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Abstract: Geometry and kinematics have been intimately connected in their historical evolution and, although it is currently less
fashionable, the further development of such connections is crucial to many computer-aided design and manufacturing.In this paper, the
evolution of the translation surfaces and their generatingcurves inE3 are investigated. Integrability conditions of the Gauss-Weingarten
equations are obtained. Kinematics of moving frame fields associated to these surfaces are described. The evolution equations of the
Christoffel symbols, the second fundamental quantities and Gauss-Codazzi equations for the motion are established. Thus, the evolution
equations of the curvatures in terms of their intrinsic geometric formulas are derived. Two examples of translation surfaces and their
motions are considered and plotted.
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1 Introduction

The evolution of curves and surfaces has significant
applications in computer vision and image processing [1],
such as scale space by linear and nonlinear diffusions [2]
and [3] image enhancement through anisotropic
diffusions [4,5] and [6]and image segmentation by active
contours [7,8] and [9].

The evolution of curves has been researched and
studied extensively in various manifolds and
homogeneous spaces. The connection between integrable
equations (soliton equations) and the geometric motions
of curves in spaces has been known for a long time. In
fact, many integrable equations have been shown to
describe the evolution invariants associated with certain
movements of curves in particular geometric settings.

The dynamics of shapes in physics, chemistry and
biology are modelled in terms of motion of surfaces and
interfaces, and some dynamics of shapes are reduced to
motion of plane curves. These models are specified by
velocity fields, which are local or nonlocal functionals of
the intrinsic quantities of curves [10].

Evolution of surfaces accompanies manifold physical
phenomena: propagation of wave fronts [11], motion of
interfaces, growth of crystals [12], geometry [13,14] and

[15]. Most often one needs to consider the related three-
dimensional problem for the domain the surface encloses
to find out how it evolves in time.

Hence, geometry of curves and surfaces evolution is a
quite recent field of the differential geometry which deals
with curves and surfaces where the time plays the
fundamental rule. Geometrically, curves and surfaces
evolution means that deforming a curve and surface into
another curve and surface in a continuous manner,
respectively. This evolution process can be understood
through the answer of the following geometrical
questions:

• What is the final shape of the evolving curves and
surfaces ?

• What is the invariant geometrical property during the
evolution process ?

The main goal of this paper is to try to answer the
above questions, in order to illustrate the translation
surfaces behavior during the evolution process.
Consequently, it gives a classification of the geometrical
flows according to the resulting geometrical information
which characterizes and recognizes each flow in a class of
geometric flows.
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2 Geometric preliminaries

Here, and in the sequel, we assume that the indices
{i, j,k,e} and {l ,m} run over the ranges{1,2} and
{1,2,3}, respectively.

Let C1 : α = α (s1) andC2 : β = β (s2) be two curves
parametrized by the arc lengthssi in E3. Consider the
Frenet frame{ti(si), ni(si), bi(si)} associated with the
curvesCi . The derivatives of the vectorsti(si) andbi(si),
when expressed in the basis{ti , ni , bi}, yield geometrical
entities, the natural curvaturesκi(si) and torsionsτi(si),
which give us information about the behavior of the
curvesα and β in the neighborhood ofsi , respectively.
Then the Frenet formulas of the curvesCi are defined by
[10]:

d
dsi





ti(si)
ni(si)
bi(si)



=





0 κi(si) 0
−κi(si) 0 τi(si)
0 −τi(si) 0









ti(si)
ni(si)
bi(si)



 .

(1)
We denote a surfaceM in E3 by

X(si) = (xl (si)) .

Let N be the standard unit normal vector field on the
surface M defined by N = X1×X2

‖X1×X2‖
, where, Xi =

∂X
∂si

.
Thus, we have the metricgi j and the coefficients of the
second fundamental formhi j ,

gi j =< Xi ,X j > , hi j =< Xi j ,N >, (2)

where〈 ,〉 is the Euclidean inner product.
Thus, the Gaussian curvature G and the mean curvature H
are given by

G= Det(hi j )/Det(gi j ) and H =
1
2

tr
(

gi j h jk
)

, (3)

respectively, where,(gi j ) is the associated contravariant
metric tensor field of the covariant metric tensor field
(gi j ), i.e.,gikg jk = δ i

j .
As one moves along the surface (at a fixed time), the
tangent and normal vectors change according to the
Gauss-Weingarten equations ( GWE),

∂
∂sj







X1
X2
· · ·
N






=











Γ k
i j

... hi j

· · · · · ·
... · · · · · ·

hk
j

... 0

















X1
X2
· · ·
N






, hk

j = gki hi j (4)

whereΓ k
i j are called the Christoffel symbols of the 2nd

−

kind, which are given as

Γ k
i j =

1
2 ∑

e
gke

(

∂g je

∂ui +
∂gie

∂u j −
∂gi j

∂ue

)

. (5)

The norm of the 2nd
−

fundamental form is given by:

S2 = ∑
i, j

hi
j h

j
i , (6)

whereh j
i are given from(4) .

From the compatibility conditions of(4) , we get the
Gauss-Codazzi equations,

Ri jke = hik h je−hieh jk , (7)

∇i h jk = ∇ j hik , (8)

whereRi jke is the Riemann tensor and∇i is the covariant
derivative.

The Riemann curvature tensor is defined by

Re
i jk = Γ e

ik, j −Γ e
i j ,k+∑

h

(

Γ e
jhΓ h

ik −Γ e
khΓ

h
i j

)

. (9)

where the comma denotes the partial derivative.
Nakayama, et al. [16] and [17] discovered

connections between integrable evolution and the motion
of curves in a 3-dimensional Euclidean space. They
considered thatα = α (s1, t) denote a point on a space
curve at the time t.The conventional geometrical model is
specified by velocity fields

∂α
∂ t

= v1
1t1+ v2

1n1+ v3
1b1, (10)

similarly for a space curveβ = β (s2, t) , we have

∂β
∂ t

= v1
2t2+ v2

2n2+ v3
2b2, (11)

where ti , ni and bi are the unit tangent, normal and
binormal vectors along the curves, andv1

i , v2
i andv3

i are
the tangential, normal and binormal velocities,
respectively. Velocity fields are functionals of the intrinsic
quantities of curves, for example, curvature,ki , torsionτi
and theirsi derivatives.
The time evolution equations forti , ni andbi are given by

∂
∂ t





ti(si)
ni(si)
bi(si)



=





0 αi βi
−αi 0 γi
−βi −γi 0









ti(si)
ni(si)
bi(si)



 , (12)

where,

αi =

(

∂v2
i

∂si
− τiv

3
i + kiv

1
i

)

, βi =

(

∂v3
i

∂si
+ τiv

2
i

)

,

γi =

(

1
ki

∂βi

∂si
+

τi

ki
αi

)

,

(13)

Thus, Nakayama, et al. [16] and [17] obtained the time
evolution equations for curvature and torsion to motion of
space curve.

Also, Nakayama, et al [18,19] and [20] introduced the
dynamics of the surface. They considered the velocity of
the surface is expressed by

∂X
∂ t

=V iXi +V3N, V l =V l (si , t) , (14)
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where V i and V3 are the tangential and the normal
velocities, respectively.
Using (4) and (14) , one can obtain the time evolution
equations for the local frame,

∂
∂ t







X1
X2
· · ·
N






=













−V3hk
i +∇iVk

... V3
, i +V jhi j

· · · · · · · · · · · · · · ·
... · · · · · · · · · · · ·

−gki
(

V3
, i +V jhi j

) ... 0



















X1
X2
· · ·
N







(15)
Thus, and using the compatibility conditions, one can get
the time evolution equations forgi j andhi j . See [18,19]
and [20].

3 Intrinsic geometry of the translation
surfaces in E3

In this section the translation surface in Euclidean
3-space is considered.The geometric invariants on the
translation surfaces are derived .

When a space curve is translated over another space
curve, the resulting surface can be considered as the most
general appearance of a translation surface. Consequently,
this surface can be parameterized as the sum of two space
curves. Quite often, the class of translation surfaces is
restricted to those that can be parameterized as the sum of
two plane curves. So it can be parameterized by a patch
[21]:

M : X (si) = α (s1)+β (s2) , si ∈ I , (16)

where si are the parameters of the arc lengeths of the
curvesα andβ , respectively.
Thus, the two tangent vectors to the surface(16) are
given by

Xi = ti , Xi =
∂X
∂si

, (17)

where ti denote the tangents of the curvesα and β ,
respectively.
Using (16) and(17) , it is easily checked that the metric
of M is given by

(gi j ) =

{

1, i = j
cosθ , i 6= j , det (gi j ) = sin2θ ,

θ 6= nπ , n= 0,1,2, ...
(18)

The unit normal vector of the surfaceM is given by

N(si) = (t1× t2) cscθ , (19)

This leads to the coefficients of the second fundamental
form hi j where

(hi j ) =

{

κi cscθ [t1t2n j ] , i = j
0, i 6= j ,

det (hi j ) = csc2θ ∏
i 6= j

κi [t1t2n j ] ,
(20)

where κi denote the curvatures of the curvesα and β ,
respectively and[t1t2n j ] denotes the triple scalar product
to the vectorst1, t2 andn j .
Thus, one can get the following:

Corollary 1. The Gaussian curvature is given by

G= csc4θ ∏
i 6= j

κi [t1t2n j ] . (21)

Corollary 2. The mean curvature is given by

H =
1
2

csc3θ ∑
i

κi [t1t2ni ] . (22)

Corollary 3.

hi
j =

{

κi csc3θ [t1t2ni ] , i = j
−κ j cotθcsc2θ [t1t2n j ] , i 6= j

(23)

Corollary 4. The norm of the 2nd
−

fundamental form is

given by:

S2 = 4H2−2G (24)

Corollary 5. The Christoffel symbols are given as follows

Γ 1
11 =−κ1cot2θ , Γ 2

22 =−κ2cot2θ ,
Γ 2

11 = κ1cosθcsc2θ , Γ 1
22= κ2cosθcsc2θ ,

}

(25)

and the other components are zero.

Corollary 6. The Riemann tensor Ri jke and the Riemann
curvature tensor Rei jk are given by

R1212= R2121=−R1221=−R2112

= csc2θ ∏
i 6= j

κi [t1t2n j ] , (26)

R2
121= R2

122= R1
221=−R2

112=−R1
212

= κ1κ2cosθcsc2θ ,
(27)

and the other components are zero.

4 Evolution of the translation surfaces

In the study of the motion of curves, the author seeks to
get the partial differential equations ( PDEs ), which
describe the evolution of the curvature and torsion of the
evolving curve. Similarly, the study of the motion of
surfaces seeks to get ( PDEs ),which describe the
evolution of the coefficients of the 1st

−
and 2nd

−

fundamental forms because the surface can be derived
from them. For this purpose, let a translation surface,
moving in 3-dimensional Euclidean spaceE3, be given at
the time t by the position vector

M : X (si , t) = α (s1, t)+β (s2, t) , si ∈ I , (28)

where,α (s1,0) = α (s1) , β (s1,0) = β (s1) .
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4.1 Evolution of the curvesα andβ
Nakayama, et al. [16] and [17] studied the evolution and
the motion of curves as mentioned in section 2 of this
paper. Also, Mukhergee and Balakrishnan [22] studied
the motion of curves which have been specified via the
evolution of the frame field{t,n,b}.

In this section we apply the same method of
Mukhergee and Balakrishnan[22]. In our case we study
the evolution of curvesα and β which have been
specified via the evolution of the frame fields{ti,ni ,bi}.

The Serret-Frenet equations(1) and the equations of
evolution (12) can be written concisely in the following
form

∂F
∂si

= Ai .F ,
∂F
∂ t

= Bi .F . (29)

Applying the compatibility conditions, we have

∂
∂ t

∂F
∂si

=
∂

∂si

∂F
∂ t

(30)

After some calculation using(1) and(12), we have

∂Ai

∂ t
−

∂Bi

∂si
+[Ai ,Bi ] = O3×3, (31)

where[Ai ,Bi ] = Ai Bi −BiAi is the Lie bracket ofAi and
Bi , thus we have




0 αi,i−κi,t−τ i β i βi,i−κ iγi+τ i α i
−(αi,i−κi,t−τ i β i) 0 γi,i−τi,t −κ i β i
−(βi,i−κ iγi+τ i α i) −(γi,i−τi,t −κ i β i) 0





=O3×3,
(32)

where, fi,i =
∂ fi
∂si

and fi,t =
∂ fi
∂ t . Thus the compatibility

conditions give the temporal evolution of the curvatures
κi and torsonsτi of the curvesα andβ in terms of the
velocities{αi ,βi ,γi} , which can be written as coupled
nonlinear partial differential equations ( CNLPDEs ) as
follows:

Theorem 1.

∂κi

∂ t
=

∂αi

∂si
− τi β i ,

∂τi

∂ t
=

∂
∂si

(

∂βi

∂si
+τ i α i

)

+κi β i

(33)

The above theorem is considered the main result of this
section. For a given{αi ,βi ,γi} , the motion of the curves
are determined from these equations. These equations
were solved using different methods, see for example [23,
24] and [25], which apply the tanh and sech methods.

4.2 Integrability conditions of GWEs and time
evoluton equations

The Gauss-Weingarten equations(4) and the equations of
the evolution(15) can be written, respectively, as follows

∂ψ
∂sj

=Cj ψ ,
∂ψ
∂ t

= D ψ . (34)

Thus, the compatibility conditions are given from

∂
∂ t

∂ψ
∂si

=
∂

∂si

∂ψ
∂ t

(35)

Therefore, using(4) and(15) , we have the following

∂Ci

∂ t
−

∂D
∂sj

+[Cj ,D] = O3×3, (36)

Thus, the compatibility conditions(35) , splitted into two
equations, which we called the 1st

−
and 2nd

−
compatibility

conditions, where in each case we obtain evolution (PDEs)
for invariant quantities related to each one.

4.3 The first compatibility conditions

Based on(35) , we have

∂
∂ t

∂ψ
∂s1

=
∂

∂s1

∂ψ
∂ t

(37)

Thus, using(4), (15) and(34), one can get

∂Γ 2
11

∂ t = d12,1+d12
(

Γ 2
12−Γ 1

11

)

−Γ 2
11(d22−d11)

−d32h11−d13h2
1,

∂Γ 1
12

∂ t = d21,1+d21
(

Γ 1
11−Γ 2

12

)

+Γ 1
12(d22−d11)

−d31h12−d23h1
1,

∂Γ 1
11

∂ t = d11,1+d12Γ 1
12−d21Γ 2

11−d31h11−d13h1
1,

∂Γ 2
12

∂ t = d22,1+d21Γ 2
11−d12Γ 1

12−d32h12−d23h2
1,

∂h11
∂ t = d13,1−d13Γ 1

11−d23Γ 2
11+d11h11+d12h12,

∂h12
∂ t = d23,1−d13Γ 1

12−d23Γ 2
12+d21h11+d22h12,

∂h1
1

∂ t =−d31,1−d31Γ 1
11−d32Γ 1

12−d11h1
1−d21h2

1,
∂h2

1
∂ t =−d32,1−d31Γ 2

11−d32Γ 2
12−d12h1

1−d22h2
1,















































































(38)
where,dlm are the elements of the matrixD which are
given from(15), (34) anddlm,1 =

∂dlm
∂s1

.Thus, using(20),
(23) and(25) , one can get
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Theorem 2. The evolution equations of the Christoffel
symbols, hi j and hj

i for translation surfaces are given by

∂Γ 2
11

∂ t = d12,1+d12κ1cot2θ − (d22−d11)κ1 cosθcsc2θ
+(d13cot θ −d32)κ1 csc2θ [t1t2n1] ,

∂Γ 1
12

∂ t = d21,1−d21κ1cot2θ −d23κ1csc2θ [t1t2n1] ,
∂Γ 1

11
∂ t = d11,1−d21κ1 cosθcsc2θ

−d13κ1csc2θ (1− cscθ )[t1t2n1] ,
∂Γ 2

12
∂ t = d22,1+d21κ1 cosθcsc2θ

+d23κ1cotθcsc2θ [t1t2n1] ,
∂h11

∂ t = d13,1−d13κ1cot2θ −d23κ1 cosθcsc2θ
+d11κ1csc2θ [t1t2n1] ,

∂h12
∂ t = d23,1+d21κ1csc2θ [t1t2n1] ,

∂h1
1

∂ t =−d31,1−d31κ1cot2θ
−κ1csc3θ (d21cosθ −d11) [t1t2n1] ,

∂h2
1

∂ t =−d32,1−d31κ1cosθcsc2θ
+κ1csc3θ (d22cosθ −d12) [t1t2n1] .















































































































(39)

4.4 The second compatibility conditions

Adopting(35) , we have

∂
∂ t

∂ψ
∂s2

=
∂

∂s2

∂ψ
∂ t

(40)

Thus, using(4), (15) and(34) , one can get

∂Γ 1
22

∂ t = d21,2+d21
(

Γ 1
12−Γ 2

22

)

+Γ 1
22(d22−d11)

−d31h22−d23h1
2,

∂Γ 2
12

∂ t = d12,2+d12
(

Γ 1
22−Γ 1

12

)

−Γ 2
12(d22−d11)

−d32h12−d13h2
2,

∂Γ 2
22

∂ t = d22,2+d21Γ 2
12−d12Γ 1

22−d32h22−d23h2
2,

∂Γ 1
12

∂ t = d11,2+d12Γ 1
22−d21Γ 2

12−d31h12−d13h1
2,

∂h22
∂ t = d23,2−d23Γ 2

22−d13Γ 1
22+d22h22+d21h12,

∂h12
∂ t = d13,2−d13Γ 1

12−d23Γ 2
12+d12h22+d11h12,

∂h2
2

∂ t =−d32,2+d32Γ 2
22+d31Γ 2

12+d22h2
2+d12h1

2,
∂h1

2
∂ t =−d31,2+d32Γ 1

22+d31Γ 1
12+d21h2

2+d11h1
2,















































































(41)
As a consequence, using(20), (23) and(25) , one can get

Theorem 3. The evolution equations of the Christoffel
symbols, hi j and hj

i for translation surfaces are given by

∂Γ 1
22

∂ t = d21,2+d21κ2cot2θ +(d22−d11)κ2 cosθcsc2θ
+(d23cotθ −d31)κ2 csc2θ [t1t2n2] ,

∂Γ 2
12

∂ t = d12,2+d12κ2 cosθcsc2θ −d13κ2csc2θ [t1t2n2] ,
∂Γ 2

22
∂ t = d22,2−d12κ2 cosθcsc2θ

−d23κ2csc2θ (1− cscθ )[t1t2n2] ,
∂Γ 1

12
∂ t = d11,2+d12κ2 cosθcsc2θ +d13κ2cotθcsc2θ [t1t2n2] ,

∂h22
∂ t = d23,2+d23κ2cot2θ −d13κ2 cosθcsc2θ

+d22κ2csc2θ [t1t2n2] ,
∂h12

∂ t = d13,2+d12κ2csc2θ [t1t2n2] ,
∂h2

2
∂ t =−d32,2+d32κ2cot2θ

+κ2csc3θ (d12cosθ −d22) [t1t2n2] ,
∂h1

2
∂ t =−d31,2−d32κ2 cosθcsc2θ

+κ2csc3θ (d11cosθ −d21) [t1t2n2] .







































































































(42)

It is very important to notice that the GWEs for surfaces
are analogous to the Frenet equations for curves. Also, the
first and second fundamental coefficients for surfaces are
analogous to the curvature and torsion for curves.

4.5 Evolution of the curvatures

Here, ( PDEs ) which describe the evolution of the
curvatures of evolving the translation surface in terms of
curvatures and velocities of the surface and the curves are
derived.

From the foregoing results, using(3),(6) ,(7) and(9) ,
we get the proof of the very important theorems

Theorem 4. Evolution of the Gaussian curvature is given
by

∂G
∂ t = G [∑i dii −2cot2θ ∑i (αi +βi) ]+2H ∑i di3,i

−κ1κ2cotθ (d13−d23cosθ )∑i [t1t2ni ] .

}

(43)

Theorem 5. Evolution of the mean curvature function is
given by

∂H
∂ t = H [1

2 ∑i dii +2cot2θ ∑i (αi +βi) ]

− 1
2cosθcsc2θ (1+ cosθ )∑i 6= j d j3κi

− 1
2csc2θ [2cosθd23,1−∑i di3,i]

−d12κ1cotθcscθ [t1t2n1] .















(44)

Theorem 6. Evolution of the norm of the 2nd
−

fundamental

form is given by:

∂S2

∂ t = S2∑i dii +4
(

S2+3G
)

cot2θ ∑i (αi +βi)
−4H cosθcsc2θ (1+ cosθ )∑i 6= j d j3κi

−4H csc2θ [2cosθd23,1−∑i di3,i]
−2κ1κ2cotθ (d23cosθ −d13) ∑i [t1t2ni ]
−8d12 H κ1cotθcscθ [t1t2n1]
−4H ∑i di3,i .































(45)
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Theorem 7. Evolution of the Riemann tensor Ri jkl are
given by

∂R2121
∂ t = ∂R1212

∂ t =− ∂R1221
∂ t =− ∂R2112

∂ t
= R2121cscθ ∑i dii +2H sin2θ ∑i di3,i

−(d13−d23)κ1κ2 cosθcsc3θ ∑i [t1t2ni ]







(46)

Theorem 8. Evolution of the Riemann curvature tensor
Rl

i jk are given by

∂R2
121

∂ t =
∂R2

122
∂ t =−

∂R1
221

∂ t =−
∂R2

112
∂ t =−

∂R1
212

∂ t
= R2

121d12cosθ −R2
121

(

d13cscθ +d32secθsin2θ
)

[t1n1n2]
+R2

121cscθ (∑i di3 [t1t2ni ])−d21,1κ1cosθcsc2θ (1+ cosθ )
+d21cosθcsc2θ

[

κ2
1csc2θ (1+ cosθ )+κ1τ1+κ2

1 −κ1,1
]

−2H d32cosθ (κ1+κ2 cosθ )+ (1+κ2)cotθcscθ (∑i d12,i)
−κ1cosθcsc2θ

(

∑i6= j d1i, j
)

−d23κ1τ1cotθcsc2θ [t1t2b1]
+cotθcsc2θ [d23κ2

1csc2θ (1+ cosθ )−d32,2κ1secθsin2θ+
−d23κ1,1+κ1

(

∑i6= j di3, j
)

] [t1t2n1]+d12,12−d22,11 .















































(47)

The above theorems for the evolution of the
curvatures of the translation surfaces describe the change
of the shape in time and their solutions have many
applications in different areas of science. In geometry, the
behavior of evolution equations of the curvatures and
their solutions gives us the most geometric information
about evolving the surface.

5 Application

In this section, we give some interesting results about
how the evolving curves will look like after a period of
time and the effect of the evolution on the translation
surfaces. This is given through some illustrated figures.
For this purpose we consider two examples to illustrate
our investigation:
(1) Consider the translation surfaces for a circular helix
curvesα (s1, t) andβ (s2, t) as an example inE3, so that
their points can be represented in the form

X (si , t) = ∑
i

(

ai (t)cos[
si

A
],ai (t)sin [

si

A
],2bi (t)

si

A

)

, A=
√

a2
i +b2

i

(48)

(2) Consider the translation surfaces for a circular helix
curveα (s1, t) and the circle curveβ (s2, t), where

β (s2, t) = (a2 (t)cosθ ,a2 (t)sin θ ) , θ =
s2

a2
, a2 6= 0

(49)
Evolution of these surfaces are plotted for different values
of the time t. In examples (1) and(2) which show that
these surfaces are collapsing in length and expanding in
width as in the following cases:

(i) Evolution of the two circular helix curvesα andβ as
in Fig.1(b,c,d).
(ii) Evolution of the circular helixα and fixed circular
helix β as in Fig.2(b,c,d) .
(iii ) Evolution of the circular helixα and the circle curve
β as in Fig.3(b,c,d).
(iv) Evolution of the circular helixα and fixed the circle
curveβ as in Fig.4(b,c,d).

From the above examples we note that the effect of
the evolution of the curvesα and β on the translation
surfaces is very weak underai (t) = et , and bi (t) = e−t

for t ∈ (0,0.5] , and hence we can know these surfaces
after the evolution. In other words the translation surfaces
are still having some geometric properties which they had
before the evolution, as in
Figs.(1 (a) ,2 (a) ,3 (a) ,4 (a)), i.e., the geometric
properties in this period are hereditary properties. Also,it
is noticed that the effect of the evolution of the curvesα
and β on the translation surfaces is very strong under
ai (t) = et , andbi (t) = e−t for t ≻ 0.5 and hence we can
not know any information on the translation surfaces after
the evolution, i.e., the geometric properties in this period
are not hereditary properties.

Fig. 1: Evolution of the two circular helixα , β .

Fig. 2: Evolution of the circular helixα and fixed circular helix
β .
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Fig. 3: Evolution of the circular helixα and the circle curveβ .

Fig. 4: Evolution of the circular helixα and fixed the circle curve
β .

6 Conclusion

The study of curves finds applications in various branches
of physics. As illustrative examples of a space curve we
mention the propagation of light in a twisted optical fiber,
the time evolution of the ( normalized ) classical spin
vector field of a one-dimensional Heisenberg chain and
the vector field of the O(3) nonlinear sigma model in field
theory. This latter model is known to be related to
one-dimensional antiferromagnets. In recent years, there
has been much interest in the notion of anholonomy in
physics. The geometric phases and the corresponding
gauge fields have attracted attention in a wide spectrum of
problems in classical and quantum systems [26]

As an application of the translation surfaces evolution
it is interesting to consider a system, such as fluid and
spins, on a moving translation surface. It is also
interesting to see what kind of integrable systems is
included in this motion. In one dimensional case, it is
possible to explain the relation between the motion of the
generating curves and integrable system in terms of the
inverse scattering method. Situation is, however, much

more involved in the case of the motion of translation
surfaces.

Acknowledgements

I wish to express my profound thanks and appreciation to
our professor, Dr. Nassar H. Abdel All, Department of
Mathematics, Assiut University, Egypt, for his strong
support, continuous encouragement, revising this paper
carefully and providing some important comments on it. I
would like also to thank Dr. Samah. G. Mohamed, Faculty
of Science, Assiut University, for her critical reading of
this manuscript and making several useful remarks.

References

[1] G.Sapiro, Geometric partial differential equations and
image analysis, Cambridge Univ. Press, Cambridge(2001).

[2] B.Romeny, Geometry-driven diffusion in computer vision,
Kluwer Acad. Pub. Dor., Netherlands(1994).

[3] G.Sapiro, A. Tannenbaum, Affine invariant scale-space,Int.
J. Comput. Vis.11 (1993), 25-44.

[4] P. Perona, J. Malik, Scale-space and edge detection using
anisotropic diffusion, IEEE Trans. Pattern Anal. Mach.
Intell. 12 (1990) , 629−639.

[5] L. Alvarez, P. Lions, J. Morel, Image selective smoothing
and edge detection by nonlinear diffusion, SIAM J. Numer.
Anal. 29 (1992) , 845-866.

[6] J. Weickert, Anisotropic diffusion in image processing,
Teubner-Verlag, Stuttgart, Germany(1998).

[7] M. Kass, A. Witkin, D. Terzopoulos, Active contour
models, Int. J. Comput. Vis.1 (1988) , 321-331.

[8] V. Caselles, R. Kimmel, G.Sapiro, Geodesic active contours,
Int. J. Comput. Vis.22 (1997) , 61-79.

[9] N. H. Abdel-All and M. T. Al-dossary, Evolution of
generalized space curves Rn , Accepted for publication in
J. Applied Mathematics(2012).

[10] P. Pelce, Dynamics of curved fronts, Academic Press, New
York (1988).

[11] W. Kosinski, Field singularities and wave analysis in
continuum mechanics. Ellis Horwood & Polish Scientific
Publishers, Warsaw(1985).

[12] A. Romano, Thermomechanics of phase transitions in
classical field theory.World Scientific, Singapore(1993).

[13] A. Gray, Modern differential geometry of curves and
surfaces.CRC Press, Inc., U.S.A.(1993).

[14] J. Langer, R. Perline, J. Math. Phys.,35 (1994) , 1732.
[15] J. A. Sethian, J. Differential Geometry,31 (1990) , 131.
[16] K. Nakayama, J. Phys. Soc. Jpn.71,(2002) , 2389-2395.
[17] T. Tsurumi, H. Segur, K. Nakayama, M. Wadati, J. Phys.

Letter A 224 (1997) , 253-263.
[18] K. Nakayama, M. Wadati, J. Phys. Soc. Jpn.62 (1993) ,

1895-1901.
[19] N. H. Abdel-All, M. T. Al-dossary, Motion of hypersurfaces,

Assuit Univ.J of Math. and Computer Science40 (2011) ,
91-104.

[20] H. N. Abd-Ellah, Motion of tubular surfaces. Italian Journal
of Pure and Applied Mathematics, N.22 (2007), 161-176.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


668 H. N. Abd-Ellah: Evolution of Translation Surfaces in Euclidean 3-SpaceE3

[21] F. Dillen, W. Goemans, I. Woestyne, Translation surfaces of
Weingarten type in 3-space, HUB Research Paper,(2008) ,
1-12.

[22] S. Murugesh, R. Balakrishnan, New connections between
moving curves and soliton equations, Physics Letters A290
(2001) , 81-87.

[23] D. Baldwina,
..
U . G

..
oktas, et al, Symbolic computation

of exact solutions expressible in hyperbolic and elliptic
functions for nonlinear PDEs J. of Symbolic Computation
37 (2004) , 669.

[24] N. H.Abdel-All, R. A. Hussien, T. Youssef, Evolution of
curves via the velocities of the moving frame, Journal of
Mathematical and Computational Science2, (2012) , 1170-
1185.

[25] N. H. Abdel-All, et al.; Expanding the tanh-function method
for solving nonlinear equations, J.Applied Math.,2, (2011) ,
1069-1103.

[26] M. Hisakado, M. Wadati, Moving discrete curve and
geometric phase, Phys. Lett. A,214, (1996) , 252-258.

Hamdy N. Abd-Ellah
has obtained his B.Sc.
degree in Mathematics
in 1986 and the M.Sc.
degree in Pure Mathematics
(Differential Geometry)
from Assiut University
in 1991. Then he studied
for two years in Austria
after getting a channel-system

scholarship sponsored by the Egyptian government. After
that, he got the Ph.D. degree in Pure Mathematics
(Differential Geometry) from Assiut University in 2000.
Currently, he is an Associate Professor in the Department
of Mathematics at Assiut University. His research
interests include: Differentiable manifold, specially
Riemannian and semi-Riemannian geometry. Evolution
of Riemannian manifolds and their applications.
Information geometry and its related topics in Statistics.

c© 2015 NSP
Natural Sciences Publishing Cor.


	Introduction
	Geometric preliminaries
	Intrinsic geometry of the translation surfaces in E3
	Evolution of the translation surfaces
	Application
	Conclusion

