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Abstract: The inter-temporal optimal decision is related to investors risk preference. In this study, we analyze the optimal asset
allocation over investment horizon of invariable risk preference indicated by constant risk aversion. To capture dynamic property of
risk aversion, we relax the assumption of constant risk aversion and formulate a time-varying function in response to the impacts of time
and wealth. Our general decision model built on time-varying risk aversion allows us to further investigate the inter-temporal optimal
asset allocation. The numerical evidences from the model show that theoptimal allocation of risky assets in portfolios is significantly
related to investors risk aversion and that the time diversification is not existed under the time-varying risk aversion.
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1 Introduction

The traditional inter-temporal decisions are in general
built on the utility functions with constant risk aversion.
These studies on inter-temporal decision derive a variety
of interesting results, among of which, the concept of
time diversification is widely accepted by many portfolio
managers. According to time diversification, a young
investor with longer investment horizon is in the ability of
allocating a larger proportion of portfolio to risky asset to
gain a higher return in the future. The validity of this
intuitively appealing principle, however, remains
debatable.

Samuelson [1] and Merton [2] document that
allocation of optimal risky asset in a portfolio is
independent of the length of the investment horizon.
Regardless of the length of investment horizon, investors
would hold the invariable portion of risky assets. Thorley
[3] further provides evidence, from both mean-variance
and CRRA utilities, which are inconsistent with time
diversification. Jan [4] compares safe portfolios with
perfectly diversified portfolios and also finds
contradictions to time diversification. On the other hand,
the concept of time diversification receives direct support
from the practice. For example, return on a stock

investment exceeds that on a safer bond in long term.
Gressis and Philippatos [5] created a multi-period
portfolio and verified the possibility of time
diversification.

However, there have two major limitations in the
existing studies [6]. One is that a great number of early
studies mainly focus on the utility of constant relative risk
aversion, namely CRRA utility. Another is that those
investigations are based on the assumption of constant
risk-aversion. The main reason is either to simplify the
complex of investors risk preference or to obtain the
perfect analytic solution of theoretical model. As the
CRRA utility cannot cover the characteristics of
numerous heterogeneous investors with different risk
preference, focusing only on CRRA utility is obviously
inconsistent with investment practices. In addition,
investors risk preferences, such as risk tolerance or risk
impatience, are varied with time length and/or wealth
increment [7,8,9,10,11,12]. The assumption of constant
risk-aversion cannot explain the impacts of time and
wealth on investors risk preference. Hence, the above two
constraint prevent us from capturing the properties of
investors risk preference and help us to understand why
different opinions exist for the concept of time
diversification [13,14,15].
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The objective of our research is to develop an
appropriate utility model to capture the dynamic
characteristics of heterogeneous investors risk aversionin
response to the time delay and wealth change, and further
measure the inter-temporal optimal asset allocations of
heterogeneous investors.

Motivated by the improvement on the potential flaws
described above, we combine several typical utility
categories into one uniform utility framework, including
the typical mean-variance and risk-neutral utility, to
facilitates further analysis of optimal decision for
heterogeneous investors compared with time
diversification. By selecting a proper form from the
exponential and power function, we try to characterize the
dynamic properties of risk aversion impacted by the
interaction of both time and wealth. Such dynamic
treatment of risk aversion is more practical relative to
simple constant risk aversion. As a result, we construct a
new generalized utility model with time-varying risk
aversion, and use numerical illustrations to delineate the
optimal risky proportion and clarify the concept of time
diversification.

This paper is structured as follows. Section 2 reviews
three different utility categories and time diversification.
Section 3 discusses a desired function of risk aversion
that accounts for the experimental evidence in a risky
environment. Section 4 presents our model design and
numerical evidence. Section 5 concludes.

2 Optimal asset allocations for traditional
utility functions

2.1 Classification of traditional utility functions

In response to the constant, decreased and increased risk
aversion as wealth increases, the traditional utility
functions are classified into three categories: constant
relative risk aversion (CRRA), decreasing relative risk
aversion (DRRA), and increasing relative risk aversion
(IRRA). The three categories cover heterogeneous
investors different risk preferences reflected by a variety
of utility forms.

To summarize the categories described above, a
synthetic formula of utility function [2,3], is adapted

U(W) =
(W−c)1−δ −1

1−δ
(1)

Where W denotes the investors wealth,c denotes the
parameter discriminating utility category, andδ denotes
the risk aversion coefficient.

The risk aversion coefficient,δ , takes in general
different non-negative constants, representing the various
degree of risk aversion. The more the risk averse of
investor, the larger the coefficientδ , and vice versa.

Based on Eq (1), the relative risk aversion measure,
R(W,c), can be expressed as [16]

R(W,c) =−WU
′′
WW(W)

U
′
W(W)

=
δ

1− (c/W)
(2)

Note that R(W,c) is a discriminator to determine the
utility category, and dependent on both parametersW and
c. Whenc = 0, c > 0 or c < 0, the values ofR(W,c) are
respectively constant, decreasing or increasing depending
on the condition of wealth increasing, corresponding to
the three utility categories mentioned above: CRRA,
DRRA and IRRA. Hence, Eq (2) simplifies the three
utility categories, and facilitates the analysis of effecton
optimal asset allocation from risk aversion under a
uniform framework.

2.2 Inter-temporal optimal asset allocations of
three utility categories

For the sake of brevity, we assume there are only two
assets in the market, risky asset,S, and risk-free asset,T,
for investment choice. Then the wealth overt horizons,
Wt , can be written as

Wt = λtSt +(1−λt)Tt (3)

whereWt denotes the investment wealth overt horizons,
St denotes the income of risky asset overt horizons,Tt
denotes the income of risk-free asset overt horizons, and
λt denotes the initial portion of risky assets at horizont−1.

Given that the risk-free rate on unit horizon,RF , the
risk return on unit horizon,RS, and the condition of
continuous compounded rate, Eq (3) can be rewritten as

Wt = λtW0eRSt +(1−λt)W0eRF t

= λtW0eµt+σε
√

t +(1−λt)W0eRF t (4)

whereW0 represents investors initial wealth. In general,
the return of risky asset,RS, is assumed as a random
variable, following a standard Wiener process:
RS = µt + σε

√
t, where the expected return,µ , denotes

drift ratio, the variance of return,σ , denotes diffuse ratio,
and random variable,ε, follows the standard normal
distribution. By maximizing expected utility,E[U(W)], an
investor makes optimal decision to determine the
proportion of wealth allocated to risky asset. As discussed
above, a close link between the optimal decision and risk
preference is realized by utility function.

Based on Eq (4), Merton [2] drew a conclusion that
the optimal proportion allocated to risky asset is
independent of investment horizon, which argued against
the concept of time diversification. However, this result is
only from the CRRA utility category. Whether the other
investors also exhibit the similar result needs the
evidences of the other two utility categories: DRRA and
IRRA. As the analytic solution is hard to obtain, we adopt
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the numerical illustration to explore the optimal risk
proportion of these two utility categories.

Fig. 1 below plots the simulation results of three
utility categories. The optimal risk proportion of CRRA,
showing as a straight line, stands constant at about 55%
level. The visual evidence verifies the derivation in [2].
The curve of DRRA, however, indicates that as the
investment horizon increases, the resulting optimal risk
percentage shifts toward the upper-right, confirming that
investors with DRRA utility prefer more risky asset in the
portfolio for a longer investment horizon. The simulation
shows the growth of risk proportion from 20% up to 40%
as horizon extends from the beginning to the end. In
contrast to DRRA, the curve of IRRA moves toward the
bottom-right direction. The optimal percentage of risky
assets drops to 56% from the original 80%. The
differences among three utility categories suggest that the
investors with various risk preferences make diverse
optimal decisions. Although we find support of time
diversification from DRRA illustration, the evidences
from the other two categories argue that the occurrence
represents only a part of investors risk decisions rather
than all heterogeneous investors. In other words, the
concept of time diversification is just a particular example
of a large number of heterogeneous investors.
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Fig. 1: Optimal asset allocations of three utility categories over
investment horizons. Through setting the ranges ofc= 0, c> 0
and c < 0, we classify utility functions into the corresponding
three categories: CRRA, DRRA and IRRA. The simulation
parameters are designed as: (1) the discriminating coefficient
c = 0 for CRRA, c = 0.6 for DRRA andc = −0.4 for IRRA;
(2) the initial wealth levelW0 = 1; (3) the meanµ = 0.04 and
standard deviationσ = 0.12 of Wiener process by means of the
empirical data in Chinese A-stock market from Jan., 2006 to
Mar., 2011; (3) the risk-free interest rateRF = 0.025 based on
yearly fundamental interest rate of central bank of China in 2010;
(4) the constant risk-averse coefficientδ = 5.

2.3 Verification of mean-variance and
risk-neutral utility function

To test the completeness of the utility classification
above, two additional types of utilities: mean-variance
utility (MV utility) and risk-neutral utility (RN utility) are
included in the discussion. Likewise, the optimal portion
of a risky asset is obtained by maximizing the expected
utility.

The quadratic utility function,U(W) =W− 1
2δW2, is

used to derive the typical MV utility, where risk aversion,
δ , satisfies both conditions:δ > 0 andδW < 1, to ensure
U

′
(W) > 0 andU

′′
(W) < 0. By means of the expected

form of quadratic utility [16], the MV utility can be
obtained

E[U(W)] = E[W− 1
2

δW2]

= [1− 1
2

δE(W)]E(W)− 1
2

δσ2(W)

=U(E(W),σ2(W)) (5)

The utility of Eq (5) shows a positive relation with wealth
mean and a negative relation with wealth variance.
Analytically, the MV utility and expected quadratic utility
are equivalent and share the same optimal allocation. That
∂R(W)

∂W > 0 indicated by quadratic utility suggests the MV
utility actually belongs to IRRA category. The optimal
risk proportion decreases with the investment horizon,
which is consistent with [3].

Next, for the sake of brevity, we determine a typical
RN utility, U(W) =W. Due to the features ofU

′
= 1 and

U
′′
= 0, the numerical simulation is a feasible way to

explore this optimal allocation. To allow the result more
generalized, we still assume that investment wealth
follows Eq (4), and then the expected RN utility can be
expressed

E[U(W)] = λtW0e(µ+
1
2σ2)t +(1−λt)W0eRF t (6)

By differentiatingE[U(W)] with regard to risky share,λt ,
we can obtain the result:
∂E[U(W)]

∂λt
= W0e(µ+

1
2σ2)t −W0eRF t > 0. This is consistent

with the notion that the expected return on risky asset,µ ,
is in general greater than the risk-free rate,RF .
∂E[U(W)]

∂λt
> 0 indicates that if the larger risk proportion is

held, the investors would receive the higher expected
utility. Therefore, the investors with RN utility would
choose a risk percentage as high as possible over the
whole horizon. Fig.2 illustrates such investors always
hold 100% risky asset, which is consistent with the above
theoretical inference. The findings from RN utility satisfy
the feature of CRRA category: the optimal risk fraction
remains constant over investment horizons. Hence, RN
utility can be viewed as a special case of CRRA when
δ = 0. Under this case, the similar RN utility,
U(W) = aW−b, can be easily derived.
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Fig. 2: Optimal asset allocations of RN utility over investment
horizons. The parameters here are chosen the same as in Fig.1.

It should be noted here that the previous utility
categories have a common property with constant risk
aversion, δ . This artificial setting, apparently, is
inconsistent with investors risk preference in real
investment activities. In contrast, the investors risk
aversion relies closely on the influence of time and
wealth. By building a time-varying function, we
characterize the mixed impacts on investors risk aversion.

3 Construction of time-varying risk aversion
function

Risk aversion is a dependent variable related to time and
wealth. However, how to select a proper function to
express the relationship becomes a challenging part of
this study. To capture the mixed impacts of time and
wealth on investors risk aversion, two typical functions,
exponential function and power function, are introduced.
By identifying quantitatively whether the impacts from
time and wealth are consistent with the practice, we have
to choose the better function as a proxy of risk aversion
function.

3.1 Identification of proper risk-averse function
form

In most time-involved decisions, the delay in receiving a
return indicates a source of uncertainty. The longer delay
implies larger uncertainty. An investor would perceive
more risky if the delay of receiving his gains takes longer.
Correspondingly, the degree of risk averse of an investor
becomes higher. Which function can delineate such a
nature? Due to the fact that risk aversion increases with
time lengthens, therefore, searching for a proper form
from both typical increasing functions becomes more
appropriate: (1) the exponential function,δ (t) = exp(αt),

and (2) the power function,δ (t) = (1+αt)β/α , whereα
andβ are both constant coefficients, andt is the length of
investment horizon.

As shown in Fig.3, the major difference between the
exponential and power functions is their own concavity.
The graph of the power function is concave down ont
interval(0,+∞) where an investor possesses a decreasing
marginal risk aversion. This nature implies that given the
same investment interval, the investor would manifest less
impatient (more risk-tolerant) for the remote payoff than
for the equally imminent payoff. Contrarily, the graph of
the exponential function is concave up ont interval
(0,+∞) where an investor presents an increasing
marginal risk aversion. In the latter case, the investor
becomes less patient (more risk-averse) for the distant
gain than for the equally immediate gain, conditional on
the same investment interval. In summary, the power
function represents that the remote outcome over the
same investment horizon is preferable while the
exponential function shows that the immediate outcome
has the priority. Specifically, the slope of the power
function att = 50 equals 0.0353, which is less than the
slope of 0.0645 att = 20, as shown in Fig.3, consistent
with the above theoretical analysis.
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Fig. 3: Risk aversion comparison of exponential function with
power function. (1) the exponential functionsδ (t) = exp(αt)
with α = 0.03; and (2) the power functionδ (t) = (1+αt)β/α

with α = 3 andβ = 1.

To identify which function is more reasonable, we
borrow the survey results in Table1 of [7] to make a
careful comparison.

As shown in the first two columns of Table1, a large
majority of subjects in the imminent future prefer
Prospect A over B. However, when all settings remain the
same, only the time is delayed by 26 weeks. A large
majority of subjects change their preferences from
Prospect C to D, i.e., preference reverse. Such evidences
from the experiment present a diminishing impatience. If
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Table 1: Observations for three different levels of uncertainty
Probability of monetary reward

high middle
certainty certainty certainty
p= 1.0 p= 0.9 p= 0.5

Imminent future
A.100 now 82% 54% 39%
B.110 in 4 weeks 18% 46% 61%
Remote future
C.100 in 26 weeks 37% 25% 33%
D.110 in 30 weeks 63% 75% 67%

Source: Keren and Roelofsma (1995)

the outcome is fixed, subjects are more impatient (less
tolerant) over an interval closer to the present, and less
impatient (more tolerant) over an equal interval relatively
more distant. Comparing to the two functions described
above, the power function turns out to be a perfect choice
to interpret investors real risk preference.

The third column of Table1 implies that the
preference remains the same regardless of the length
delayed. This could be caused by the higher uncertainty.
When uncertainty is added up to a certain level, e.g. 50%,
it would distort subjects rational decision. At this status,
most of subjects could consider the consequences of
potential loss more, and incline to choose the larger
outcome regardless of the difference of time. This also
indicates that using the power function as a proper
expression of investors risk aversion is under the
condition of high certainty.

3.2 Effects of time and wealth on risk aversion

As the time and wealth, two factors determining the risk
aversion, are varied over the whole investment horizon
when investors make optimal decision, it is crucial to
include them in the select power function. Before
designing the detailed function, we first need three
reasonable assumptions to clarify the time effect, wealth
effect and tradeoff effect of time and wealth, respectively.

Assumption 1 (time delay effect): given a relatively
high certainty,p, receiving future outcome and a constant
level of original wealth, longer time delay leads to stronger
risk aversion, but marginal risk aversion decreases. This
feature, called time delay effect, can be explicitly exhibited
through a set of inequalities

δ (W, t, p)< δ (W, t +∆ t, p),and
∂ 2δ
∂ t2 < 0 (7)

where∆ t equals the increment of time, andp equals the
level of certainty.

Assumption 2 (wealth increment effect): given a
fixed investment horizon, sayt, and a relatively high
certainty, p, investors risk aversion declines as wealth

goes up, but increases as wealth decreases. The wealth
reduction would cause investors to be more prudent to
future risk investment. The marginal value of risk
aversion drops. The effect induced by wealth variation,
called wealth increment effect, can be expressed as

δ (W+ |∆W| , t, p)< δ (W, t, p),

δ (W−|∆W| , t, p)> δ (W, t, p),

andδ (W−|∆W| , t, p) = θδ (W+ |∆W| , t, p),

and
∂ 2δ

∂ |∆W|2
< 0 (8)

where∆W is the wealth increment, andθ is a constant
greater than 1, reflecting the more risk aversion from
wealth reduction.

Assumption 3 (tradeoff effect): there exists a tradeoff
ratio,k, between time delay and wealth change. The degree
of risk aversion from time delay can be offset (amplify)
linearly by wealth addition (reduction).

Fig. 4 plots the impact of time and wealth on investors
risk aversion. The wealth loss and the time delay
commonly cause a higher degree of risk aversion,
forming an overlap impact on risk aversion. In contrast,
the wealth growth reduces the degree of risk aversion,
partially offsetting the risk aversion due to time delay.
The change of risk aversion, however, is always above a
certain lower level,δ1, as shown in Fig.4. This is since
investors, even if possessing sufficient wealth, still need
to reserve some capital for necessary consumption, such
as retirement, education and etc.

Fig. 4: Impacts of time and wealth on investors risk aversion

In line with the qualitative description above, a
time-varying risk aversion model might be more
appropriate to capture the dynamic effects of time and
wealth on risk aversion than do the constant risk aversion
in traditional utility categories.
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3.3 Constructing time-varying risk aversion
model

The dynamic property of risk aversion is addressed by
two types of opposite common impacts: one is the overlap
impact of time delay and wealth reduction, and the other
is the offsetting impact of time delay and wealth addition.
Based on the selected power function, we propose a
time-varying risk aversion function, which includes the
common effects of both wealth change and time delay.

δ (∆W, t) =

{

δ0[1+α(t − ∆W
kW0

)]β/α +δ1,∆W ≥ 0

δ0[1+α(t −θ ∆W
kW0

)]β/α +δ1,∆W < 0
(9)

whereδ0 is the initial risk aversion at horizont = 0, δ1 is
the critical degree of risk aversion,k is the tradeoff ratio
between wealth change and time delay, andθ is the
asymmetric coefficient.θ takes in general value greater
than one to reflect the stronger influence from wealth
reduction on risk aversion. Other notations in Eq (9) have
the same denotation as described earlier in the paper.
Considering the continuous growth of wealth, Eq (9) can
be rewritten

δ (∆W, t) =

{

δ0[1+α(t − egt−1
k )]β/α +δ1,∆W ≥ 0

δ0[1+α(t −θ egt−1
k )]β/α +δ1,∆W < 0

(10)
whereg denotes investors growth rate of wealth. Here we
take the parameterα as an odd number to ensure the
existence of Eq (10). We notice that the risk aversion
given by Eq (10) is independent of investors initial
wealth,W0, satisfying the hypothesis of traditional utility
function.

For a given length of time delay, the potential
influences of wealth change can be clarified through
discussing the following three extreme cases:∆W →+∞,
∆W = 0 and∆W →−∞. When∆W →+∞, it means that
the investor has enough capital to cover the loss, and then
decreases gradually his risk aversion. In contrast, the
investor with decreased wealth, i.e.:∆W → −∞, would
have less likelihood to recover loss in an investment, and
be inclined to being more cautious with future investment
decisions. Hence, the degree of risk aversion would be
significantly enlarged. Last, for the investors with
constant wealth, i.e.:∆W = 0, the time delay becomes the
only one factor to affect risk aversion. The value of risk
aversion increases as the length of time delay. Fig.5
illustrates the mixed impacts of time and these three cases
of wealth.

As shown in Fig.5, the evolution of risk aversion
exhibits two types of distinct tendencies. The two upward
curves represent the increasing risk aversion. The one is
caused by the increased time delay alone (solid line), and
the other by the combined effects of the time delay and
wealth reduction (dashed line). All the values on the
curve of the combined effects (dashed line) are
significantly greater than those on the curve caused by the
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Fig. 5: Numerical illustrations of the time-varying risk aversion.
Using the time-varying risk aversion model based on the selected
power function characterizes the properties of investors dynamic
risk aversion. The parameters are set as follow: (1) the time delay
in year t ∈ [0,80], representing an average investors lifecycle
(about 80 years); (2) the initial wealthW0 = 1; (3) the initial
and critical risk aversionδ0 = 5 andδ1 = 0.001, respectively;
(4) the constant coefficientsα = 3 andβ = 1; (5) the tradeoff
ratio between wealth change and time delayk = 1.5; (6) the
asymmetric coefficientθ = 30, depicting the larger impact
from wealth reduction; (7) the yearly growth rate of wealth
g= 0.06,0,or = −0.06, corresponding to positive, invariable or
negative increment of wealth, respectively.

pure time effect. This indicates that the decreasing wealth
intensifies the risk aversion. In contrast, the reversal curve
(dashed-point line) supports the increasing wealth offsets
partial uncertainty resulting from time delay. When the
marginal increase of risk aversion caused by time delay is
greater than the marginal decrease brought by increased
wealth, the risk aversion would grow until it is peaked at a
certain time level. The simulated peak value is at about
t = 60. And then the risk aversion would drop as the
wealth further increases. The numerical observations
confirm the previous discussion that increasing wealth
partially offsets the uncertainty of future return.

4 Optimal asset allocation of the generalized
utility model

4.1 The generalized utility model with
time-varying property

By substituting time-varying risk aversion in Eq (10) into
the uniform utility framework in Eq (1), we construct the
generalized utility model (GUM) with time-varying risk
aversion as follows

UG =
(W−c)1−δ (∆W,t)−1

1−δ (∆W, t)
(11)
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The generalized utility,UG, is related to the time delay
and wealth change. This is more consistent with investors
real risk preference than traditional utility of constant risk
aversion. The inter-temporal optimal decision would be
impacted by the interaction between these two factors.
The simulation illustrations in the next section discover
the joint influence on optimal decisions resulting from
time and wealth.

4.2 Optimal asset allocation based on GUM

The optimal proportion allocated to risky assets can be
obtained by maximizing expected utility. There are three
different scenarios of wealth under GUM: constant wealth
(WI = 0), wealth growth (WI > 0) and wealth decrease
(WI < 0). The numerical simulation still is a feasible
alternative to explore the optimal decision as the analytic
solution is unavailable.

Fig. 6 shows simulation results whenWI = 0. In this
scenario, only the impact of the time delay on the optimal
allocation needs to be accounted for. As mentioned above,
when δ is a constant, the optimal risk proportions of
CRRA, DRRA and IRRA remains constant, decreasing or
increasing over horizon, respectively. However, when
considering the time-varying property of risk aversion,
the optimal risk proportions of three utility categories
share the uniformly decreasing properties. This tendency
is due to the increased risk aversion caused by the
extension of time delay only, as described in Fig.5. The
greater risk aversion leads to the smaller risk proportion
of an optimal portfolio. When the time delay exceeds a
certain level, i.e. at aboutt = 60, as shown in Fig.6, an
investor holds nearly zero risky assets in portfolio.

Fig. 6 provides the explicit evidence inconsistent with
the concept of time diversification, even including the
CRRA category. The conflictive result is simply because
time delay affects investors risk attitude. More
specifically, time delay intensifies the degree of the
investors risk aversion. The investor who is more risk
averse would choose less risky asset so that he could
achieve the higher expected utility.

Next, we expand the wealth status fromWI = 0 to
WI > 0 to explore a more practical situation in which an
investor holds increased, instead of constant, wealth. As
discussed above, increased wealth enables an investor to
better compensate possible loss and thus make them more
risk tolerant. When the positive marginal effect of wealth
exceeds negative marginal effect from time delay, the
curved shape of investors risk aversion withWI > 0
reverses downward as demonstrated by an inverted
U-Shape in Fig.5. However, the curves of optimal risk
allocation in Fig.7 show the U-shape, which is caused by
the inverted U-shape of risk aversion. This is because
when an investor becomes more risk averse, then optimal
proportion allocated to risky asset decreases, and vice
versa. When investment horizon stands at the level of 60,
risky asset allocation reaches the bottom as shown in Fig.
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Fig. 6: Optimal asset allocations of GUM withWI = 0 over
investment horizons. Investors wealth remains constant over the
entire investment horizon. Other parameters keep consistent with
the settings in Fig.1 and Fig.5.

7. The completely opposite shape of curves in Fig.5 (risk
aversion) and in Fig.7 (optimal risk allocation) illustrates
explicitly that investors risk aversion indeed has a
significant effect on optimal investment decision.
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Fig. 7: Optimal asset allocations of GUM withWI > 0 over
investment horizons. Investors wealth continues to increase over
the whole horizon. The growth rate of wealth is set asg= 0.06,
slightly over the actual CPI of 0.051 in April, 2011 in China.
Other parameters remain the same as the settings in Fig.1 and
Fig. 5.

Last, whenWI < 0, the investor suffers from double
pressures from time delay and wealth reduction. The
possibility to compensate the potential loss falls
dramatically as the investment horizon lengthens. Hence,
the degree of risk aversion would obviously be magnified.
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The overlap effect leads the investor to hold smaller risk
proportion over an equal horizon. The critical horizon that
the investor exchanges all risky asset for the other safe
investment vehicles approximately stands at a horizon of
t = 55.

There is a surprising similarity between Fig.6 and
Fig. 8, such as decreasing curves and critical horizon. The
only distinction betweenWI < 0 andWI = 0 lies in the
decreasing slope. Due to higher risk aversion when
WI < 0, the optimal percentage of holding a risky asset,
as shown in Fig.8, declines faster than that ofWI = 0, as
shown in Fig.6. The notion that younger investor holds a
larger proportion of risky assets focuses only on the
possible compensation of wealth growth, but neglects
wealth reduction and time uncertainty. Therefore, the
opinion of time diversification is flawed when we fully
consider the combined effects of both time and wealth on
risk aversion.
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Fig. 8: Optimal risk allocations of GUM withWI < 0 over
investment horizons. Investors wealth continues decreasing over
the whole horizon. The decreasing rate of wealth is set asg =
−0.06. Further parameters are chosen as in Fig.1 and Fig.5.

5 Conclusions

By introducing time delay and wealth change into the
power function, we develop a model of the time-varying
risk aversion to capture investors more practical risk
preference. Based on the time-varying risk aversion, a
newly generalized utility model (GUM) under the
uniform utility framework has been built to further
investigate the inter-temporal optimal decisions of
heterogeneous investors.

The evidences from the numerical simulation support
the arguments that the optimal proportion allocated to
risky asset depends significantly on the investors risk

aversion. And the concept of time diversification is
proved to be only a coincidence with traditional DRRA
category of constant risk aversion. Under GUM, the
optimal risk proportion of three utility categories, such as
DRRA, CRRA and IRRA, show obviously different
tendencies from the concept of time diversification.
Almost all short-term investors in three wealth statuses
choose relatively riskier portfolios than long-term
investors. The evolution of the optimal risk proportion is
opposite to the change of the risk aversion curve. Our
study shed light on further research that provides better
approximation of the tradeoff ratio between wealth
increment and time delay.
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