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Abstract: Geometry and kinematics have been intimately connectetidin historical evolution and, although it is currently des
fashionable, the further development of such connect®nguicial to many computer-aided design and manufactulmirtis paper, the
evolution of the translation surfaces and their generatinges inE2 are investigated. Integrability conditions of the Gaussirwarten
equations are obtained. Kinematics of moving frame fieldsaated to these surfaces are described. The evolutiatieqs of the
Christoffel symbols, the second fundamental quantities@auss-Codazzi equations for the motion are established, The evolution
equations of the curvatures in terms of their intrinsic getsia formulas are derived. Two examples of translatiofiesss and their
motions are considered and plotted.
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1 Introduction [15]. Most often one needs to consider the related three-
dimensional problem for the domain the surface encloses

The evolution of curves and surfaces has significant® find outhow itevolves in time.

applications in computer vision and image processiig [ Hence, geometry of curves and surfaces evolution is a
such as scale space by linear and nonlinear diffusighs [ quite recent field of the differential geometry which deals
and [B] image enhancement through anisotropic with curves and surfaces where the time plays the
diffusions f,5] and [6]and image segmentation by active fyndamental rule. Geometrically, curves and surfaces
contours ¥,8] and [9]. evolution means that deforming a curve and surface into
The evolution of curves has been researched angnother curve and surface in a continuous manner,
studied extensively in various manifolds and respectively. This evolution process can be understood

homogeneous_spaces. T_he connection between integrabﬂﬁrough the answer of the following geometrical
equations (soliton equations) and the geometric motionguestions:

of curves in spaces has been known for a long time. In

fact, many integrable equations have been shown to ® What is the final shape of the evolving curves and

describe the evolution invariants associated with certairsurfaces ?

movements of curvesin partlcglar geometnc sett!ngs. e What is the invariant geometrical property during the
The dynamics of shapes in physics, chemistry andevolution o

. . ; process *

biology are modelled in terms of motion of surfaces and

interfaces, and some dynamics of shapes are reduced to The main goal of this paper is to try to answer the

motion of plane curves. These models are specified byabove questions, in order to illustrate the translation

velocity fields, which are local or nonlocal functionals of surfaces behavior during the evolution process.

the intrinsic quantities of curve4(). Consequently, it gives a classification of the geometrical
Evolution of surfaces accompanies manifold physicalflows according to the resulting geometrical information

phenomena: propagation of wave fronid]] motion of  which characterizes and recognizes each flow in a class of

interfaces, growth of crystaldf], geometry 13,14 and  geometric flows.

* Corresponding author e-mailamdyn2000@yahoo.com.

(@© 2015 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.12785/amis/090214

662 NS 2 H. N. Abd-Ellah: Evolution of Translation Surfaces in Eaglan 3-Spacg3

2 Geometric preliminaries whereh! are given from(4).

) o From the compatibility conditions of4), we get the
Here, and in the sequel, we assume that the indicegauss-Codazzi equations,

{i,j,k,e} and {I,m} run over the rangeq1,2} and

{1,2,3}, respectively. Rijke = hik hje — hiehjk, @
LetCi:a=o0a(s)andC: =0 (Sgg be two curves

parametrized by the arc lengtlss in E°. Consider the

Frenet frame{ti(s), ni(s), bi(s)} associated with the Oi hj = Oj hic (8)

curvesCi. The derivatives of the vectotgs) andbi(s),  whereR e is the Riemann tensor arid is the covariant

when expressed in the bagis, nj, b}, yield geometrical  derivative.

entities, the natural curvatures(s) and torsionsri(s), The Riemann curvature tensor is defined by
which give us information about the behavior of the

curvesa and 3 in the neighborhood o§, respectively. e _re _re . (,—.el—.h_,—el—._h). 9
Then the Frenet formulas of the cun@sare defined by Rik =i ~ i Z Itk = Tk ©)
[20:

where the comma denotes the partial derivative.

d [ti(s) 0 ki(s) O ti(s) Nakayama, et al. 16 and [L7] discovered
ds ni(s) | = —«i(s) 0 Ti(s) ni(s) | . connections between integrable evolution and the motion
S\ bi(s) 0 —Ti(s) 0 of curves in a 3-dimensional Euclidean space. They
(1) considered thatr = o (s;,t) denote a point on a space
We denote a surfadd in E3 by curve at the time t.The conventional geometrical model is

specified by velocity fields
X(s)=(x(s)).

Let N be the standard unit normal vector field on the oa = Vit +Vv2ny + Vb, (10)
surfaceM defined byN:%, where, X; = X. ot
Thus, we have the metrigjj and the coefficients of the similarly for a space curvg = 3 (s,t), we have

second fundamental forim;, op

1
gij =< Xi ,Xj >, hj=<Xjj,N>, (2) ot :V2t2+V%n2+ng2a (11)
where( ,) is the Euclidean inner product. where tj,n; and b; are the unit tangent, normal and
Thus, the Gaussian curvature G and the mean curvature Hinormal vectors along the curves, avd V2 and V2 are
are given by the tangential, normal and binormal velocities,

1 N respectively. Velocity fields are functionals of the ingiin
G = Det(h) /Det(gij) and H=ztr (9" hi), (3)  quantities of curves, for example, curvatuike torsionT;
- and theirs derivatives.
respectively, where(g') is the associated contravariant The time evolution equations for, n; andb; are given by
metric tensor field of the covariant metric tensor field

(gij). i.e..g*gj = . o |ti(s) 0 a B [ti(s)
As one moves along the surface (at a fixed time), the 7 ni(s)| =|—ai 0 y| |ni(s)], (12)
tangent and normal vectors change according to the —Bi -y 0 bi(s)
Gauss-Weingarten equations ( GWE),

where,
X1 rk hij X1 V2 V3
J | X, N X2 K ki i = <_I__TiVi3+kiVil>a B = <_I_+Tivi2>a
(9_Sj =1 e |, hj=g"hij (4) Js os (13)
N Ko N 106 1 )
h : 0 (=22 Ty ),
J § (m s K"
Where/_ijk are called the Christoffel SymbOIS of the]_dZ ThUS, Nakayama, et allﬁ] and [17-| obtained the time
kind, which are given as evolution equations for curvature and torsion to motion of
space curve.
l—_‘k:}zgke<ﬁgj_e+agig_%>. © p
24 ou  Jdul Jue Also, Nakayama, et all, 19] and [20] introduced the

dynamics of the surface. They considered the velocity of

The norm of the 8d fundamental form is given by: the surface is expressed by

Pt —=Vixi+V3N7 vi=V! (S 7t)7 (14)

$ =5 hih (6) X
1] ot
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where V! and V3 are the tangential and the normal where k; denote the curvatures of the curvesand S,

velocities, respectively. respectively andt;ton;] denotes the triple scalar product
Using (4) and (14), one can obtain the time evolution to the vectors;,t; andn;.
equations for the local frame, Thus, one can get the following:
’ ) Corollary 1. The Gaussian curvature is given by
X —VeRK 4 OvK V3 Vi | X
0 1% AR R X, G=cs¢6 _|1Ki [tatan;]. (21)
E . E [ . 1 #]
N gk (V?+thij) 0 N Corollary 2. The mean curvature is given by
(15) _1 , .
Thus, and using the compatibility conditions, one can get H= ZCS(’SGZK' [tatoni]. (22)
the time evolution equations f@;; andhjj. See [L§,19
and 0. Coroallary 3.
i i csC0 [tatoni] i=j
hl-:{ Ki CS 120}, i ] (23)
. . . ] K- .
3 Intrinsic geometry of the translation Kj cotBese'd [tatan, ], 1|
surfacesin E3 Corollary 4. The norm of the 2ndundamental form is

) ) ) ) ) given by:
In this section the translation surface in Euclidean

3-space is considered.The geometric invariants on the

translation surfaces are derived . P =4H%2-2G (24)
When a space curve is translated over another space

curve, the resulting surface can be considered as the mo

general appearance of a translation surface. Consequent

this surface can be parameterized as the sum of two space rL=—kico8, 2= —Kycolf

curves. Quite often, the class of translation surfaces is F2 _ kio0Des@0. L — kocoDes@o } (25)

restricted to those that can be parameterized as the sumof 11~ "1 v T22T "2 ’

two plane curves. So it can be parameterized by a patcAnd the other components are zero.

[21:

orollary 5. The Christoffel symbols are given as follows

) - Corollary 6. The Riemann tensor; and the Riemann
M:X(s)=a(s)+B(), sel, (16) curvature tensor th;( are given by
where s are the parameters of the arc lengeths of the

curvesa andp, respectively. Ri212= Re121= —Ri221= —Ro112

Thus, the two tangent vectors to the surfgd®) are = csco |_| Ki [tatonj], (26)
given by P
Xi=ti, Xi= X a7 1 1
SRR Riz1= Riz= Roo1 = —RE1o= —Riz 27)
where t; denote the tangents of the curvesand 3, = K1K2€0S0csCo,
respectively. and the other components are zero.

Using (16) and (17), it is easily checked that the metric

of M is given by

. 4 Evolution of the translation surfaces
(@) =1 .2 1=1 det(q)=sie
gl] - COSG’ | # J ’ glj - ’

(18) In the study of the motion of curves, the author seeks to
0+4nmn=0,12,.. get the partial differential equations ( PDEs ), which
describe the evolution of the curvature and torsion of the
The unit normal vector of the surfadé is given by evolving curve. Similarly, the study of the motion of
surfaces seeks to get ( PDEs ),which describe the
N(s) = (t1 x t2) cscé, (19)  evolution of the coefficients of the st and =d
This leads to the coefficients of the second fundamentafundamental forms because the surface can be derived
form hjj where from them. For this purpose, let a translation surface,
moving in 3-dimensional Euclidean spag@, be given at
\_ JkicscO[titong] . i=] the time t by the position vector
(hlj) - 0 | 7& J I
’ (20) M:X (s,t)=a(s,t)+B(st), sel, (28)
det (hij) = cs@6 [ ki [tatzny],
iy where,a (s1,0) = a(sy), B(s,0)=pB(s1).
(@© 2015 NSP
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4.1 Evolution of the curves and 3 Thus, the compatibility conditions are given from

Nakayama, et al.l6] and [17] studied the evolution and
the motion of curves as mentioned in section 2 of this 2 oY d oY
paper. Also, Mukhergee and Balakrishna®?][ studied ot ds = Js ot
the motion of curves which have been specified via the
evolution of the frame fieldt, n,b}.

In this section we apply the same method of Therefore, using4) and(15), we have the following
Mukhergee and Balakrishn&]. In our case we study
the evolution of curvesa and 3 which have been

(39)

specified via the evolution of the frame fielfis, n;, b; }. dC. D
The Serret-Frenet equatiofs) and the equations of St g TG Dl =053, (36)
evolution (12) can be written concisely in the following )
form oF oF
9s AF, Fr Bi F . (29) Thus, the compatibility condition@5), splitted into two
Applying the compatibility conditions, we have equations, which we called thestland 2nd compatibility
9 JF 9 OF conditions, where in each case we obtain evolution (PDES)
5135 ~ 3 ot (30) forinvariant quantities related to each one.
After some calculation usingl) and(12), we have
JdA 0B; o
7 - E + [A| 7BI] = O3><37 (31)

where[A B — A Bi— BIA is the Lie bracket ofy and  4-3 The first compatibility conditions
Bi , thus we have

0 Qii—Kit—Ti Bj Bii—KiYi~+Ti ai
—(aij—Kit—Ti B;) 0 Vii—Tit —Ki B
0

—(B,i—KiYi+Ti ai) —(¥,i—Tit —Ki B;) Based 0[‘(35) , we have

&
32
where, fij = ‘;—;i and fiy = % . Thus the compatibility %Z—w = aiaa—zj (37)
conditions give the temporal evolution of the curvatures % 51
ki and torsong; of the curvesx and in terms of the
velocities{ai ,B ,V}, which can be written as coupled _
nonlinear partial differential equations ( CNLPDEs ) as  Thus, using4), (15) and(34), one can get
follows:
Theorem 1.
JK; 00 _ T o (0B  _ . or2
ot as P G Tas (a_s“' o)+ ki T = tho1+ 0o (T3 = 14) — 1 (G — chy)
(33) L dazhy1 — dhah?,
a
The above theorem is considered the main result of this g2 = dor1 + 0y (I — 13) + 5 (dao — i)
section. For a giveda; , 5 , v}, the motion of the curves — dzihio— dzgh},
are determined from these equations. These equations 97 _ d Aok — do1l2 — darhiq — dhsht
were solved using different methods, see for exan@fe [ e 11,1+ 012 Z 2t - st s >
24) and [25], which apply the tanh and sech methods. ?12 = Opp1 + d2al73 — dioly5 — daohio — doshy,
% = dia1 — daal] — dali3 + diahug + dishyo,
. .\ . M2 — dpz1 — dials — 02335 + daghy 1 + dashio,
4.2 Integrability conditions of GWEs and time g e e PR e
evoluton equations = ~a11— daal'y3 — daal 35 — duahy — daahy,
_ , , % = —d321 — d31/73 — d3al5 — diohy — dohd,
The Gauss-Weingarten equatigds$ and the equations of (38)
the evolution(15) can be written, respectively, as follows where, d;, are the elements of the matr which are
oY oY given from(15), (34) anddim 1 = % .Thus, using20),

s Ciw, 5r=Dbv. (34)  (23)and(25), one can get

(@© 2015 NSP
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Theorem 2. The evolution equations of the Christoffel Theorem 3. The evolution equations of the Christoffel

symbols, fj and i for translation surfaces are given by

61'2 =di21+d12K1 cot?9 — (do2 —d11) K1 coHcsEo

+ (dy3cot 6 — d32) K1 cs6 [titong],
1
% = d2111 — 1K1 cot?0 — d23K1CS(,29 [tltznl] ,
1
% = dll,l — d21K1 CO§CS(,29
— d13K1€SC0 (1 — csA) [tatany],
= 021 + dp1K1 COSOCSCH
+ d23K100IQCSC29 [tltznl]
52t11 = d13,1 —di3K1 cot?0 — dozk1 coHcsEh
+ dllchs@G [tatona],

‘3’—12 _

M2 — dpg 1 + da1kiCSEB [tatony],
da_ht = —dz11 — d31K1 cot’8

, — chsc°’6 (d2100§ — dll) [tltznl] ,
oh

ﬁ_tl = —d32\]1 — d31K100§CS(,29
+ chsc°’6 (d22c09P — d12) [tltznl] .

(39)
4.4 The second compatibility conditions
Adopting(35), we have
00y 0 Iy
go¥Y_ 9 9% 4
otds, 0% ot (40)
Thus, using4), (15) and(34), one can get
1
aasz = da12+ a1 (I — 153) + 55(d22— d1a)
. dz1ho2 — do3hs,
9
52 = dhiao+ i (1% > I5) — M5 (do2— diy)
, dzohi2 — di3hs,
0[%2 = 0222 + do1/% — d1ol5 — dashpo — dashs,
J
% = d112+ di2l5 — d21/7% — dashyz — dishd,
% = dpg 2 — O3l — d1als + d2ohoo + daahyo,
%ﬁz = di32 — thal;h — doal3 + dishoo + diahyo,
0—hi = —dgp2+ 3ol 5 + da1/75 + daoh3 + dyohd,
0h2 = d31 2+ d32/_22—|- d311'12+ d21h + dllh%,
(41)

As a consequence, usiiig0), (23) and(25), one can get

symbols, j and H for translation surfaces are given by
1
% = d2112 + do1Ko cot?0 + (dzz — dll) Ko cohcsEo
+ (d23cotB — dsq) K2 €SGO [titony]
"gtlz = 122+ yoKo COBDCSEO — dy3KaCSEO [tatony) |

o2
052 = d22,2 — d12K2 CO§CS(,29

— dp3KoCSCO (1—csd)[titany],
1
‘%12 = 112+ 012Kz COPCSEH + dy3KoCOtACSED [t1tony],
9022 — dp3. + a3k, COLH — dy gk COHCSEH
+ daokoCcsEO [tatana],

% =dz2+ dlszCS(?Q [tatana],
aaht = —dg3p2 + d3pkp cOE20

) + chsc°’6 (d12c00 — dao) [titana],
oh

52 = —Ua12 — d3okz cosHesE O
+ K2¢sC0 (d11€00 — dag) [tatons] .

(42)

It is very important to notice that the GWEs for surfaces
are analogous to the Frenet equations for curves. Also, the
first and second fundamental coefficients for surfaces are
analogous to the curvature and torsion for curves.

4.5 Evolution of the curvatures

Here, ( PDEs ) which describe the evolution of the
curvatures of evolving the translation surface in terms of
curvatures and velocities of the surface and the curves are
derived.

From the foregoing results, usitig8),(6), (7) and(9),
we get the proof of the very important theorems

Theorem 4. Evolution of the Gaussian curvature is given
by
22 = G[y;di—2cot?0y; (ai+ Bi)]+2H ¥, dis; }
— K1K2C0t6 (d13 — d3c09h) Si [tltzni] .
(43)
Theorem 5. Evolution of the mean curvature function is
given by

aa_l;' = [2 Yidi+ 2cot?6 Si(ai+6)]
— JcoshcsO (1+cosh) ¥ djski
— —0889[200§d231 =i d|3 |]
— dlzchotecscB [tatong].

(44)

Theorem 6. Evolution of the norm of the 2rfidndamental
form is given by:

98 _ 5,dji +4(FP+3G) cot?0’, (a1 + B)
—4H cosfcs6 (1+ cosh) ¥ djsk;
—4H CSC?Q[ZCOﬂdB 1— D d|31|] (45)
— 2K1K2C0t6 (da3c0P — d3) Si [tltzni]
—8d12 H Kkicotfesd [titang]
—4H Yi di3,i .

(@© 2015 NSP
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Theorem 7. Evolution of the Riemann tensor;R are
given by

ORo21 _ ORizip . ORipp1 9Rpap
ot ot ot ot
= Ro121Cs® 5 dij + 2H sinfo Sidia;
— (d13— da3) K1K2 coHcsco Si [tltzni]
(46)

Theorem 8. Evolution of the Riemann curvature tensor
R are given by

ORGy _ ORGy _  ORy R, ORyy,

=0|t:3%21d12g[0$ﬂ — R%Z; (d13CSC9m+ dggsecgtsinze) [tin1ny)
+R2,,c50 (3 diz[tatani]) — o1 1k1c0HCsEO (14 coH)
+01C00CsCO [K7CSEO (1+COD) + K1Ty + KZ — K11
—2H d32c090 (K1 + K2 c0D) + (14 K) cotBesd (5 dio))
—K1C09CSC O (32 i j) — doskiTicOtOCSEO [tatoba]
+cotOcsE0dazk2eSE0 (1 + coP) — d3z 2K1S€DSIPH+
—da3k11+ K1 (Tizj i j) ] [tatong] +di212— dazas -

(47)

The above theorems for the evolution of the

(i) Evolution of the two circular helix curves andf3 as
in Fig.1(b,c,d).

(i) Evolution of the circular helixa and fixed circular
helix 8 as in Fig.2(b,c,d).

(ii ) Evolution of the circular helba and the circle curve
B asin Fig.3(b,c.d).

(iv) Evolution of the circular heliba and fixed the circle
curvef3 as in Fig.4(b,c,d).

From the above examples we note that the effect of
the evolution of the curves and 3 on the translation
surfaces is very weak under(t) = €, andb; (t) = e
for t € (0,0.5], and hence we can know these surfaces
after the evolution. In other words the translation suréace
are still having some geometric properties which they had
before the evolution, as in
Figs(1 (a),2 (a),3 (a),4 (a)), i.e., the geometric
properties in this period are hereditary properties. Allso,
is noticed that the effect of the evolution of the curees
and 3 on the translation surfaces is very strong under
g (t) =€, andbj (t) = e ! fort = 0.5 and hence we can
not know any information on the translation surfaces after
the evolution, i.e., the geometric properties in this perio

curvatures of the translation surfaces describe the chang&'e not hereditary properties.
of the shape in time and their solutions have many

applications in different areas of science. In geometwy, th

behavior of evolution equations of the curvatures and

their solutions gives us the most geometric information
about evolving the surface.

5 Application

In this section, we give some interesting results about

how the evolving curves will look like after a period of
time and the effect of the evolution on the translation
surfaces. This is given through some illustrated figures

For this purpose we consider two examples to illustrate

our investigation:

(1) Consider the translation surfaces for a circular helix
curvesa (s;,t) and B (s,t) as an example i3, so that
their points can be represented in the form

(48)

S

A

X (s, =y (at)cosis

J.a (0)sin (31,201 (1)

(2) Consider the translation surfaces for a circular helix

curvea (s,t) and the circle curvg (s,,t), where

S
e #0
(49)
Evolution of these surfaces are plotted for different value
of the time t. In examples (1) an@) which show that
these surfaces are collapsing in length and expanding i
width as in the following cases:

B (s,t) = (az(t)cosB,ay (t)sinB), 6

(d) t=0.5

(¢) t=0.3

Fig. 1: Evolution of the two circular helixr , 3.

(a) t=0 (b) t=0.1 (c) t=0.3 (d) t=0.5

Fig. 2: Evolution of the circular helixa and fixed circular helix

B.

n

(@© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 2, 661-668 (2015)Wwww.naturalspublishing.com/Journals.asp NS = 667

more involved in the case of the motion of translation
surfaces.
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