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Abstract: Microwave Plasma Chemical Vapor Deposition (MPCVD) can be used to grow various kinds of diamond films and carbon
nanotubes at various temperatures. Issues concerning plasma modeling and control play an important role in MPCVD systems. One
crucial factor in controlling the plasma shape and positionis the tunable reflected microwave power of the MPCVD system.However,
modeling the tunable reflected power is highly complex and remains a poorly developed. In this paper, the microwave powerdistribution
corresponding to the adjustable electromagnetic field is modeled by 2-D Gaussian Mixture Modeling (GMM). The simulations using
the model show that microwave power data can be simplified to alinear combination of some Gaussian functions, allowing predictable
control for tuning manufacturing parameters and plasma sharp in real-time. The experimental results show that each E-Htuner position
can fabricate the Multiwall Carbon Nanotubes (MWCNTs) filmswith high reproducibility after GMM modeling.
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1 Introduction

Microwave Plasma Chemical Vapor Deposition
(MPCVD) techniques have been widely studied and
applied in several fields, especially to growing diamond
films and carbon nano-tubes (CNTs) [1,2,3]. In MPCVD
methods, many researches have shown that plasma
modeling is increasingly needed to optimize
manufacturing processing and control. However, dynamic
behaviors of plasma are highly stochastic and complex.
Various methodologies have been developed for modeling
plasma [4,5,6] and trying to formulate useful
mathematical equations for plasma dynamics. But, these
models are highly nonlinear and sophisticated, and need a
proper choice of parameters.

In general, modeling of plasma can be divided into
two main approaches: analytical models and statistical
models. Analytical models, [5,6] try to derive
self-consistent solutions to physical equations which
involve momentum, continuity, and energy conservation.
However, precisely modeling plasma variables is difficult
due to their high complexity. In statistical models, many
recent studies have modeled plasma by using neural

networks [7,8]. Neural network approaches have a better
ability to precisely predict plasma dynamics than others,
but have encountered problems in training.

In this paper, we focus on the problem of modeling
the power of microwave plasma andID/IG ratio
distribution. The microwave power of MPCVD systems is
presented in Section II. The quality indexes of MWCNTs
are described in Section III. A new modeling method is
proposed for optimizing the power of microwave plasma.
Then, the performance of the new method is assessed by
using model-based clustering analysis. First, the approach
for modeling the power of microwave plasma is proposed
in Section IV. Section V presents the experimental results.
Finally, section VI presents some conclusions and
suggestions for future efforts.

2 The Microwave Power of MPCVD systems

The MPCVD system used in this research is shown in
Fig. 1. The E-H tuner shown in Fig.2 is the tuning
element. Tuning the microwave power is required because
plasma impedance is influenced by various parameters of
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the plasma source and the plasma properties. Generally, it
can be said that changes in process conditions require
tuning. The E-H tuner includes three adjustable
parameters, thex,y, andzaxis positions. Tuning thex and
y positions adjust the amplitude of the microwaves in the
x and y directions. Tuningz adjusts the position of the
standing wave. To obtain a high density plasma the
microwave power needs to transmit maximum power to
the plasma. The reflected power can be thought of as the
characteristic of full power transmission of microwave
power in MPCVD systems. Fig.3 shows plasma image
frames with different E-H tuner settings. A plasma
density can be obtained by optimally tuning the position
of the E-H tuner. In this paper, we focus on the modeling
of microwave power in MPCVD systems and providing
optimal positioning of the E-H tuner for obtaining high
density plasma.

Fig. 1: The MPCVD System.
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Fig. 2: E-H tuner microwave power.

Fig. 3: Plasma image frames with different E-H tuner settings.

3 The Quality Indexes of MWCNTs

3.1 The aspect ratio

One of the novel properties of carbon nanotubes is that
they have a high aspect ratio (ratio of length to diameter).
Because of this high aspect ratio, they can be used in
many applications, such as field emission displays,
microwave power amplifiers, hydrogen uptake materials,
nano-size probes, etc. The length and diameter can be
inspected by scanning electron microscopy (SEM). One
image of MWCNTs produced by our MPCVD system is
shown in Fig. 4. The length and diameter of the
MWCNTs are 19.61µm and 46.67nm, respectively.
Therefore, its aspect ratio is about 420.

3.2 ID/IG band intensity ratio

Raman spectroscopy is often used in determining
properties of carbon materials. Raman scattering by
carbon materials has been analyzed in many studies.
Some authors have used principal component analysis to
discriminate the Raman spectra of functionalized
MWCNTs, and some have discussed methods for
determining Raman spectra of diamond films.

There are two important spectral bands in MWCNTs,
at ∼1575 cm−1 (G line) and at∼1338 cm−1 (D line).
These represent sp2 and sp3 structures and have been
reported by some groups. The G band corresponds to the
E2g modes, which represent the movement in opposite
directions of two neighboring carbon atoms in a graphite
sheet. The D band is induced by its dispersive disorder
presents in the MWCNTs. It is known that theID/IG band
intensity ratio increases when covalent bonds are formed
due to the formation of sp3 hybridized carbon defect sites.
Some authors not only discussed the intensity ofID and
IG bands but also the effects of full width at half maxima
(FWHM) of ID and IG band. They mentioned that larger
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peak intensity and smaller FWHM are consistent with the
higher contents.

An RENISHAW inVia Raman spectrometer for which
the excitation source was 514.5nm and the incident power
at the sample was 25mW was used to obtain the Raman
spectra in our experiment. One Raman spectrum of our
MWCNT shows two peaks in the G and D bands.
Moreover, we used theID/IG band intensity ratio to
define the quality index of MWCNTs.

Fig. 4: SEM picture of growing MWCNTs.

4 Modeling Approach

4.1 Model-based clustering

Cluster analysis is a popular and useful technique in
pattern recognition for unlabeled data. The goal is to
separate the data into groups which have similar
characteristics. These groups can be furthered studied and
analyzed from the homogenous characteristics in each
group. Several clustering techniques from time series
analysis have been proposed in the literature [9,10,11].
The five best known approaches for clustering
techniques [9] are partitioning methods, hierarchical
methods, density-based methods, grid-based methods and
model-based methods. There has also been extensive
work on classified clustering methods [10] for various
time series data. The three major approaches are
raw-data-based methods, feature-based methods and
model-based methods.

In our experiments, we observed the reflected power
data from our MPCVD system. Fig.5 shows the
transmission of microwave power in the MPCVD system
as a function of tuning E-H tuner. The x and y axes are
the positions of the E-H tuner and z axis is the intensity of
microwave power. Fig.5 shows four peaks (high
intensity) which we propose to model using a mixed
Gaussian distribution. We will assume a mixed Gaussian

model for each cluster and find the best fit for the
microwave power data.

4.2 Gaussian Mixture Modeling

In this paper, the GMM is used to approximate the
distribution of D/IG band intensity ratio and microwave
power. Here, based on the central limit theorem, the
overall uncertainty caused by the various factors over of
the ID/IG band intensity ratio and microwave power can
be well-modeled by one Gaussian distribution. The
Gaussian mixture modeling [12,13] is expressed by

p(x|θ ) =
M

∑
i=1

wi pi(x|θi) (1)

pi(x|θi) =
1

(2π)n/2 |∑i |
1/2

exp

[

−
1
2
(x− µi)

T ∑−1
i

(x−µi)

]

wherex is the vector of random variables,M is the number
of mixtures, parameter setθ = {wi ,ui ,Σi}, i = 1, . . . ,M.
pi(x|θi) is a normal distribution with meanui and variance
Σi , andwi is mixture weighting such that

M

∑
i=1

wi = 1, wi ≥ 0. (2)

The goal is to find the optimal estimate forθ by using
maximum likelihood estimation. The performance of
GMM depends on haveing sufficient training data. We
assume a training setx = (x1, . . . ,xn) of n independent
and identically distributed samples of random variablex.
The maximum likelihood function is

θ̂ = argmax
θ

L(θ ), L(θ ) =
n
∏
j=1

p(x j) . (3)

However, the parameters vectorθ in GMM can not be
estimated because the training data involves hidden
parameters. Expectation-Maximization [13] is preferred
method for finding the solution of maximum likelihood
estimation when hidden parameters are present. LetX be
the observed sample data set from some distribution and
Y be the hidden variables. At each EM step the algorithm
computes the expected value withY as the random vector
quantity

Q(θ |θ t) = EY[logp(X,Y|θ )|X,θ t) (4)
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The E-M algorithm iterates to improveθ

wt+1
i =

1
n

n

∑
j=1

p(i|x j),

µ t+1
i =

n
∑
j=1

p(i|x j)x j

n
∑
j=1

p(i|x j)

Σ t+1
i =

n
∑
j=1

p(i|x j)(x j − µ t+1
i )(x j − µ t+1

i )T

n
∑
j=1

p(i|x j)
(5)

until the log-likelihood increases by less than a threshold
from one iteration to the next.

Fig. 5: The transmission of microwave power in the MPCVD
system as a function of tuning E-H tuner.

5 Experimental Results

The E-H tuner in the MPVCD system uses the usual X, Y
and Z axes. Axis Z represents a stationary wave that
produces plasma at the center of the quartz tube when the
Z-tuner is set to 5 cm. While the Z-tuner remains fixed,
both the X and Y axes need to be changed to facilitate a
series of experiments. This study utilizes a reflective
power lower than 50% to adjust the E-H tuner position
and analyze the micro structure of the MWCNTs which
are fabricated at each corresponding position. The fixed
parameters used in this study are shown in Table1. In
addition, the distribution of the plasma in the chamber
affects the growing MWCNTs. However, the distribution
of the plasma in the chamber is not easy to calculate from
the equation because of complicated conditions, such as
the shape of the chamber, the pressure, and the
temperature [16]. Therefore, we set up the reflected power

sensor to measure the reflected power near the substrate
and the CCD camera in the observation window to
observe the image of the plasma in this chamber.

Table 1: Fixed parameters of MWCNTs fabrication

Gas Flow Rate([N2]:[H2]:][CH4])
10 sccm : 40
sccm : 20 sccm

Microwave Power source 1000 W
Substrate Temperature 1200◦C
Chamber Pressure 35 torr
Working distance 10 mm
Deposition Time 40 min
Preprocess Sol-Gel
Catalyst Fe3O4

5.1 ID/IG band intensity ratio and Microwave
Reflected power

Data for this study were collected from the microwave
tuning unit in the MPCVD system. The applied
microwave power ranged from 500 to 2000 watts. The
gaseous pressure in the reaction chamber was 35 torr. The
step motion of the E-H tuner in thex andy directions was
6 mm. The total number of steps inx and y directions
were 30 steps. Power was measured over 30 by 30 steps.
The reflected power distribution corresponding tox-y
positions is shown in Fig.4.

5.2 2-D pattern analysis

The model of microwave power was obtained using the
GMM approach described above. Before training GMM,
the 3-D microwave power distribution is resampled into 2-
D histogram [14]. Fig. 6 shows the results of training the
microwave power with GMM. The upper left plot of Fig.
6a presents the log probability of GMM training with 50
times iteration and the upper right plot shows the scatter
plot of microwave power. The lower left plot of Fig.6a
presents the result of GMM training and the lower right
shows its contour plot. For accurate modeling, we choice
different M for the GMM and the result forM = 4, 8, and
12 are shown in Fig.6. To verify the performance of the
GMM, the root mean square errors (RMSE) are used as
the performance index

RMSE=

√

1
n

n

∑
i=1

∣

∣

∣

∣

Yi −Y∗
i

Yi

∣

∣

∣

∣

2

(6)

whereYi are the observation values andY∗
i the modeling

values. The best valueM can be obtained by comparing
the RMSE for differentM.

The RMS errors for various values of M are plotted in
Fig. 7. To model theID/IG ratio distribution at each
position of the E-H tuner, we also adopt the GMM. The
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(b) M = 8
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(c) M = 12

Fig. 6: Results of training the microwave power with GMM for
M = 4, 8, and 12.

result forM = 18 is shown in Fig.8. The RMS errors for
various values ofM are shown in Fig.9 and indicate that
the RSME asymptotically converges to about 10% when
M = 18. The microwave power andID/IG ratio were
successfully modeled with a high reproducibility.

Fig. 7: RMSE for differentM.
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Fig. 8: Result of training the ID/IG ratio distribution with GMM
for M = 18.

Fig. 9: RMSE for differentM.
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5.3 Specific properties MWCNT fabrication
controlled by GMM

In the MPCVD system, the plasma distribution caused by
different E-H tuner positions also affected theID/IG ratio
of MWCNTs. Fig.10 shows theID/IG ratio variation in
Raman spectroscopy for 32 different positions inx andy.
By the morphology of produced nanotubes shown by
SEM, there were four examples that confirm that not only
the ID/IG ratio varied but also that thickness and diameter
varied (as shown in Fig.11 and Table2). This indicates
the plasma density had a strong effect on the carbon
atoms in nanotube production. The experimental results
show that when the position for E-H tuner adjustment is
at x = 19.3 cm,y = 10 cm, then the best averageID/IG
ratio 0.336, the average films thickness is 41.77µm, and
the average tube diameter is 31.26 nm. On the other hand,
when (X,Y) position is (7.3 cm, 13.9 cm), theID/IG is
1.32, the average films thickness is 9µm, and average
tube diameter is 57.78 nm. The SEM morphology and
Raman spectra of these two samples are shown in figures
12and13. Comparing with these the two micro-structures
by field emission test, the result shows that the lower the
ID/IG ratio, the better turn on voltage 0.54 V/µm, but the
turn on voltage of higherID/IG ratio is 0.82 V/µm.

Fig. 10: Raman spectra for different E-H tuner positions.

(a) (b) (c) (d)

Fig. 11: SEM morphology for different E-H tuner positions.

(a) (b) (c) (d)

Fig. 12: SEM morphology for different E-H tuner positions.

Table 2: The positions of figure (a)–(d)
(a) (b) (c) (d)

Position(X, Y)
unit: cm

(8.2, 13.9) (7.3, 12.9) (16.4, 4.9) (17.7, 7.9)

ID/IG ratio 0.986 1.1 1.112 0.84
Thickness
unit: µm

8.11 12.28 14.56 19.27

ID/IG=0.336

ID/IG=1.32

Fig. 13: Raman spectra for different E-H tuner positions.
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6 Conclusions and future works

In this paper, we proposed a GMM approach to modeling
the microwave power in MPCVD systems. The results of
GMM training that the performance index (RMSE) can
be reduced to under 10 %. The microwave power
distribution corresponding to the adjustable
electromagnetic field can be modeled by the 2-D GMM.
The results of modeling show that microwave power can
be simplified to be a linear combination of some Gaussian
functions that provides a predictable and controlled basis
for tuning manufacturing parameters and plasma sharp in
a real-time control. Each E-H tuner position can fabricate
the MWCNTs films with a high reproducibility after
GMM modeling. The different micro-structure had the
different application properties. This study shows that the
system could make more applications by a high
reproducibility MWCNTs fabrication.
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