design results for LP, HP, BP and BS
filters.

Lowest
filter
order

Pasg-band magnitude
performance

Stop-rand magnitude
performance

Phase response
Error

LP Filter
HGA 3 0.8862≤

∣

∣H
(

ejω)∣
∣≤ 1.0

∣

∣H
(

ejω)∣
∣≤0.1800 1.6485×10−4

CCGA 3 0.9034≤
∣

∣H
(

ejω)∣
∣≤ 1.0

∣

∣H
(

ejω)∣
∣≤0.1669 1.4749×10−4

LS-MOEA 3 0.9083≤
∣

∣H
(

ejω)∣
∣≤ 1.0

∣

∣H
(

ejω)∣
∣≤0.1586 1.0959×10−4

RCGA 3 0.9141≤
∣

∣H
(

ejω)∣
∣≤ 1.0

∣

∣H
(

ejω)∣
∣≤0.1556 1.1788×10−4

HP Filter
HGA 3 0.9221≤

∣

∣H
(

ejω)∣
∣≤ 1.0

∣

∣H
(

ejω)∣
∣≤0.1819 1.1212×10−4

CCGA 3 0.9044≤
∣

∣H
(

ejω)∣
∣≤ 1.0

∣

∣H
(

ejω)∣
∣≤0.1749 9.7746×10−4

LS-MOEA 3 0.9004≤
∣

∣H
(

ejω)∣
∣≤ 1.0

∣

∣H
(

ejω)∣
∣≤0.1746 9.6150×10−5

RCGA 3 0.9004≤
∣

∣H
(

ejω)∣
∣≤ 1.0

∣

∣H
(

ejω)∣
∣≤0.1742 9.5757×10−5

BP Filter
HGA 6 0.8956≤

∣

∣H
(

ejω)∣
∣≤ 1.0

∣

∣H
(

ejω)∣
∣≤0.1772 1.1222×10−4

CCGA 4 0.8920≤
∣

∣H
(

ejω)∣
∣≤ 1.0

∣

∣H
(

ejω)∣
∣≤0.1654 8.1751×10−5

LS-MOEA 4 0.9285≤
∣

∣H
(

ejω)∣
∣≤ 1.0

∣

∣H
(

ejω)∣
∣≤0.1734 6.0371×10−5

RCGA 4 0.9333≤
∣

∣H
(

ejω)∣
∣≤ 1.0

∣

∣H
(

ejω)∣
∣≤0.1641 5.9070×10−5

BS Filter
HGA 4 0.8920≤

∣

∣H
(

ejω)∣
∣≤ 1.0

∣

∣H
(

ejω)∣
∣≤0.1726 2.7074×10−4

CCGA 4 0.8966≤
∣

∣H
(

ejω)∣
∣≤ 1.0

∣

∣H
(

ejω)∣
∣≤0.1733 1.6119×10−4

LS-MOEA 4 0.8967≤
∣

∣H
(

ejω)∣
∣≤ 1.0

∣

∣H
(

ejω)∣
∣≤0.1725 1.5084×10−4

RCGA 4 0.8975≤
∣

∣H
(

ejω)∣
∣≤ 1.0

∣

∣H
(

ejω)∣
∣≤0.1708 1.5144×10−4

Table 4. Variation of fitness function for LP, HP, BP and BS
filters.

Minimum Maximum Average Standard Deviation
LP 0.9998624 0.9999988 0.999950641 5.10948E-05
HP 0.9998645 0.9999990 0.999966836 3.84241E-05
BP 0.9998758 0.9999993 0.999954749 3.02676E-05
BS 0.9998702 0.9999981 0.999915193 4.31160E-05

The values have been recorded giving 100 random run.

Table 5. Effect of parameter variation on fitness function values.

Parameter Perturbation LP HP BP BS
wa 0.2± 10 % 0.012910015 0.013485016 0.003122007 0.002964006
wb 0.2± 10 % 0.003774004 0.002336003 0.002114005 0.003506007
wc 0.2± 10 % 0.003446004 0.004117005 0.003474008 0.002870006
wd 1.2± 10 % 0.001545002 0.002486003 0.002580006 0.003021006
pm 0.22± 10 % 0.002938003 0.001647002 0.003467008 0.003313007
ξ 0.5± 10 % 0.003562004 0.001901002 0.002931007 0.002948006
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The results obtained for LP, HP, BP and BS filters
with RCGA are summarized and are compared with
HGA [7], CCGA [8], and LS-MOEA [9], in Table 3. By
studying Table 3, it is concluded:
• In comparision to EAs (CCGA and HGA) the RCGA
offers best performance in terms of phase response
quality for LP, HP, BP and BS filters. In term of lowest
order: RCGA and CCGA are equivalent and surpass
HGA. The magnitude response obtained with RCGA is
better in almost all types of digital IIR filters.
• When compared with optimization algorithm
LS-MOEA, RCGA provides better magnitude response
for all types of digital IIR filters. In terms of lowest order
RCGA is comparable with LS-MOEA. The phase
response linearity obtained with RCGA is comparable
with LS-MOEA.
• In addition to above the RCGA was tested for the
robustness by performing 100 independent runs with
random variation. The minimum, maximum, average and
standard deviation values obtained have been summarized
in Table 4, which clearly depicts that RCGA is a robust
algorithm being a small value of standard deviation. Last
but not least the results obtained by perturbing different
parameters of RCGA shown in Table 5 justify that RCGA
is insensitive to parameters.

In view of above three points it can be concluded that
RCGA is a robust and effective algorithm for the design
of digital IIR filters of better responses and lower order.

5 Conclusion

This paper proposes a RCGA approach for optimization
of digital IIR filters considering multiple conflicting
objectives. On the basis of results obtained for the design
of digital IIR filter, it can be concluded that RCGA is a
robust algorithm and possesses the capacity for the local
tuning of the solutions. RCGA can design a digital filter
of any type, while the lowest order of the filter is
achieved; it can design the IIR filter with better magnitude
and phase performance. Concluding, Simulation studies
show that the proposed method is accurate, robust and an
efficient optimizer for digital IIR filter design.
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