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Abstract: The main object of this paper is to obtain several symmetric propertiege gfzbta type functions. As applications of these
properties, we give some new interesting identities for the modgfi€gnocchi polynomials. Finally, our applications are shown to
lead to a number of interesting results which we state in the present paper.
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1 Introduction

Throughout this paper, we use the following standard

notations:

N:={1,2,3,---} and Np:={0,1,2,---} =NU{0}.
Also, as usualR denotes the set of real numbers and
denotes the set of complex numbers.

The Genocchi polynomial&n(x) and the Genocchi
numbers G, := G,(0) are given by the following
generating functions:

and

@
> t" 2t
H;G” n e+l

respectively. In particular, the second generating fuomcti
in (1) can be restated as follows:

(It] < m),

Bt | (Bt _ o

by using theumbral (symbolic) convention exhibited by
G" := Gp. By utilizing the Taylor-Maclaurin expansion,

one finds that

(G+1)"+Gp= )

0 (otherwise.
It follows from (2) that (see, for details2P)])

Gi=1 Gy=-1 G3=0, G4=1, G5=0,
Ge=-3, Gr=0, Gg=17,...

and (in general)

GZn+1 =0 (n S N).

The history of the Genocchi polynomia,(x) and
the Genocchi number§, can be traced back to the
Italian mathematician, Angelo Genocchi (1817-1889).
From Genocchi to the present time, the Genocchi
polynomials and the Genocchi numbers have been
extensively studied in many different contexts in such
branches of Mathematics as, for instance, Elementary
Number Theory, Complex Analytic Number Theory,
Homotopy Theory (especially stable Homotopy groups of
spheres), Differential Topology (especially differehtia
structures on spheres), Theory of Modular Forms
(especially Eisenstein serieg);Adic Analytic Number
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Theory (especiallyp-adic L-functions) and Quantum On the other hand, Ara@t al [6] introduced theg-Zeta
Physics (especially quantum groups). Investigationsyype function ¢q(s,x) which is slightly different from
involving the Genocchi polynomials and their associatedkim’s g-zeta functionZy (s,x) defined by 7):
combinatorial relations have received considerable

attention in recent years (see, for detail§, [2], [3], [6], - 1 ®
[71, [8], [16], [24], [30] and [26]). q(s:%) 1:@/ 5 { Ry (x,—t) ot
Araci et al. [6] studied the modifiedg-Genocchi " 0 N
polynomials which are given by the following generating =2 (-1)°q ; )
function: n; (x+ [n]q)
[ tn .
Fq(xt) = nzogn,q 00 = (s€ C; x# —[nlq (n€No)),

® m (x i )t whereFq (x, —t) is given by @). From 3) and @), we find
[Z]thzo(*Q) e Ma, (3)  that (seef))

where theg-number(A]q is given by 2q (—n,x) = gn;iql(x) (n € No). )
_1-d .
Algi=7— q (0<g<1;A€0), 4) " Moreover, by using?) and @), we have

so that, obviously, we have

_ q-, (s, qt [x]q71> =q(s,X). (10)
lim {[A]q} =A (A €C).

q—1-
. ) The Zeta functions play a crucially importaritle in
In the case wher=0in (3), it leads to Analytic Number Theory and have applications in such
%q(0) :=%hq areas as (for example) physics, probability theory, agplie

statistics, complex analysis, mathematical phygieadic
that is, to the modifiedg-Genocchi numbergs, q. In analysis and other related areas. In particular, the Zeta
addition to this, by lettingg — 17, Gnq reduces to the functions occur within the concept of knot theory,

Genocchi numbers,: guantum field theory, applied analysis and number theory
im (73— G (see B, [10], [11], [20], [21], [22], [23], [28] and [31]).
q_}l,{ na} = Gn. The distribution formula for the modifieg-Genocchi

polynomials is given by (se])
The Genocchi number&,(x) possess a number of
important properties and are well known in Number a )
Theory. In fact, these numbers are related to the values at “ha (q [d]qx) =

negative integers of the Euler Zeta function defined by [d]n—l d—1 al
(see RO), [22], [23], [28], [29]; see alsoB1]) dq %(—1)""(1""(”“)%(4«1 <X+ s ; ) . @Ay
00 (_1>n [ ]—q a— ' q [ ]q
{(s,X) = = P(—-1,5x 5 ford=1 (mod 2.
( ) n;) (X+n)5 ( ) ( ) ( 2)
. — 7= 0. —1 — Araci et al. [8] derived several new identities for the
(seC; xe C\Zy; Zg :={0,-1,-2,...}),

(h,q)-Genocchi  polynomials and gave symmetric
identities of the(h,q)-Zeta type functions. Yuan Hel{]
gave symmetric identities for Carlitz’sg-Bernoulli
numbers (see alsol?] and [13]). Kim also obtained
symmetric identities for theg-Euler polynomials and

where ®(z;s;a) denotes the widely- and
extensively-studied general Hurwitz-Lerch Zeta function
defined by (see, for example§, p. 121et seq] and [29,

p. 194et seq]; see also27], [31] and [32)])

© A~ derived the symmetric identities for thgEuler Zeta
?(zs,a) = Z}m (6) function (see 15]). Simsek p5] gave the complete sum of
n= products of (h,qg)-extension of the Euler polynomials.
(a €C\Zy; se Cwhen|z < 1; 0(s) > 1 when|z) = 1)_ Bagdasaryan investigated the elementary evaluation of the

i i . Zeta function and presented a real analytic approach to
Recently, Kim P0] defined theg-Euler Zeta function  the values of the Riemann Zeta function (see, for details,

as follows: [9] and [10)).
> (-1)"q" ) _ The symmetric identity of the Genocchi polynomials
da(s.x) =[2q XnS (s€ C;xe C\Zy). is given by Theorem 1 below (se&1]).
n=
@)
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Theorem 1Let a and b be odd integers. Then we have  which readily yields
< <r,n>ailbmiGi (bX) Sn_i(a) afl(il)J' quq—asbx—sbjz o[sq? {bXJr bl]
i;} | JZO g ’ a qa
m m) . . a—1 b—1
= S a™ G (ax) Snoi(b),  (12) _(as CYigh T (1) g2
iZ)(I - [a]q[Z]an;( 1) q I;( 1) q-x
where o i (—1)Mqgmb2 17)
60 a—1( i g ) &, [ab(m-+x) +ai+bjlga
a):= - .
JZO : Upon replacinga by bandj by i in (16), we get
Motivated essentially by some of the aforecited qfasbkaszb s,q? |ax +Ei
investigations, the fundamental aim of this paper is to o\ b q-b
generalize Theoreml by presenting an interesting and a1
potentially useful extension of the symmetry identity) — 52 S (- 1)1 qi°
to hold true for the modified;-Genocchi polynomials qra JZO
arising from the above-mentionegZeta type functions. w m.mba
Several other related results are also considered. (=1)7q (18)

2 The g-Zeta Type Functions

In this section, we recall fron8] that
< (=1Tqm

1o (e m)

ZCI (37 X) = (14)

In view of (10), we consider14) in the following form:

q—asbx—sbjzqa (S, q2 [bx—i— bj} ) _
a q-a

For non-negative integeksandi such thaim= bk+i
with0<i < b-1, if we suppose that=1 (mod 2 and
b=1 (mod 2), then we have

q*aSbequa (s, q? [bx+ k‘ﬂ ) (16)
q—a
< (=pTqm
2loe n;) [ma-+abx-+bjJga
w0 b— ( l)l+mbq(|+mb)
z (i+mb)a+ abx+ bj]
e S (- y YT

P (* )'q? mZO [ab(m+x) + ai + bj]aa,

8 ,TZO [ab(m+x) +ai+bj5

Thus, by applying 17) in (18), we obtain the following
theorem.

Theorem 2For any odd integers a and b, we have

[2] b a-1 i S bi
ag Y ( o aLa)
2] o b-1
_ [[kj]qs Z) (_1) qla(l S)X
q i=

X qu (s, q® {ax+ {ﬂ ) . (19)
qb

Remark 1. Upon settingb = 1 in Theorem2, we easily
deduce that

lo(safady) =
2q 3

i i(l-s) 7 —a i

Taking a = 2 in (20), we derive the following
Corollary.

Corollary 1.For any odd integer a, we have
A e — 21
Zq ( , 0 [ ]q 1) [Z]qz [2}2 X ( )

rmertafoed )]
qe

Remark 2. If we takes= —n in Theorem2, we get the
following symmetric property of the modifiegtGenocchi
polynomials.
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Theorem 3For any odd integers a and b, we have

a—1

Aeplely ™" 3 (-1

X nep (qa [bx+ b'} ) _
| ).

b1 o
= [Pplbly " 3 (-1 d"

X G b <qb [ax+ E;l)l] qb> . (22)

We now takeb = 1 and replaces by % in Theorem3.

where
a—1

St (@) = ;(—niq“ [lg-

(27)

Remark 3. Lettingg — 1~ in Theorend, we can deduce
the known symmetry identityl@).

3 Concluding Remarks and Observations

In this article, we have derived~several symmetric
properties of they-Zeta type functiorfq (s, x) defined by

(8). As applications of these properties, we give new
interesting symmetry identities for the modified

We thus restate the distribution formula for the modified d-G&nocchi polynomialsé, q (x) which are defined by

g-Genocchi polynomials as follows:

2 a—1 o
na (~1Xq) = [[2]]“ Ayt 3 (-1

@ i=

X G gp (qa [X:I} q—a> , (2ta). (23)

We next find from 8) that

5 tnacy) 7 = 2t 3 ("l )

) tm 0 tn
~(5) (S

which, by applying the Cauchy product, yields

<] tn
n;%q (X+Yy) o

_ ni <ki) (E) G (%) y”k) :Tr:

Thus, by comparing the coefficients %}fon both sides of
this last equation24), we get the following Corollary.

Corollary 2.For n € Np, we obtain

“nq (x+y) = ki (E) Y q (x) yn—k_

By using Theoren8 and @5), we can derive Theorem
4 below.
Theorem 4For any odd integers a and b, we have
N /n
2oy "5 () e 2ioly

X Ghq (a7 10X-a) S, o (8) =

- by 3 () by
X % q (Q’b [ax 43) S(inil) (b).

(24)

(25)

(3). In the limit wheng — 17, this last result (Theorem 4)
is shown to yield the known symmetry identity2) for

the Genocchi polynomiaiGn(x).
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