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Abstract: In this paper, we proposed an efficient numerical method based on uniform Haar wavelet for the numerical solutions of
two parameter singularly perturbed boundary value problems. Such type of problems arise in various field of science and engineering,
such as heat transfer problem with large Peclet numbers, Navier-Stokes flows with large Reynolds numbers, transport phenomena in
chemistry and biology, chemical reactor theory, aerodynamics, reaction-diffusion process, quantum mechanics, optimal control theory
etc. In present study more accurate solutions have been obtained by wavelet decomposition with multiresolution analysis. An extensive
amount of error analysis has been carried out to obtain the convergence of the method. Four test problems are considered to check the
efficiency and accuracy of the proposed method. The numerical results are found in good agreement with exact and existing solutions
in literature.
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1 . Introduction

The present paper deals Haar wavelet method to find the
numerical solutions of the two-parameter singularly
perturbed boundary value problems

Ly ≡ −ǫa(x)y′′ + µb(x)y′ + c(x)y = f(x) x ∈ (0, 1)
(1)

subject to the boundary conditions

y(0) = α, y(1) = β (2)

with two small parameters,0 < ǫ ≪ 1 and0 ≪ µ ≪ 1 .
The functionsa(x), b(x), c(x) and f(x) are assumed to
be sufficiently smooth real valued function and satisfied
a(x) ≥ a∗ ≥ 0, b(x) ≥ b∗ > 0 andc(x) ≥ c∗ ≥ 0 for
x ∈ (0, 1). Under these assumptions the problem(1) is
characterized in three cases: Forµ = 0 problem (1)
becomes reaction diffusion problem with boundary layer
of width o(ǫ) at x = 0 and forµ = 1 problem(1) is
reduced in convection-diffusion problem with boundary
layer of widtho(

√
ǫ) in the neighbourhood ofx = 0 and

x = 1. For µb(x) = a
′

(x) problem (1) is self adjoint
problem.

It is well known that singularly perturbed problems
often have very thin boundary layers and internal layers
where the solution varies rapidly, whereas away from the
layer, solution behaves regularly and varies slowly. So the
numerical treatment of singularly perturbed problems
faces major difficulties. A large number of research
papers and books have been published describing various
methods for solving singular perturbation
problems [1–17].

Due to the variation in the width of the layer with
respect to the small perturbation parameters several
difficulties are experienced in solving the singular
perturbation problems using standard numerical methods
with uniform mesh. There are three principal approaches
to solve numerically the model equation(1), namely,
finite difference method, finite element method and spline
approximation [5–9,14].

In recent years, wavelet approach is becoming more
popular in the field of numerical approximations.
Different types of wavelets and approximating functions
have been used for this purpose. Any function ofL2(R)
can be expressed by the dilation and translation of
wavelet functions, so it had drawn a great deal of
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attention from scientists and engineers. Wavelets
especially adopted to solve the equation with the singular
solution and local severe gradients. Wavelets have many
excellent properties such as exact representation of
polynomials to a certain degree, flexibility to represent
functions at different levels of resolution.

The Haar wavelets have gained popularity among
researchers and scientists for their useful properties such
as simple applicability, orthogonality and compact
support. Compact support of the Haar wavelet basis
allows straight inclusion of the different types of
boundary conditions in the numerical algorithms. An
essential shortcoming of Haar wavelets is that it is not
continuous, that is derivatives do not exist at the point of
discontinuity, therefore it is not possible to apply the Haar
wavelets directly to solve differential equations. There are
two possibilities of ending this stand still situation. First,
piecewise constant Haar functions can be regularized with
the spline interpolation that generates the complexity in
the solution. Another possibility is to expand all functions
into Haar series in place of Haar function itself. The detail
discussion of Haar wavelets and its applications can be
seen in [10–13].

In this paper we have applied the technique of Haar
wavelet method to approximate highest derivative
appearing in the differential equation by Haar series and
the other derivatives are obtained through integration of
Haar series. The integration of Haar wavelet is preferred
because the differentiation of Haar wavelet always results
impulse functions. Through integration we can expand
differential equation into Haar matrixH with Haar
coefficient matrixP of 2M × 2M order on collocation
points. The main idea of this technique is to convert a
differential equation into algebraic one. In order to
approximate the solution of differential equation we
collocate the algebraic equations at collocation points.
The benefits of Haar wavelet transform are sparse matrix
of representation; possibility of implementation of fast
algorithms, the method is more accurate with less
computations than other existing methods. In this article
the error analysis is carried out that shows! high order
convergence can be achieved on increasing the value of
M to obtain the desired approximation.

The paper is organized as: Section2 gives a brief
description of the Haar wavelet. The derivation of the
Haar wavelet transform scheme for various cases of two
parameter singularly perturbed problem has been
described in Section3. In Section 4 we present the
convergence analysis of Haar wavelet method. In Section
5 we consider four numerical problems for comparison
with existing methods. The conclusion is given in Section
6.

2 . The Haar Wavelets and its Theoretical
Aspects

Haar function had been used since1910 and it was
introduced by Hungarian mathematician Alfred
Haar [11]. Haar function is an odd rectangular pulse pair
that is the simplest and oldest orthonormal wavelet with
compact support. There are different definitions of Haar
function and its various generalization had been discussed
in the literature. Alfred Haar shown that certain square
wave function could be translated and scaled to create a
basis set that spanL2. After one year, it was seen that the
system of Haar functions is a particular wavelet system. If
we choose scaling function to have compact support over
0 ≤ x ≤ 1, that is the Haar wavelet family forx ∈ [0, 1]
and defined as

hi(x) =







1, x ∈ [ξ1, ξ2)
−1, x ∈ [ξ2, ξ3)
0, otherwise

where

ξ1 =
k

m
, ξ2 =

k + 0.5

m
, ξ3 =

k + 1

m
(3)

integerm = 2j , j = 0, 1, 2, ..., J indicates the level of
wavelet and integerk = 0, 1, 2, ...m − 1 is the translation
parameter andJ is Maximal level of resolution. The index
i in equation(3) is calculated from the formulai = m +
k + 1. In the case of minimal valuesm = 1, k = 0 we
have i = 2. The maximum value ofi is given by i =
2M = 2J+1. For i = 1, the functionh1(x) is the scaling
function for the family of the Haar wavelets and defined
by

h1(x) =

{

1, x ∈ [0, 1)
0, otherwise

(4)

In the Haar wavelet method the following integrals are
used

P1,i(x) =







x− ξ1, x ∈ [ξ1, ξ2)
ξ3 − x, x ∈ [ξ2, ξ3)
0, otherwise

(5)

P2,i(x) =















(x−ξ1)
2

2 , x ∈ [ξ1, ξ2)
1

4m2 − (ξ3−x)2

2 , x ∈ [ξ2, ξ3)
1

4m2 , x ∈ [ξ3, 1)
0, otherwise

(6)

In general

Pv+1,i(x) =

∫ x

0

Pv,i(x
′)dx′ (7)

wherev = 1, 2, 3, ...

C1,i(x) =

∫ 1

0

P1,i(x)dx (8)
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Any function g(x) which is square integrable in the
interval (0, 1) can be expressed in the following form of
Haar wavelet

g(x) =

∞
∑

i=0

aihi(x) (9)

The above series terminates at finite terms ifg(x) is
piecewise constant or can be approximated as piecewise
constant in each subinterval. The best way to understand
the wavelets is through a multi-resolution analysis. If a
functiong ∈ L2(R), a multiresolution analysis (MRA) of
L2(R) produces a sequence of subspacesUj , Uj+1, ...
such that the projection ofg onto these spaces provides
finer and finer approximations of the functiong asj → 0.

2.1 Multiresolution Analysis

In this section, we shall study the construction of the
wavelet and the properties of multiresolution analysis. A
multiresolution analysis ofL2(R) is defined as a
sequence of closed subspacesUj ∈ L2(R),j ∈ Z with the
following properties

(a)0... ⊂ U−1 ⊂ U0 ⊂ U1 ⊂ ...L2

(b) the spaceUj satisfy∪j∈ZUj is dense inL2(R) and
∩j∈ZUj = {0}

(c) If g(x) ∈ U0(x), g(2j(x)) ∈ Uj(x) i.e. the spaces are
scaled version of the central spaceU0

(d) If g(x) ∈ U0(x), g(2j(x)− k) ∈ Uj(x) i.e. all theUj

are invariant under translation.
(e) There existsφ ∈ U0 such thatφ(x−k), k∈Z is a Riesz

basis inU0 .

The spaceUj is used to approximate general functions by
defining appropriate projection of these functions onto
these spaces. Since the union of allU0 is dense inL2(R),
so it guarantees that any function inL2(R) can be
approximated arbitrarily close by such projections. As an
example the space U0 can be defined as
Uj = Wj−1 ⊕ Uj−1 = Wj−1 ⊕ Wj−2 ⊕ Uj−2 = ... =

⊕j−1
j=0Wj ⊕ U0 then the scaling functionh1(x) generates

an MRA for the sequence of spacesUj , j ∈ Z by
translation and dilation in property(c) and(d). For eachj
the spaceWj serves as the orthogonal complement ofUj

in Uj+1 . The spaceWj includes all the functions inUj+1

that are orthogonal to all those spaces inUj under some
chosen inner product. The set of functions which form
basis for the spaceWj are called wavelets [12, 13]. In
Haar wavelet the approximate solution can be expressed
in term of scaling function basishi(x)at scaleJ as.

g(x) =

2(J+1)−1
∑

i=0

aihi(x)

3 . Haar Wavelet Method for solving
differential equations

To construct a simple and accurate Haar wavelet method
for problem (1) we approximate highest order derivative

y
′′

(x) using Haar wavelet series as follows

y
′′

(x) =
2M−1
∑

i=0

aihi(x) (10)

On integrating equation(10) we gety
′

(x), y(x) and finally
y(x) can be expanded in form of Haar wavelet series and
its integrals [26–28].

y
′

(x) =

2M−1
∑

i=0

aiP1,i(x) + y
′

(0) (11)

y(x) =
2M−1
∑

i=0

ai(P2,i(x) + y
′

(0))x+ y(0) (12)

whereP1,i, P2,i are defined in equation (5) and (6).
The presence of two integration constants allow us the
addition of two extra equations which can be done by
using information on the governing equation and
boundary conditions at both ends of the line.
Discretization using collocation pointsxz = z−0.5

2M
z = 0, 1, 2, 3, ..., 2M − 1 of equations (10)-(12) can be
reduced into the following matrix form

y
′′

=





h0(x0) ... h2M−1(x0) 0 0
... ... ... ...

h0(x2M−1) ... h2M−1(x2M−1) 0 0





[

a
b

]

(13)

y
′

=





P1,0(x0) ... P1,2M−1(x0) 1 0
... ... ... ...

P1,0(x2M−1) ... P1,2M−1(x2M−1) 1 0





[

a
b

]

(14)

y =





P2,0(x0) ... P2,2M−1(x0) x0 1
... ... ... ...

P2,0(x2M−1) ... P2,2M−1(x2M−1) x2M−1 1





[

a
b

]

(15)
The boundary condition can be transformed into

[

y(0)
y(1)

]

=

[

P2,0(0) ... P2,2M−1(0) 0 1
P2,0(1) ... P2,2M−1(1) 1 1

] [

a
b

]

(16)

wherea = [a0, a1, ..., a2M−1]
T andb = [y

′

(0), y(0)]T .
To calculatey

′

(0) we integrate equation (11) from0 to 1
then we have

y
′

(0) = y(1)− y(0) +

2M−1
∑

i=0

aiC1,i (17)

Now substitute the values ofy
′′

(x), y
′

(x) and y(x) in
equation(1) and we get non homogeneous system of
algebraic equations which contains2M equations and
2M unknowns. On solving this system using back slash
command in Matlab we obtain the Haar coefficients. The
approximate solution can be determined using Haar
coefficientsai, i = 0, 1, 2, ...2M − 1 in equation(12).
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4 . Error Analysis

In this section we employ the error analysis for the
proposed scheme. In order to check the convergence of
the proposed scheme we consider the asymptotic
expansion of equation (12) as given below

Y (x) = α+ (β − α)x+

∞
∑

i=0

ai(P2,i(x)− xC1,i) (18)

The error estimation asJ th resolution level is

|Y (x)− y(x)| =|eJ (x)| = |
∞
∑

i=2M

ai(P2,i(x)− xC1,i|

(19)

||eJ (x)||2 =|
∫ ∞

−∞

∞
∑

i=2J+1

∞
∑

n=2J+1

aian (P2,i(x)

−xC1,i) (P2,n(x)− xC1,n)dx|
(20)

||eJ (x)||2 =|
∞
∑

i=2J+1

∞
∑

n=2J+1

∫ ∞

−∞
aian (P2,i(x)

−xC1,i) (P2,n(x)− xC1,n)dx|
(21)

≤
∞
∑

i=2J+1

∞
∑

n=2J+1

aianKi,ndx (22)

where Ki,n 6= (0) ∈ R, ∀n = 2J+1, 2J+1 + 1, · · ·
andKi =

∞
sup

n=2J+1

Ki,n (23)

But an =
∫ 1

0
2

j

2 y(x)h(2jx−k), k = 0, 1, 2, ..., 2j−1 and
j = 0, 1, ...J

hi(2
jx− k) =







1 k2−j ≤ x < (k + 1
2 )2

−j

−1 (k + 1
2 )2

−j ≤ x < (k + 1)2−j

0 otherwise

(24)
Therefore

an = 2
j

2 (

∫ (k+ 1
2 )2

−j

k2−j

y(x)dx−
∫ (k+1)2−j

(k+ 1
2 )2

−j

y(x)dx)

= 2
j

2 ((k +
1

2
)2−j − (k)2−j)y(η2)−

2
j

2 ((k + 1)2−j − (k +
1

2
)2−j)y(η1) (25)

where

η1 ∈ ((k)2−j − (k +
1

2
)2−j),

η2 ∈ ((k)2−j − (k +
1

2
)2−j)

consequently we have

an = 2
j

2−1(y(η2)− y(η1))

Applying mean value theorem

an = 2−
j

2−1(η2 − η1)y
′

(η),

where η ∈ (K2−j , (K + 1)2−j)

an ≤ 2−
j

2−12−jD = 2
−3j−2

2 D, sincey
′

(η) ≤ D

||eJ (x)||2 ≤
∞
∑

i=2J+1

aiKi

∞
∑

n=2J+1

an (26)

≤
∞
∑

i=2J+1

aiKi

∞
∑

n=2J+1

2
−3j−2

2 D

≤
∞
∑

i=2J+1

DaiKi

∞
∑

n=2(J+1)

2
j
2
+1−1
∑

n=2
j
2

2
−3j−2

2

≤
∞
∑

i=2J+1

DaiKi

∞
∑

n=2(J+1)

2
−3j−2

2 2
j

2

≤
∞
∑

i=2J+1

DaiKi

∞
∑

n=2(J+1)

2−j−1

≤
∞
∑

i=2J+1

DaiKi
2−2(J+1)−1

1− 1
4

(27)

Similarly ai ≤ D2
−3j
2 −1 andK =

∞
sup

i=2j+1

(Ki)

Therefore

||eJ (x)||2 ≤ D2K

∞
∑

j=2(J+1)

2
−3j
2 −12

j

2 (
2−2(J+1)−1

1− 1
4

)

≤ D2K

∞
∑

j=2(J+1)

2−j−1(
2−2(J+1)−1

1− 1
4

)

≤ D2K(
2−2(J+1)−1

1− 1
4

)(
2−2(J+1)−1

1− 1
4

)

||eJ (x)||2 ≤ D2K(
2−2(J+1)−1

1− 1
4

)(
2−2(J+1)−1

1− 1
4

)

(28)

||eJ (x)||2 ≤ D2K(
2−2(J+1)−1

1− 1
4

)2

||eJ (x)||2 ≤ 2D
√
K(

2−2(J+1)

3
)2

(29)
From equation (29) we can clearly conclude that
||eJ (x)|| → 0 when J → 0 i.e. error is inversely
proportional to the resolution of the Haar waveletJ . Thus
the proposed composite scheme is convergent.
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5 . Numerical Experiment and Discussion

To demonstrate the applicability of the method, we
consider four singular perturbed problems which have
been widely discussed in the literature and exact solutions
are available for comparison. First three problems are
reaction diffusion and self-adjoint problems forµ = 0,
µb(x) = a(x)

′

in equation (1) and last problem is
convection diffusion problem forµ = 1.

Problem 1:

ǫy′′ + y = −(cos2(πx) + 2ǫπ2cos(2πx)) x ∈ (0, 1)
(30)

with boundary conditions

y(0) = 0, y(1) = 1 (31)

The exact solution of the problem is given by

y(x) =
e(−(1−x)/

√
ǫ) + e(−(x)/

√
ǫ)

1 + e(−(1)/
√
ǫ)

(32)

The numerical results of the problem are shown in Tables
1-3 and in Figures1, 2. Table 1 shows the maximum
absolute error at different values ofM for small values of
ǫ. Tables2, 3 provide a comparison of maximum absolute
error with the existing methods [6, 20, 25] and it is
concluded that the present method gives better results
than [6, 20, 25]. Figure 1 compares the exact and
numerical solutions while Figure2 depicts the physical
behaviour of the problem for different values ofǫ.

Problem 2:

ǫy′′ + y = −40[x(x2 − 1)− 2ǫ] x ∈ (0, 1) (33)

with boundary conditions

y(0) = 0, y(1) = 0 (34)

The exact solution of the problem is given by

y(x) = 40x(1− x) (35)

Tables4, 5 and Figures3, 4 report the numerical results of
the problem 2. Table4 shows the maximum absolute error
for different values ofM andǫ while Table5 presents a
comparison of maximum absolute error with the existing
methods [6, 17–19]and it is concluded that proposed
method gives better results. Figure3 compares the exact
and numerical solutions while Figure 4 depicts the
physical behavior of the problem for different values ofǫ.

Problem 3:

−ǫy′′ + (1 + x(1− x))y =

1 + x(1− x) + (2
√
ǫ− x2(1− x)e(−(1−x)/

√
ǫ))

(36)

y(0) = 0, y(1) = 1 (37)

The exact solution of the problem is given by

y(x) = 1 + (x− 1)e(−x/
√
ǫ) − x e−(1−x)

√
(ǫ) (38)

Table6 shows the maximum absolute error of the Problem
3 for different values ofǫ and M. Tables7 compare the
maximum absolute error with different methods [20, 21]
and it is concluded that our method gives better results.
Figures5 − 6 show a comparison of numerical and exact
solutions while Figure 7 depicts numerical behavior of the
problem for different values ofǫ. From Table7 and Figure
6 following are the observations:-

•When M is fixed and ǫ decreases then maximum
absolute error decreases slowly and increases rapidly
near toǫ = 10−7.

•When ǫ is fixed andM is increasing then maximum
absolute error decreases.

•Whenǫ andM both are fixed then maximum absolute
error is large asx → 0 andx → 1.
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n

−−− Exact solution
o  Haar solution

Fig. 1: Physical behaviour of exact and numerical solutions of
problem1 for ǫ = 2−25 andM = 32.

Problem 4:

ǫy′′ + µy′ + y = cos(πx) x ∈ (0, 1) (39)

with boundary conditions

y(0) = 0, y(1) = 1 (40)

The exact solution of the probelm is given by

y(x) = a1cos(πx)+b1sin(πx)+Ae(λ1x)+Be(−λ2(1−x))

(41)
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Fig. 2: Physical behavior of numerical solutions of problem1 for
different values ofǫ andM = 16.
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Fig. 3: Physical behaviour of exact and numerical solutions of
problem2 for ǫ = 10−3 andM = 64.

where

a1 =
ǫπ2 + 1

µ2π2 + (ǫπ2 + 1)2
, b1 =

pπ

µ2π2 + (ǫπ2 + 1)2

(42)

A =
−a(1 + e(−λ2))

1− e(λ1−λ2)
, A =

a(1 + e(λ1))

1− e(λ1−λ2)
(43)

and λ1, λ2 are the roots of the characteristic equation
−ǫλ2 + µλ + 1 = 0. The numerical results of the
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Fig. 4: Physical behavior of numerical solution of problem2 for
different values ofǫ andM = 64.
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Fig. 5: Physical behavior of exact and numerical solutions of
problem 3 forǫ = 10−2 andM = 64.

problem are shown in Table8 and Figures8− 10. Table8
presents a comparison of maximum absolute error with
the existing methods [22, 24] and it is concluded that our
method gives better results. Figure8 compares the exact
and numerical solutions while Figures9− 10 depict same
physical behavior of the problem for different values ofǫ
and fixed value ofµ = 106 as shown in [23]. For this
problem it is observed that whenǫ decreasesµ = 10−6,
M = 128, the error increases as shown in Table10. From
Figure8 − 10 it is concluded that the width of boundary
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Fig. 6: : Physical behavior of exact and numerical solutions of
problem 3 forǫ = (10)−5 andM = 256.
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Fig. 7: Physical behavior of numerical solution of problem 3 for
different values ofǫ andM = 128.

layer decreases and wave shape becomes more and more
stiff at x = 0 andx = 1.

6 . Conclusion

In the present study, numerical solutions of two
parameters singularly perturbed boundary-value
problems; reaction diffusion, self adjoint problem and
convection diffusion problem are discussed using Haar
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Fig. 8: Physical behavior of exact and numerical solutions of
problem 4 forǫ = (10)−4, µ = (10)−3, M = 256.
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Fig. 9: Physical behavior of numerical solution of problem 4 for
different values ofǫ, µ = (10)−2, M = 16.

wavelets method. The proposed method is
computationally efficient and the algorithm can be easily
implemented on computer. The Haar solutions are very
good in agreement with exact solutions and solutions
available in literature [6, 17, 22, 24, 25]. The comparison
with analytical solution shows that Haar wavelet gives
better results with less computational cost: it is due to the
sparsity of the transform matrix and small number of
wavelet coefficients. It is worth mentioning that Haar
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Table 1: Maximum absolute error of problem 1 for different values ofM and small value ofǫ

ǫ = 2−K M=16 M=32 M=64 M=128 M=256 M=512 M=1024

K= 6 5.07E-4 1.27E-4 3.18E-5 7.94E-6 1.98E-6 4.96E-7 1.24E-7
K= 10 6.10E-3 1.80E-3 4.68E-4 1.19E-4 2.98E-5 7.46E-6 1.87E-6
K= 20 3.20E-3 1.23E-2 2.93E-2 1.94E-2 1.27E-2 6.10E-3 1.80E-3
K= 25 1.01E-4 4.04E-4 1.60E-3 6.40E-3 2.13E-2 2.92E-2 1.44E-2
K= 30 3.16E-6 1.26E-5 5.05E-5 2.02E-4 8.08E-4 3.20E-3 1.23E-2
K= 35 9.88E-8 3.95E-7 1.58E-6 6.32E-6 2.53E-5 1.01E-4 4.04E-4
K= 40 3.09E-9 1.23E-8 4.93E-8 1.97E-7 7.90E-7 3.16E-6 1.26E-5
K= 45 9.64E-11 3.86E-10 1.54E-9 6.17E-9 2.47E-8 9.87E-8 3.97E-7
K= 50 3.01E-12 1.20E-11 4.82E-11 1.93E-10 7.72E10 3.09E-9 1.23E-8

Table 2: Comparision of maximum absolute error of problem 1 for different values ofM andǫ = 2−K

ǫ = 2−K Kadalbajoo et.al. [6] Present method ǫ = (2−K)2 Bawa et.al. [25] Present method

K= 10 5.022E-2 1.80E-3 K= 10 5.022E-2 1.23E-2
K= 20 3.125E-2 1.23E-3 K= 20 3.125E-2 1.23E-8
K= 25 3.125E-2 4.04E-4 K= 25 3.125E-2 1.20E-11

Table 3: Comparison of maximum absolute error of problem 1 for different values of M andǫ = 10−K .

ǫ = 10−K M = 24 M = 26 M = 28

Kumar [20] Present method Kumar [20] Present method Kumar [20] present method

K=3 0.55E-1 5.97E-3 0.10E-1 4.57E-4 0.27E-2 2.91E-5
K=4 0.28E-1 1.44E-2 0.44E-1 4.06E-3 0.69E-2 2.89E-4
K=5 0.31E-2 2.49E-3 0.42E-1 1.39E-3 0.34E-1 2.60E-4
K=7 0.31E-4 3.39E-4 0.56E-3 5.37E-3 0.90E-2 3.02E-2

Table 4: Maximum absolute error of problem 2 for different values ofM andǫ = 10−K

ǫ = 10−K M=16 M=32 M=64 M=128 M=256 M=512 M=1024

K=3 3.55E-15 5.32E-15 6.22E-15 1.06E-14 1.06E-14 1.24E-14 8.89E-15
K=4 1.24E-14 5.15E-14 1.24E-14 2.13E-14 1.06E-14 2.31E-14 3.82E-14
K=5 2.11E-11 2.66E-14 6.57E-14 1.08E-13 7.81E-14 5.50E-14 6.21E-14
K=6 4.08E-14 5.50E-14 2.36E-13 1.69E-13 3.35E-13 4.24E-13 2.30E-13
K=7 2.30E-14 9.06E-14 2.14E-13 1.01E-13 8.01E-13 9.17E-13 2.15E-12
K=8 2.30E-14 2.49E-14 1.88E-13 3.29E-13 1.18E-12 1.34E-12 1.69E-12

Table 5: Comparison of maximum absolute error of problem 2 for different values ofM andǫ = 10−K

ǫ = 10−K Miller [19] Niijima [18] Niijima [17] Kadalbajoo [6] Present Method

K= 3 0.64E-02 0.65E-02 0.65E-04 1.776E-15 1.77E-015
K= 6 0.77E-03 0.31E-02 0.33E-04 1.776E-15 5.32E-015
K= 9 0.00E+00 0.13E-03 0.11E-04 1.789E-15 8.88E-015

Table 6: Maximum absolute error of problem 3 for different values ofM andǫ = 2−K

ǫ = 2−K M=16 M=32 M=64 M=128 M=256 M=512 M=1024

K=6 6.14E-4 1.56E-4 3.91E-5 9.80E-6 2.45E-6 6.12E-7 1.53E-7
K=10 6.40E-3 1.90E-3 5.01E-4 1.28E-4 3.21E-5 8.03E-6 2.00E-6
K=20 3.20E-3 1.22E-2 2.92E-2 1.94E-2 1.27E-2 6.10E-3 1.80E-3
K=25 9.96E-5 4.01E-4 1.60E-3 6.40E-3 2.13E-2 2.92E-2 1.44E-2
K=30 3.11E-6 1.25E-5 5.03E-5 2.02E-4 8.07E-4 3.20E-3 1.23E-2
K=35 9.73E-8 3.92E-7 1.57E-6 6.30E-6 2.52E-5 1.01E-4 4.04E-4
K=40 3.04E-9 1.22E-8 4.92E-8 1.97E-7 7.89E-7 3.15E-6 1.26E-5
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Table 7: Comparison of maximum absolute error of problem 3 for different values ofǫ andM .

ǫ = 10−K M = 24 M = 27

Kumar [20] Lubuma [21] Present method Kumar [20] Lubuma [21] Present method

K=1 0.72E-2 0.94E-3 2.03E-4 0.11E-2 0.24E-3 3.18E-6
K=2 0.24E-1 0.57E-2 8.93E-4 0.42E-2 0.15E-2 1.44E-5
K=3 0.77E-1 0.28E-1 6.32E-3 0.29E-2 0.11E-1 1.24E-4
K=5 0.46E-2 0.53E-2 2.46E-3 0.82E-1 0.13E-2 8.14E-3
K=7 0.46E-4 0.53E-2 3.33E-4 0.35E-2 0.13E-2 1.88E-3
K=7 0.46E-8 0.53E-2 3.34E-8 0.35E-6 0.13E-2 2.16E-6

Table 8: Comparisons of maximum absolute error with other existing methods of problem 4 for different values ofǫ, µ.

µ
ǫ = 10−2,M = 128 ǫ = 10−4,M = 128

Kadalbajoo et.al [22] Zahra [24] Present Method Kadalbajoo et.al. [22] Zahra [24] Present Method
10−3 8.3832-5 4.1924-5 4.2303 E-5 9.4446-3 4.7598-3 5.1964E-3
10−4 8.2686-5 4.1296-5 4.1318 E-5 9.0436-3 4.2856-3 4.1710E-3
10−5 8.2572-5 4.1232-5 4.1220E-5 9.0036-3 4.2295-3 4.0754E-3
10−6 8.2561-5 4.1226-5 4.1210E-5 8.9996-3 4.2238-3 4.0659E-3
10−7 8.2559-5 4.1225-5 4.1209E-5 8.9992-3 4.2232-3 4.0650E-3
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Fig. 10: Physical behavior of numerical solution of problem 4 for
different values ofǫ, µ, M = 32.

wavelet provides excellent results for small and large
values ofM .
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