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Abstract: In this paper, we will prove some new dynamic inequalities on a time §taldese inequalities, as special cases, when
T =R contain some integral inequalities and wl&a- N contain the discrete inequalities due to Leindler. The main results will be
proved by using the Blder inequality and a simple consequence of Keller’s chain rule on tinkesséaom our results, as applications,
we will derive some new continuous and discrete Wirtinger type inequalitfestechnique in this paper is completely different from
the technique used by Leindler to prove his main results.
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1 Introduction and

[oe] [oe] p 00 n p
Since the discovery of the classical Hardy inequalities 5 K <pP § AP Ak p
(continuous or discrete) much work has been done, anqz1 (") ang( )] =p n; ") k; (k) ] g"(n).
many papers which deal with new proofs, various (4)

generalizations and extensions have appeared in thghe converses oBjand @) are proved by Leindler ir[7).
literature. We refer the reader to the book4,[L5,21] and He proved that if 0< p < 1, then
the papers 4,511,12,13,16,18,19,20,23] and the 0
references cited therein. The classical Hardy inequality @

n p 00 0
states that fof > 0 and integrable over any finite interval > A (N) <kzlg(k)> > pP Zlf\ Y P(n) (kz A (k)> g°(n),
= n= =n

(0,x) and f¥ is integrable and convergent ov@, ) and "t ®)
k> 1 then
and
00 1 X k k k 00 K 0 0 p 0 n p
/ <X/ f(t)dt) dx < (k_1> / Fogdx (1) Sam | Sak | =p° T AMPM) | S A(P) | ().
0 0 0 n=1 k=n n=1 k=1
K , (6)

The constant(k/(k—1))" is the best possible. The pynamic inequalities of Hardy type were established in
classical discrete Hardy |nequa||ty IS given by [22,25,26,27,28,29,30,31] on a time Scaléﬂ“, which is

K an arbitrary closed subset of the real numbRrsThe
(12 . k \*& K cases when the time scale is equal to the reals or to the
n _Zla(') = (k—l) 2 am, k=1 (2 integers represent the classical theories of integral &nd o
= n=t discrete inequalities. In this paper, without loss of

Some of the generalizations of the discrete Hardy9enerality, we assume that silp= «, and define the time

inequality @) are due to Leindler]6,17). In particular,  Scale intervalty, )z by [to, )t := [to,0) N'T. For more
Leindler in [L6] proved that ifp > 1, A (n), g(n) > 0, then details of time scale analysis, we refer the reader to the
two books by Bohner and Petersoi],[ [4] which

> p summarize and organize much of the time scale calculus.
p
g°(n),

n=1

© n P ™ ®
A ( S;ms)) <P 5 A (508

The natural question now is: if it is possible to prove
) some new dynamic inequalities on time scales which as
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special cases contain the inequaliti&-(6)? The main  (iii)lf gis differentiable and is right-dense, theg? (t) =
aim of this paper, in Section 2, is to give an affirmative  |jm ,, 909

answer to this question. The main results will be proved yy|f g t’sis differentiable
by making use of Hlder's inequality and a simple g(a(t)) =g(t) + ut)gA(t).
consequence of Keller's chain rule on time scales. From

our results, for the sake of applications, we will derive Note that ifT = R then

some new continuous and discrete Wirtinger type b b
inequalities (seel]). It is worth to mention here that the ot)=t, ut)=0, fA(t) = f'(t) / f(t)At:/ F(t)dt
technique that we will apply in this paper is completely ’ ’ " Ja a
different from the technique used by Leindler to prove his

at then

main results.

2 Main Results

For completeness, before we prove the main results, Wé+ h,
recall the following concepts related to the notion of time

scales. A time scal& is an arbitrary nonempty closed
subset of the real numbels Without loss of generality,
we assume that sdp= o, and define the time scale
interval [a,b]r by [a,b]y := [a,b] N T. The three most

popular examples of calculus on time scales are
differential calculus, difference calculus, and quantum

calculus, ie, when T = R, T N and
T =q% = {d :t € No} where g > 1. We assume
throughout thafl' has the topology that it inherits from
the standard topology on the real numhgrshe forward

jump operator and the backward jump operator are

defined by:

o(t):=inf{seT: s>t}, p(t):=sup{seT: s<t},
where sup@= inf T. A pointt € T, is said to be left-dense
if p(t) =t andt > infT, is right-dense ifo(t) =t, is
left—scattered ifp(t) < t and right—scattered ifr(t) > t.

A functiong: T — R is said to be right—-dense continuous (Vi+1)

(rd—continuous) provided is continuous at right—-dense
points and at left-dense pointsh left hand limits exist

and are finite. The set of all such rd—continuous functions

is denoted byC.4(T).

The graininess functiop for a time scal€l is defined
by u(t) := o(t) —t, and for any functionf : T — R the
notationf?(t) denotesf(a(t)). Fixt € T and letx: T —
R. Definex?(t) to be the number (if it exists) with the
property that given ang > 0 there is a neighborhoad of
t with

(o (1)) =x(s)] —x*(t)[a(t) — 5| < gla(t) -5,

for all s U. In this case, we say?(t) is the (delta)
derivative ofx att and thatx is (delta) differentiable at.
We will frequently use the following results due to Hilger
[10]. Throughout the paper will assume thgit T — R
and lett € T.

(DIf gis differentiable at, theng is continuous at.
(ihIf gis continuous at andt is right-scattered, thegis

differentiable at with gA (t) = %()-90.

if T=Z,then
ot)=t+1, u(t)=1, f4(t)=Af(t),

and [2 f(t)At = sP-2f(t), if T=hZ, h> 0, thena(t) =
(t)=h,and

_ _Y(t+h) —y()
YA(t) = Any(t) == I —

b—a-h

b Th
/ fHat= Y flatkhh,
a k=0

and if T={t:t = gf, k€ No, q> 1}, thena(t) = qt,

(x(gt) —x(t))

() = agxt) =

00

Ttmat= S Hd9u(,

fo k= Np

whereto = g0, and if T = N3 := {n?: n€ No}, thena (t)
2

Y(VE+D)?) —y(t)

p(t) =1+2VA, Any(t) = 112k

In this paper, we will refer to the (delta) integral which we
can define as follows. 1G#(t) = g(t), then the Cauchy
(delta) integral of ¢ is defined by
[Lg(s)As:= G(t) — G(a). It can be shown (se@]) that if

g € Ci4(T), then the Cauchy integrab(t) := ftg g(s)As
exists, to € T, and satisfiesG?(t) = g(t), t € T. An
infinite integral is defined as
[ £(t)At = limp_e [2 f(t)At. We will make use of the
following product and quotient rules for the derivative of
the productfg and the quotient /g (wheregg? # 0, here
g? = go 0) of two differentiable functiorf andg

(fg) = f9g+19g" = fg + 1497

(§) -
g gg°

(7)
and

(8)
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We say that a functiomp : T — R is regressive provided Applying the chain rule @, Theorem 1.87])f%(5(t)) =

1+ p(t)p(t) # 0, t € T. The chain rule formula that we  '(5(d))52(t), whered € [t, o (t)], we see that there exists
will use in this paper is d € [t,o(t)] such that

(®P(1)? = p@P(d)(@4(1)) = pdPY(d)g(t). (16)

Since®? (t) = g(t) > 0, anda(t) > d, we see that(d) <

1
)2 =y / [ +(1—h)xY tdhd(t),  (9)
0 @®9(t). This and 16) imply that

which is a simple consequence of Keller's chain ri8g | YRV a4\ p-1
Theorem 1.90]. The integration by parts formula is given (@P(1)" (A1) < pg(t) (A1) (®°(1)> = (17)
by Substituting 17) into (15), we have

/bu(t)vA(t)At:[u(t)v(t)]gf /buA(t)v"(t)At. (10) / A (@7()"At
/ x ﬁt) 1) (97" *t. (18)

To prove the main results, we will use the following
Holder inequality B, Theorem 6.13]. Leq, b € T. For

U,V € Cg(T, R), we have Applying the I—blder inequality 11) on the right hand side

of (18) with indicesp, p/p— 1, we see that

/|u |At<{/ Ju(t |th} U vt |PAt} : /:W[Wt))v(fb“(t))“ At
1

PP
wherep > 1 andlp +% = 1. Throughout the paper, we _ /°° Ag(t At (19)
will assume that the functions are nonnegative |/a (A (U)p;pl
rd-continuous functionsA —differentiable, locally delta 1-1/p

integrable and the left hand sides of the inequalities exist Uw/\ t) (D"(t))pﬂt}
if the right hand side exists. In the following theorem, we
will prove the time scale version of Leindler's inequality sybstituting 20) into (18), we have

(3) on time scales.
//\(t)(cbo(t))pAt
(At)g(t)”
<ol [ G
x 1/ U /\(t)(t.’o"(t))pAt} o (20)
This implies that

[ 0@ mPas e [C0w)PAPngPwat,

a

Theorem 2.1. Let T beatimescaleand p > 1. Let

)= /t “A(s)bs, (12)

and

?(t) :/tg(s)As, forany te[a,o)g. (13)

T which is the desired inequalitytf). The proofis complete.

hen
/w)\ (t)(@(t))PAL < pP /m()\ (1)1 PAP(t)gP(t)At. Remark. As a special case of Theorem 2.1 whHEr= R,
a a

(14) we have the following integral inequality of Leindler’s

Proof. Integrating the left hand side ofl4) by parts type (note that whefll = R, we have(t) =t)

formula (10) with UA(t) = A(t), Vo (t) = (®9(1))P, to ® t P
it [ 20 [ aeas) a
© 0 00 00 p
| A0 @ ©)Rat = uer); <o [0 ([TAss) e po1
a t
+/ )AAt From this inequality, we have the following Wirtinger type
inequality

whereu(t) = — [["A(s)As = —A(t). This and the facts .
that ®(a) = 0 andA () = 0, imply that / APt (/ A(s ds) (G (t))Pdt

/:)\(t)(dJ"(t))pAt:/:(/\(t))(d—"p(t))AAt. 15 > ﬁ/a AOGP(t)dt, p> 1,
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whereG(t) is continuous and differentiable function with Proof. To prove the inequality23), we mtegrate the left
G(a) = 0. As a special case i (t) = 1/t? and replace» hand S|de by parts formulal@) with v2(t) = A(t), and
by 1, we get the well-known inequality due to Hardy u(t) = @"(t), to obtain

/(;1 (U/(t))zdt > %/Olt%uz(t), with U(0) =0, / AM(@(1)PAt = AP (1),
| + /: (K"(t)) (—@°1))° At.

- _ » _Using the facts tha®(») = 0 andA (a) = 0, we get that
The Wirtinger type inequalities have extensive

applications on partial differential and difference At

equations, harmonic analysis, approximations, number /

theory, optimization, convex geometry, spectral theory of

differential and difference operators, and others (seeApplying the chain rule @, Theorem 1.87]))f4(5(t)) =

[24]). f'(5(d))d2(t), whered € [t, o (t)], we see that there exists
de [t,o(t)] such that

with the best constant/4.

Atf/m (K“(t)) (") At (24)

Remark. Assume thal = Nin Theorem 2.1p>1,a=1.

Furthermore assume that — (EP(t))A = 7p6p_1(d)(5A (t). (25)
z AP (Z A(s ) P(n), Since®” (t) = —g(t) < 0, andd > t, we have
_(HP A (0 el — p—1
is convergent. In this case the inequalitf{ becomes the (cp (t)) (A (t)) = PIHATO(@M)™ (26)

following discrete Leindler’s inequality Substituting 26) into (24), we have

n P
n) (ZQ(S)> / A)@ ()AL < p / (@(t))Ptg(t)A’ (t)At.
< pP z ALP(n (z A(s )  p> 1. This inequality can be written in the form
/w)\ t) (@) At

From this inequality, we have the following discrete

Wirtinger type inequality - p/°° [ A(t)g(t)
a

8

[ee]

Alwm(zA@)?Aqmw
1 s=n

= < (A1) (@(1)P ] at. (27)
1 [oe]
T) z P op>1, Applying the Hlder inequality on the right hand side with
n=1 indicesp andp/p— 1, we see that
whereG(n) is a positive sequence with(1) = 0. = [ g)A(t b1
L1892 9 (000 @02
In the following theorem, we will prove a time scale a [ ( (t))T
version of Leindler’s inequality4) on time scales. . G p q1/p
Theorem 2.2. Let T beatime scaleand p > 1. Let < l/ g (ti At]
t a ()t
Alt) = / A(s)hs, 1) A 1-1/p
a X [ )\(t)(CD(t))pAt} . (28)
Ja
and - .
Substituting 28) into (27), we have
:/ g(s)As, forany te[a,o)r. (22) / At ))PAt
t
1/p
Then < p|:/ AP (Wa(t)g(t)) pAt}
a
/ M) (@(1)PAt < pp/ AP (A° (t))p(g(t))PAt. A 11
23 [/a )\(t)(CD(t))pAt} . (29)
@© 2014 NSP
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N SS ¥

This implies that

P

(9(t)’At,
(30)

which is the desired inequalit8). The proof is complete.

[ rw@mracp [“at e (A0)

Remark. As a special case of Theorem 2.2 when SinceW?(t) =

T=R and p > 1, we have the following integral
mequallty of Lelndlers type (note that whéh=R, we

have®’ (t) = ®(t))

/:)\(t) (/twg(s)ds>pdt
< pp/:)\l’p(t) (/:)\(s)ds) ")t

Remark. Assume thafl' = N in Theorem 2.2p > 1 and
a = L1 Furthermore assume
52 1A(N)(3R_1A(K)PgP(n) is convergentin this case

the inequality 23) becomes the following discrete

Leindler’s inequality

(o] (o] p
A k
S AM (kzng< >>

- P
pn;)\lfp(n) <k /\(k)) gP(n), p>1.

=]

<p (31)

1

In the following theorem, we will prove a time scale

version of Leindler’s inequalityS) on time scales.

Theorem 2.3. Let T beatimescaleand 0 < p < 1. Let

that

Applying the chain rule @, Theorem 1.87])f%(5(t)) =
f'(5(d))34(t), whered € [t, o(t)], we see that there exists

d e [t,o(t)] such that

(WP()° =

= q,/lfp(d) (l’UA(t)) = P

Wi-p(d)

gt). (36)

g(t) > 0,ando(t) > d, we see thaty?) >
Y(d), and then

p p
PER(d) (@)

Combining 86) and @37), we have that

A PA (t)g(t)Q(t)
(WP(Y)) Q(t)fi(w( )

Substituting 88) into (35), we have
0 p
([ rowwra)
p

o (_Pnern \7P
=0 | (omiomn) 4]

Applying the Hdlder inequality

[ rewas | e % [ewa |

on the term on the term

© [ gP(t) (QP(t) \ P
[/ (Ftomn) 2

with indicesq=1/p> 1 andh=1/(1—p), and (note

(wherep < 1). (37)

(38)

(39)

p

)

_ /w)\ (s)As 32) thatg+ =1, whereq>1)
t
gP(t)QP(t)
and Ft)= S 0
_ /tg(s)As (33) SO
a d
Then " G(t) = AT P(t) (WO (1)P P,
o " ° we see that
[ AQ@I PRt PP [ A PP, o e NP [ @er \ ]
a a 34 FYP)At ) = [ OEEE At]
Proof. Integrating the left hand side oB34) by éart)s </a > /"" <(l’u (t)P p))
formula (10) with u?(t) = A(t) and Vo (t) = (Wo(t))P, [ F()G(t)At
we obtain =z {IW(G(t))%}lip
| A0 m)Pat = wowro)l; . PO
+/ ()2t _/a (Wa(t))pi-P)
ALP@E)(WI(t))PEP)
whereu(t) = — [°A(s)As= —Q(t). This and the facts * T _ 5 At
that¥(a) = 0 andu(w) = 0 imply that {fa (AL=P(t)(WO(t))PI-P) TP AL
o I o - _ Ja PHQPHATP(H)AL
/a PYGIC) At:/a QU)(WP)2At.  (35) ROk
@© 2014 NSP
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This implies that

= (PR 1P
l/ (o) At]
L R POQPOATPAL

T USAm@em)rtr
Substituting 40) into (39), we have

(Ja AW

This implies that

p

(40)

?(1))Pat)° > ppat

gP(t)(QP(t)A T P(t)At
[Ja At

)(wo(t))pattP

[ A0 Ptz g [ AP g aroat,
a a
which is the desired inequaliti4). The proofis complete.

Remark. As a special case 08§), whenT =R andp <
1, we have the following integral inequality of Leindler’s
type (note that wheff = R, we have?? (t) = ¥(t))

/:)\ t) (/atg(s)ds)pdt
> pp/:/\lfp(t) (/tw)\(s)As>pgp(t)dt.

Remark.Assume thafl' = N in Theorem 2.3p <1 and
a= 1. Furthermore assume thgf_; A1~P(n)QP(n)aP(n)
is convergent and definén this case the inequality34)
becomes the following discrete Leindler’s inequality

o n p p
nzl)\(n) (k;g(k)> >pP z AL P(n (z Ak ) g°(n)

n=1
In the following theorem, we will prove a new time
scale version of Leindler’s inequalitg) on time scales.

Theorem 2.4. Let T beatimescaleand 0 < p< 1. Let
t
- / A(s)As (41)
a
and -
PO - [ oisas 42)
t

0)°at= pP [CATP)@° 1) PPt

/ At
(43)

Proof. Integrating the left hand side o#3®) by parts

wherev(t) = [1A(s)As= Q(t). From the inequality44)
and the fact tha/(«) = Q(a) = 0, we have
/ At ))PAt = / a° ()24t (45)

Applying the chain rulef(5(t)) = f'(5(d)) 54 (t), where
d € [t,o(1)], we see that there existisc [t, o(t)] such that

(_wp(t))A P

)g(t>- (46)

Since®” (t) = —g(t) <0, andd > t, we see that/(t) >
¥(d), and then

—, (note thatp < 1).

This, @6) imply that

pg(t)Q (t)

(-%°0)" @) > P2 D)
O

(47)

Substituting 88) into (35), we have
([r0@w0)ra)

> pP [/: (W)lmml

The rest of the proof is similar to the proof of Theorem 2.3
and hence is omitted. The proof is complete.

p

Remark. Assume thafl' =R in Theorem 2.4 ang < 1.
In this case, we have the following integral inequality of

Leindler’s type (note that whe = R, we haveﬁo(t) =

Q(t))
t) (/tm g(s)ds) pdt

/:)\
> pp/:/\l—p(t) </at/\(s)As>pgp(t)dt.

Remark.Assume thafl' = N in Theorem 2.4p <1 and

a = 1 Furthermore assume that
Se AT P(n) (SR, A(K)PaP(n) is convergent. In this
case the inequality4@) becomes the following discrete
Leindler’s type inequality

o o P p

formula (L0) with VA (t) = A (t), andu(t) = (¥(1))", we PY ALP(n P(n

obtain nzl)‘ n kzng(k) ZPp Z A Z Alk) | 9"

)P
/ Alt At Remark.Some Wirtinger type inequalities can be derived

2 form Theorem 2.2-4 as special cases. The details are left

= v(t P()4at, (44)  tothe reader.
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