2023

On Congruences of Principal GK2-Algebras

Abd El-Mohsen Badawy
Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt, a.gaber@sci.asu.edu.eg

Mohiedeen Ahmed
Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt, a.gaber@sci.asu.edu.eg

Essam El-Seidy
Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt, a.gaber@sci.asu.edu.eg

Ahmed Gaber
Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt, a.gaber@sci.asu.edu.eg

Follow this and additional works at: https://digitalcommons.aaru.edu.jo/isl

Recommended Citation
El-Mohsen Badawy, Abd; Ahmed, Mohiedeen; El-Seidy, Essam; and Gaber, Ahmed (2023) "On Congruences of Principal GK2-Algebras," Information Sciences Letters: Vol. 12 : Iss. 6 , PP -. Available at: https://digitalcommons.aaru.edu.jo/isl/vol12/iss6/57

This Article is brought to you for free and open access by Arab Journals Platform. It has been accepted for inclusion in Information Sciences Letters by an authorized editor. The journal is hosted on Digital Commons, an Elsevier platform. For more information, please contact rakan@aaru.edu.jo, marah@aaru.edu.jo, u.murad@aaru.edu.jo.
On Congruences of Principal GK_2-Algebras

Abd El-Mohsen Badawy1, Mohiedeen Ahmed2, Essam El-Seidy2 and Ahmed Gaber2,*

1Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt
2Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt

Received: 22 Nov. 2022, Revised: 22 Dec. 2022, Accepted: 24 Jan. 2023
Published online: 1 Jun. 2023

Abstract: We investigate some features of principal GK_2-algebras (PGK_2-algebras). Necessary and sufficient conditions for a principal GK_2-algebra to have 2-permutable congruences are obtained. Furthermore, it is established how 2-permutable congruences are characterized using pairs of principal congruences. Also, a generalization of the 2-permutability of the primary congruences of the GK_2-algebras concept to the concept of the n-permutable congruences is provided. We round off with strong extensions of principal GK_2-algebras.

Keywords: MS-algebra, GMS-algebra, GK_2-algebra, principal GK_2-algebra, congruence pair, 2-permutability of congruences, n-permutability of congruences, strong extension

1 Introduction

T.S. Blyth and J.C. Varlet [1] introduced the variety MS of MS-algebras. In [2], they determined the subvarieties of MS. Many properties of MS-algebras, principal MS-algebras, principal p-algebras and decomposable MS-algebras are investigated in [3,4,5,6,7,8]. The variety GMS was defined and characterized by D. Ševčík in [9]. Certain modular generalized MS-algebras with distributive skeletons, called K_2-algebras, were introduced by A. Badawy [10]. Each K_2-algebra was built using quadruples. A. Badawy [11] considered the subclass GK_2 of GK_2-algebras. He constructed any PGK_2-algebra by means of triple. Also, he deduced that each congruence α on a GK_2-algebra L can be constructed by a congruence pair (α_1, α_2) in a unique way, where $\alpha_1 \in Con(L^{\circ\circ})$ and α_2 is a congruence of lattices on the bounded lattice $D(L)$. Many authors considered the concepts of permutable congruences, strong extensions and related properties (see [12], [13] and [14]).

This paper applies the concepts of 2-permutability of congruences and n-permutability of congruences to PGK_2-algebras. We characterize such concepts by using congruence pairs (α_1, α_2) of a principal GK_2-algebra L, where α_1 is a congruence on GK-algebra $L^{\circ\circ}$ of all closed elements of L, and α_2 is a lattice congruence on a lattice bounded $D(L)$. Also, we introduce and characterize the notion of strong extensions of PGK_2-algebras. We proved that a GK_2-algebra L is a strong extension of a subalgebra L_1 if and only if $L^{\circ\circ}$ is a strong extension of $L_1^{\circ\circ}$ and $D(L)$ is a strong extension of $D(L_1)$.

2 Preliminaries

This section contains the basic background and results. We refer to [9,11,15,16,17,18] for details. An MS-algebra is an algebra $(;\lor, \land, ^*, 0, 1)$ such that $(L;\lor, \land, 0, 1)$ is a bounded distributive lattice and * is a unary operation satisfying:

1. $r \leq r^{\circ\circ}$,
2. $(r \land s)^* = r^* \lor s^*$,
3. $0^* = 0$.

The subvariety M (De Morgan algebras) of MS is defined by

$$r = r^{\circ\circ} \quad (1)$$

* Corresponding author e-mail: a.gaber@sci.asu.edu.eg
The subvariety K (Kleene algebras) of M is characterized by:

$$r \land r^0 \leq s \lor s^0$$ \hspace{1cm} (2)

The class S (Stone algebras) of MS is the subvariety which is defined by:

$$r \land r^0 = 0$$ \hspace{1cm} (3)

The subvariety B (Boolean algebras) of MS is defined by the identity

$$r \lor r^0 = 1$$ \hspace{1cm} (4)

A generalized De Morgan algebra (simply GM-algebra) $(L; \lor, \land, \circ, 0, 1)$, where $(L; \lor, \land, 0, 1)$ is a bounded lattice with

1. $r = r^{oo}$,
2. $(r \land s)^0 = r^0 \lor s^0$,
3. $1^0 = 0$.

If a GM-algebra satisfies:

$$r \land r^0 \leq s \lor s^0$$ \hspace{1cm} (5)

it becomes a generalized Kleene algebra.

If we drop the distributivity condition of MS-algebra, we obtain GMS-algebra.

Lemma 2.1. [9] For any two elements r, s of a GMS-algebra L, we have

1. $0^0 = 1$,
2. $r \leq s \implies r^0 \geq s^0$,
3. $r^0 = r^{oo}$,
4. $(r \lor s)^0 = r^0 \land s^0$,
5. $(r \lor s)^{oo} = r^{oo} \lor s^{oo}$,
6. $(r \land s)^{oo} = r^{oo} \land s^{oo}$.

Definition 2.1. [11] A GK_2-algebra L is a GMS-algebra satisfying:

1. $r \land r^0 = r^{oo} \land r^0 \forall r \in L$,
2. $r \land r^0 \leq s \lor s^0 \forall r, s \in L$.

Let L be a GK_2-algebra. An element r of L is called closed if $r^{oo} = r$ and an element $d \in L$ is called dense if $d^0 = 0$. Set L^{oo} to denote the set of all closed elements of L and $D(L)$ for the set of all dense elements of L.

Lemma 2.2. [11] Let $L \in GK_2$-algebra. Then

1. L^{oo} is a GK-subalgebra of L,
2. $D(L)$ is a filter of L.

Example 2.1. (1) Every MS-algebra is a GMS-algebra.

2) Every S-algebra (pseudo-complement lattice satisfying the Stone identity, $r^* \lor r^{**} = 1$, where $r^* = \max \{s : s \land r = 0\}$ is the pseudo-complement of r) is a GMS-algebra.

3) The following is a GMS-algebra (L_1, \circ) satisfying the Stone identity $r^* \lor r^{**} = 1$. We observe that it is not an S-algebra; for example, the element μ has not pseudo-complement.
Also, we have

$L_1^{\circ} = \{0, a, b, c, q, 1\}$ is a modular GK-algebra, and $D(L_1) = \{d, x, y, z, 1\}$ is a modular lattice.

Definition 2.2.[11] A GK_2-algebra L is a PGK_2-algebra if:

1. $D(L) = \{d\}$ for some $d \in L$,
2. The generator d is distributive, that is, $(r \wedge s) \vee d = (r \vee d) \wedge (s \vee d)$ for all $r, s \in L$,
3. $r = \bar{r} \wedge (r \vee d)$ for all $r \in L$.

Example 2.2. (1) Every K_2-algebra is a GK_2-algebra.

(2) Every S-algebra is a GK_2-algebra.

(3) The GK_2-algebra L_1 of Example 2.4(3) is a PGK_2-algebra which is not an S-algebra.

(4) The following GK_2-algebra represents an S-algebra L_2, where $L_2^{\circ} = \{0, a, b, 1\}$ is a Boolean subalgebra and $D(L_2) = \{1\}$. It is clear that it is not a principal S-algebra as $c^{\circ} \wedge (c \vee 1) \neq c$.

From this example, it is not true that every finite GK_2-algebra is principal.
(5) The following GMS-algebra is a PGK₂-algebra.

\[a = a^2 = x^2 \quad b = c^2 = y^2 \quad c = b^2 = \beta^2 \]

Diagram:

- \(x \)
- \(y \)
- \(z \)
- \(d \)
- \(\alpha \)
- \(\beta \)
- \(\gamma \)

0 = 1° = x° = y° = z° = d°

\[1 = 0° \]

Definition 2.3.[6] A binary relation \(\alpha \) defined on a lattice \(L \) is said to be a lattice congruence if:

1. \(\alpha \) is an equivalence relation on \(L \).
2. \((r, s), (u, v) \in \alpha \) implies \((r \land u, s \land v), (a \lor c, b \lor d) \in \alpha \).

For a congruence relation \(\alpha \) on a lattice \(L \), \([r]_\alpha \) is given

\[[r]_\alpha = \{ t \in L : (t, r) \in \alpha \}. \]

(6)

It can be prove that \((L / \alpha, \lor, \land) \) forms a lattice, where

\[L / \alpha = \{ [r]_\alpha : r \in L \} \]

(7)

is the quotient lattice of \(L \) modulo \(\alpha \) and

\[[r]_\alpha \lor [s]_\alpha = [r \lor s]_\alpha \text{ and } [r]_\alpha \land [s]_\alpha = [r \land s]_\alpha \]

(8)

A lattice congruence \(\alpha \) on a \(\text{GK}_2 \)-algebra \((L, \circ) \) is called a congruence on \(L \) if \(r \equiv s(\alpha) \) implies \(r^\circ \equiv s^\circ (\alpha) \).

For a \(\text{GK}_2 \)-algebra \(L \), \(\text{Con}(L) \) is used to denote the set of all congruence on \(L \) and \(\alpha_{\circ L^\circ}, \alpha_{\circ D(L)} \) are used for \(\alpha \) restricted to \(L^\circ \) and \(D(L) \), respectively. Obviously, \((\alpha_{\circ L^\circ}, \alpha_{\circ D(L)}) \in \text{Con}(L^\circ) \times \text{Con}(D(L)) \). Also, we use \(\bigtriangleup_L = L \times L \) and \(\bigtriangleup_L = \{ (r, r) : r \in L \} \) for the universal and the identity congruences on \(L \), respectively.

A congruence relation \(\alpha \) on a lattice \(L \) is called principal if there exist \(r, s \in L \) such that \(\alpha \) is the smallest congruence relation for which \(r \equiv s(\alpha) \). Indeed,

\[\alpha(r, s) = \bigwedge \{ \alpha \in \text{Con}(L) : r \equiv s(\alpha) \} \]

(9)

Definition 2.4.[11] Let \(d \) be the smallest dense element of a \(\text{PGK}_2 \)-algebra \(L \). Then a pair \((\alpha_1, \alpha_2) \in \text{Con}(L^\circ) \times \text{Con}(D(L)) \) is called a congruence pair of \(L \) if \(r \equiv s(\alpha_1) \) implies \(r \lor d \equiv s \lor d(\alpha_2) \).

A characterization of a congruence relation on \(\text{PGK}_2 \)-algebras is given as follows:

Theorem 2.1.[11] Let \(d \) be the smallest dense element of a \(\text{PGK}_2 \)-algebra \(L \). Then any \(\alpha \in \text{Con}(L) \) determines a congruence pair \((\alpha_{\circ L^\circ}, \alpha_{\circ D(L)}) \). Conversely, any congruence pair \((\alpha_1, \alpha_2) \) uniquely determines an \(\alpha \in \text{Con}(L) \) satisfies \(\alpha_{\circ L^\circ} = \alpha_1 \) and \(\alpha_{\circ D(L)} = \alpha_2 \), by the rules: \(r \equiv s(\alpha) \iff r^\circ \equiv s^\circ(\alpha_1) \) and \(r \lor d \equiv s \lor d(\alpha_2) \).

Lemma 2.3.[11] Let \(L \) be a \(\text{PGK}_2 \)-algebra and let \(A(L) \) be the set of all congruence pairs of \(L \). Then:

1. \((\forall \beta \in \text{Con}(D(L)))(\bigtriangleup_{L^\circ}, \beta) \in A(L) \),
2. \((\forall \eta \in \text{Con}(L^\circ))(\bigtriangleup_{D(L)}, \eta) \in A(L) \).
3 2-Permutability of PGK_2-algebras

We extend the concept of 2-permutability of congruences to PGK_2-algebras. Some basic properties are proved, and necessary and sufficient conditions for a principal GK_2-algebra to have 2-permutable congruences are provided. Moreover, it is established how to characterise 2-permutable congruences in terms of pairs of main congruences.

Definition 3.1. Let L be a PGK_2-algebra. Then $\alpha, \delta \in \text{Con}(L)$ are 2-permutable congruences (briefly 2-permutable) if $\alpha \circ \delta = \delta \circ \alpha$, that is, $r \equiv s(\alpha)$ and $s \equiv p(\delta)$ imply the existence of an element $u \in L$ such that $r \equiv u(\delta)$ and $u \equiv p(\alpha)$.

A PGK_2-algebra L is called 2-permutable congruences if any pair of congruences permute. Let L be a principal GK_2-algebra. Define a relation Γ on L as follows:

$$(r, s) \in \Gamma \iff r^{oo} = s^{oo} \iff r^o = s^\delta.$$

Lemma 3.1. Let L be a PGK_2-algebras. Then

1. $\Gamma \in \text{Con}(L)$ with $\text{Ker} \Gamma = \{0\}$ and $\text{Coker} \Gamma = D(L)$,
2. r^{oo} is the maximum element of the $[r]_{\Gamma}$, where $[r]_{\Gamma} = \{s \in L : s^{oo} = r^{oo}\}$,
3. $[r]_{\Gamma} = [r^oo]_{\Gamma}$ for any $r \in L$,
4. L/Γ is a GK-algebra,
5. $L/\Gamma \cong L^{oo}$.

Proof. (1) It is straightforward to show that Γ is an equivalent relation on L. Let $(r, s), (u, v) \in \Gamma$. Then $r^{oo} = s^{oo}$ and $u^{oo} = v^{oo}$. Now we have

$$(r \land u)^{oo} = r^{oo} \land u^{oo} = s^{oo} \land v^{oo} = (s \land v)^{oo}.$$

Then $(r \land u, s \land v) \in \Gamma$. Also, we have

$$(r \lor u)^{oo} = r^{oo} \lor u^{oo} = s^{oo} \lor v^{oo} = (s \lor v)^{oo}.$$

Then $(r \lor u, s \lor v) \in \Gamma$. Now, let $(r, s) \in \Gamma$. Then we have

$$(r, s) \in \Gamma \implies r^{oo} = s^{oo}$$

$$\implies (r^o, s^\delta) \in \Gamma.$$

Then $\Gamma \in \text{Con}(L)$. We observe that

$$\text{Ker} \Gamma = \{r \in L : (r, 0) \in \Gamma\} = \{r \in L : r^{oo} = 0^{oo} = 0\} = \{r \in L : r^o = 1\} = \{0\}.$$

Moreover,

$$\text{Coker} \Gamma = \{r \in L : (r, 1) \in \Gamma\} = \{r \in L : r^{oo} = 1^{oo} = 1\} = \{r \in L : r^o = 0\} = D(L).$$
Since \(\omega = \omega \), then \(\omega \in [\alpha] \). Let \(s \in [\alpha] \). Then \(s \leq \omega = \omega \). Hence, \(\omega \) is the greatest element of \([\alpha] \).

(3) Since \(\omega = \omega \), then \(\omega \) implies \(\omega \) and \(\forall r \in L \).

(4) We have \((L/G; \lor, \land, [0]G), [1]G \) is a bounded lattice with bounds \([0]G\) and \([1]G\), where \([r]G \land [s]G = [r \land s]G\) and \([r]G \lor [s]G = [r \lor s]G\). Define \(\triangleleft \) on \(L/G \) by \(([r]G)^\triangleleft = [r^0]G \). Now, we have the following equalities

\[
(0]G)^\square = [1]G, \quad ([1]G)^\square = [0]G,
\]

\[
([r]G)^\square = [r^0]G = [s]G,
\]

\[
([r]G \land [s]G)^\square = ([r \land s]G)^\square = [r^0 \land s^0]G = [r^0 \lor s^0]G = ([r]G)^\square \lor ([s]G)^\square.
\]

Then \(L/G \) is a GM-algebra. Since \(r \land r^0 \leq s \lor s^0 \), then \([r \land r^0]G \leq [s \lor s^0]G \). Hence,

\[
\]

Thus, \(L/G \) is a GK-algebra.

(5) Define \(f : L^\ominus \longrightarrow L/G \) by

\[
f(r) = [r]G \quad \forall r \in L^\ominus
\]

It is clear that \(f \) is well-defined. Let \(f(r) = f(s) \). Then \([r]G = [s]G \) implies \(r \equiv s \). Then \(r = s^\ominus = s \) as \(r,s \in L^\ominus \). Then \(f \) is one-to-one. Let \([s]G \in L/G \) for some \(s \in L \). Then \([s]G = [s^\ominus]G \) and so \(f(s^\ominus) = [s^\ominus]G = [s]G \). Then \(f \) is onto Also, we need to show that \(f \) is a homomorphism. Clearly, \(f(r \lor s) = f(r) \lor f(s) \) and \(f(r \land s) = f(r) \land f(s) \). Also,

\[
f(r^0) = [r^0]G = [r^0 \ominus]G = ([r]G)^\square = ([f(r)]^\square = ([f(r)]^\square = ([f(r)]^\square.
\]

Clearly \(f(0^\ominus) = [0]G \) and \(f(1) = [1]G \). Hence, \(L^\ominus \cong L/G \).

Lemma 3.2. Let \(L \) be a PGK\(_2\)-algebras. Then:

1. \(\Gamma \) permutes with any \(\alpha \in \text{Con}(L) \).
2. \(\triangle_L \) permutes with any \(\alpha \in \text{Con}(L) \).
3. \(\triangledown_L \) permutes with any \(\alpha \in \text{Con}(L) \).

Proof. (1) Let \(\alpha \in \text{Con}(L) \). Then we need to show that \(\alpha \circ \Gamma = \Gamma \circ \alpha \). Let \(r \equiv s(\alpha \circ \Gamma) \). Then \(r \equiv p(\alpha) \) and \(p \equiv s(\Gamma) \) for some \(r \in L \). So, \(r \equiv p(\alpha) \) and \(p^0 = s^\ominus \). Now

\[
r \equiv p(\alpha) \implies p^0 \equiv p^0(\alpha), s \lor d \equiv s \lor d(\alpha)
\]

\[
\implies p^0 \equiv s^\ominus(\alpha), s \lor d \equiv s \lor d(\alpha) \text{ as } p^0 = s^\ominus
\]

\[
\implies p^0 \land (s \lor d) \equiv s^\ominus \land (s \lor d)(\alpha) = s(\alpha) \text{ as } s = s^\ominus \land (s \lor d)
\]

Since \(p^0 \land (s \lor d) = r^0 \), then \(p^0 \land (s \lor d) = [r^0]G \). Since \(r \equiv r^0 \land (s \lor d)(\Gamma) \) and \(r^0 \land (s \lor d)(\alpha) \equiv s(\alpha) \), then \(r \equiv s(\Gamma \circ \alpha) \).

(2) Let \(r \equiv s(\alpha \circ \triangle_L) \). Then \(r \equiv p(\alpha) \), \(p \equiv s(\triangle_L) \) for some \(r \in L \). Hence \(r \equiv s(\alpha) \) as \(p = s \). Then, \(r \equiv r(\triangle_L) \) and \(r \equiv s(\alpha) \).

Thus, we deduced that \(r \equiv s(\triangle_L \circ \alpha) \). Therefore, \(\triangle_L \) permutes with any element of \(\text{Con}(L) \).

(3) Let \(r \equiv s(\alpha \circ \triangledown_L) \). Then \(r \equiv p(\alpha) \), \(p \equiv s(\triangledown_L) \) for some \(r \in L \). Then we have \(r \equiv s(\triangledown_L) \) and \(s \equiv s(\alpha) \). Thus, \(r \equiv s(\triangledown_L \circ \alpha) \). Therefore, \(\triangledown_L \) permutes with any element of \(\text{Con}(L) \).
Now, we provide a characterization of 2-permutable congruences.

Theorem 3.1. Let d be the smallest dense element of a PGK$_2$-algebra L. Then L has 2-permutable congruences if and only if:

1. L^0 has 2-permutable congruences,
2. $D(L)$ has 2-permutable congruences.

Proof. Suppose that α, δ are 2-permutable on L. First, we prove that $\alpha_d = \delta_d$ are 2-permutable on L^0. Consider that $r, s, p \in L^0$ be such that $r \equiv s(\alpha_d)$ and $s \equiv p(\delta_d)$. Then $r \equiv s(\alpha)$ and $s \equiv p(\delta)$. Since α, δ are 2-permutable, we have $r \equiv q(\delta), q \equiv p(\alpha)$ for some $q \in L$. Now,

$$r \equiv q(\delta), q \equiv p(\alpha) \implies r^0 \equiv q^0(\delta), q^0 \equiv p^0(\alpha) \implies r \equiv u(\delta), u \equiv p(\alpha) \text{ as } r, p \in L^0 \implies r \equiv q^0(\delta), q^0 \equiv p^0(\alpha) \text{ as } q^0 \in L^0.$$

Therefore $\alpha_d = \delta_d$ are 2-permutable on L^0 and (1) is proved. Secondly, we show that 2-permutability of α, δ implies 2-permutability of α_d and δ_d. Let $r, s, p \in D(L)$ such that $r \equiv s(\alpha_d)$ and $s \equiv p(\delta_d)$. Then $r \equiv s(\alpha)$, $s \equiv p(\delta)$. Since α, δ are 2-permutable, then $r \equiv u(\delta)$ and $u \equiv p(\alpha)$ for some $u \in L$. Now,

$$r \equiv u(\delta), u \equiv p(\alpha) \implies u \equiv u(\delta), u \equiv p(\alpha) \text{ as } u, p \geq d \implies r \equiv u \equiv u(\delta), u \equiv p(\alpha) \text{ where } u \equiv d \in D(L).$$

Hence $r \equiv u \equiv d(\delta_d)$ and $u \equiv p(\alpha_d)$. Therefore α_d and δ_d are 2-permutable congruences on $D(L)$. For the converse direction, let $\alpha, \delta \in \text{Con}(L)$ such that $\alpha_d = \delta_d$ and $\text{Con}(L)$ are 2-permutable on L^0 and $D(L)$, respectively. Consider the elements $r, s, p \in L$ with $r \equiv s(\alpha)$ and $s \equiv p(\delta)$. We have, by Theorem 2.9, that $r^0 \equiv s^0(\alpha_d)$ and $s^0 \equiv p^0(\delta_d)$. Since α_d, δ_d are 2-permutable congruences on L^0, then $r^0 \equiv u^0(\delta_d)$ and $u \equiv p^0(\alpha_d)$ with $u \in L^0$ implies that $r^0 \equiv u(\delta)$ and $u \equiv p^0(\alpha)$. On the other hand, also by Theorem 2.9, we get $r \equiv u \equiv v(\delta_d)$ and $v \equiv p \equiv d(\delta_d)$. Since α_d, δ_d are 2-permutable congruences on $D(L)$, then $r \equiv u \equiv v(\delta_d)$ and $v \equiv p \equiv d(\delta)$. It follows that

$$r \equiv r^0 \land (r \lor d) \land p = p^0 \land (p \lor d).$$

(11)

Since L is a PGK$_2$-algebra, then we have $r = r^0 \land (r \lor d)$ and $p = p^0 \land (p \lor d)$. Then we have

$$r^0 \equiv u(\delta), r \lor d \equiv v(\delta) \implies r = r^0 \land (r \lor d) \equiv u \lor v(\delta),$$

(12)

and

$$u \equiv p^0(\alpha), v \equiv p \lor d(\alpha) \implies a \lor v \equiv p^0 \land (p \lor d)(\alpha) = p \equiv p,$$

(13)

Consequently, we deduce that $r \equiv u \lor v(\delta)$ and $u \lor v \equiv p(\alpha)$. Therefore α, δ are 2-permutable congruences.

Theorem 3.2. A PGK$_2$-algebra L has 2-permutable congruences if and only if every pair of principal congruences on L permutes.

Proof. The first statement is obvious. Assume that any pair of principal congruences on L permute. Let $\alpha, \delta \in \text{Con}(L)$. Consider $r, s, p \in L$ with $r \equiv s(\alpha)$ and $s \equiv p(\delta)$. It is clear that $\alpha \cup \delta \subseteq \alpha$ and $\delta \cup (s, p) \subseteq \delta$. Hence, $r \equiv p(\alpha \cup \delta)$. Since $\alpha \cup \delta$ is 2-permutable, then $r \equiv u(\delta(s, p))$ and $u \equiv p(\alpha(s, p))$ for some $u \in L$. Consequently, $r \equiv u(\delta)$ and $u \equiv p(\alpha)$ and hence $r \equiv p(\alpha \cup \delta)$.

4. n-Permutability of PGK$_2$-algebras

The results of this section extend the 2-permutability of congruences of PGK$_2$-algebras to n-permutable congruences. Two congruences α, δ are n-permutable if

$$\alpha \circ \delta \circ \alpha \circ \ldots \ldots \ldots \ldots (n - \text{ times}) = \delta \circ \alpha \circ \delta \circ \ldots \ldots \ldots \ldots (n - \text{ times}),$$

(14)

where $n = 1, 2, \ldots, n - 1$.

Definition 4.1. A principal GK$_2$-algebra L has n-permutable congruences, if every two congruences in L are n-permutable.
Lemma 4.1. Let \(d \) be the smallest dense element of a PGK\(_2\)-algebra \(L \). Let \(\theta, \psi \) be congruences on \(L \). Then

\[
\begin{align*}
(1) \quad \{ \alpha \circ \delta \circ \alpha \circ \ldots \} \big|_{L^{\infty}} &= \alpha_{L^{\infty}} \circ \delta_{L^{\infty}} \circ \alpha_{L^{\infty}} \circ \ldots \quad (n - \text{times}), \\
(2) \quad \{ \alpha \circ \delta \circ \alpha \circ \ldots \} \big|_{D(L)} &= \alpha_{D(L)} \circ \delta_{D(L)} \circ \alpha_{D(L)} \circ \ldots \quad (n - \text{times}).
\end{align*}
\]

Proof. (1) To show the equality (15)

Now, let \(r, s \in L^{\infty} \) with \(r \equiv s(\alpha \circ \delta \circ \ldots) \). Then \(r \equiv s(\alpha \circ \delta \circ \ldots) \). Thus there exist elements \(t_1, t_2, \ldots, t_{n-1} \in L \) be such that \(r \equiv t_1(\alpha), t_1 \equiv t_2(\delta), \ldots, t_{n-1} \equiv s(\nu) \), where

\[
\nu = \begin{cases}
\alpha & \text{if } n \text{ is odd} \\
\delta & \text{if } n \text{ is even}
\end{cases}
\]

We have, \(s(\nu) = t_1(\alpha), t_1 \equiv t_2(\delta), \ldots, t_{n-1} \equiv s(\nu) \). Then, \(r \equiv s(\delta_{L^{\infty}} \circ \alpha_{L^{\infty}} \circ \ldots) \) because of \(t_n \wedge d \in L^{\infty} \) for \(n = 1, 2, \ldots, n - 1 \). The reverse inclusion is obvious. Hence,

\[
\{ \alpha \circ \delta \circ \ldots \} \big|_{L^{\infty}} = \{ \alpha_{L^{\infty}} \circ \delta_{L^{\infty}} \circ \ldots \}.
\]

(2) Let \(r, s \in D(L) \) be such that \(r \equiv s(\theta \circ \psi \circ \ldots) \). Then there exist \(t_1, t_2, \ldots, t_{n-1} \in L \) be such that \(r \equiv t_1(\alpha), t_1 \equiv t_2(\delta), \ldots, t_{n-1} \equiv b(\nu) \). Then, \(r \equiv r \vee d \equiv t_1 \vee d(\alpha), \ldots, t_{n-1} \vee d \equiv b \vee d \equiv s(\nu) \). Therefore,

\[
\{ \alpha \circ \delta \circ \ldots \} \big|_{D(L)} = \{ \alpha_{D(L)} \circ \delta_{D(L)} \circ \ldots \} \quad (n - \text{time})
\]

Theorem 4.1. Let \(d \) be the smallest dense element of a PGK\(_2\)-algebra \(L \). Then \(L \) has \(n \)-permutable congruences if and only if \(L^{\infty} \) and \(D(L) \) are \(n \)-permutable congruences.

Proof. (\(\Rightarrow \)) By using Lemma 4.2(1) we have

\[
\begin{align*}
\alpha_{L^{\infty}} \circ \delta_{L^{\infty}} \circ \ldots &= \{ \alpha \circ \delta \circ \ldots \} \big|_{L^{\infty}} \\
&= \delta \circ \alpha \circ \ldots \big|_{L^{\infty}} \\
&= \delta_{L^{\infty}} \circ \alpha_{L^{\infty}} \circ \ldots
\end{align*}
\]

Again by using Lemma 4.2(2) we have

\[
\begin{align*}
\alpha_{D(L)} \circ \delta_{D(L)} \circ \ldots &= \{ \alpha \circ \delta \circ \ldots \} \big|_{D(L)} \\
&= \delta \circ \alpha \circ \ldots \big|_{D(L)} \\
&= \delta_{D(L)} \circ \alpha_{D(L)} \circ \ldots
\end{align*}
\]

(\(\Leftarrow \)) Let \(r \equiv s(\alpha \circ \beta \circ \ldots) \). Then \(r^{\infty} \equiv s^{\infty}(\{ \alpha \circ \beta \circ \ldots \} \big|_{L^{\infty}}) \) and \(r \vee d \equiv s \vee d(\{ \alpha \circ \beta \circ \ldots \} \big|_{D(L)}) \) by Theorem 2.9. Applying Lemma 4.2 we have

\[
\begin{align*}
\text{Since } \alpha_{L^{\infty}} \circ \delta_{L^{\infty}} \circ \ldots &= \delta_{L^{\infty}} \circ \alpha_{L^{\infty}} \circ \ldots \quad (n - \text{times}) \quad \text{and } \alpha_{D(L)} \circ \delta_{D(L)} \circ \ldots \equiv \delta_{D(L)} \circ \alpha_{D(L)} \circ \ldots \quad (n - \text{times}), \\
\text{then we get } \\
r^{\infty} \equiv s^{\infty}(\{ \alpha \circ \beta \circ \ldots \} \big|_{L^{\infty}}) \quad \text{and } r \vee d \equiv s \vee d(\{ \alpha \circ \beta \circ \ldots \} \big|_{D(L)}).
\end{align*}
\]

Now, by using Definition 2.5(3) and Theorem 2.9, we get

\[
\begin{align*}
\text{Therefore, } r \equiv s(\delta \circ \alpha \circ \ldots). \text{ Thus, we deduce that } \delta \text{ and } \alpha \text{ are } n \text{ permutable.}
\end{align*}
\]
5 Strong extensions of \(PGK_2\)-algebras

The concept of strong extensions of \(PGK_2\)-algebras is investigated in this section. An algebra \(L\) satisfies the congruence extension property (CEP); if for every subalgebra \(L_1\) of \(L\) and every \(\alpha\) of \(L_1\), \(\alpha\) extends to a congruence of \(L\). (see [19])

Definition 5.1. Let \(M_1\) and \(N\) be a \(PGK_2\)-algebra. Then we call the algebra \(K\) a strong extension of the algebra \(K_1\) if \(K_1\) is a subalgebra of \(K\) and for any \(\alpha_1 \in \text{Con}(K_1)\), there exists a unique congruence relation \(\alpha \in \text{Con}(K)\) such that \(\alpha_{K_1} = \alpha_1\).

Theorem 5.1. Let \(K_1\) be a subalgebra of a \(PGK_2\)-algebra \(K\). Then \(K\) is a strong extension of \(K_1\) if and only if

1. \(D(K)\) is a strong extension of \(D(K_1)\),

2. \(K^{\infty}\) is a strong extension of \(K_1^{\infty}\).

Proof. Let \(K\) be a strong extension of \(K_1\). Let \(\eta_2 \in \text{Con}(D(K_1))\). Assume that \(\tilde{\eta}_2, \tilde{\eta}_2 \in \text{Con}(D(K))\) such that \(\tilde{\eta}_2 \circ \eta_2 = \eta_2\). Then, by Lemma 2.10(1), we have

\[
(\Delta_{K^{\infty}}, \tilde{\eta}_2) \in A(K) \text{ and } (\Delta_{K_1^{\infty}}, \eta_2) \in A(K_1).
\]

According to Theorem 2.9, we have \(\tilde{\eta}, \eta \in \text{Con}(K)\) and \(\eta \in \text{Con}(K_1)\) corresponding to \((\Delta_{K^{\infty}}, \tilde{\eta}_2), (\Delta_{K_1^{\infty}}, \eta_2)\) and \(\eta = (\Delta_{K_1^{\infty}}, \eta_1)\), respectively. We see that \(\tilde{\eta}_1 = \tilde{\eta}_1 = \eta\). We have \(\tilde{\eta} = \eta\). Hence, \(\tilde{\eta} = \tilde{\eta}_2\) proving (1). On the other hand, we need to show that \(K^{\infty}\) is a strong extension of \(K_1^{\infty}\). Let \(\eta_1 \in \text{Con}(K_1^{\infty})\) and \(\eta\) extend to a congruence of \(K^{\infty}\). Let \(\eta_1 \in \text{Con}(K^{\infty})\) with \(\eta_1 \circ \eta_1 = \eta_1 \circ \eta_1 = \eta_1\). Then, by Lemma 2.10(2), we have

\[
(\eta_1, \eta_2)(\eta_2, \eta_2) \in A(K) \text{ and } (\eta_1, \eta_2)(\eta_2, \eta_2) \in A(K_1).
\]

Again, by Theorem 2.9, we have \(\tilde{\eta}, \eta \in \text{Con}(K)\) and \(\eta \in \text{Con}(K_1)\) corresponding to \((\eta_1, \eta_2)(\eta_2, \eta_2), (\eta_1, \eta_2)(\eta_2, \eta_2)\) and \(\eta = (\eta_1, \eta_2)(\eta_2, \eta_2)\), respectively. We see that \(\tilde{\eta}_1 = \tilde{\eta}_1 = \eta_1\). Since \(K\) is a strong extension of \(K_1\), then \(\eta_1 = \eta_1\). Therefore \(\tilde{\eta}_1 = \tilde{\eta}_1\), proving (2). Conversely, suppose that conditions (1) and (2) hold and let \(\eta \in \text{Con}(K_1)\). Let \(\tilde{\eta}, \eta\) be extensions of \(\eta\) in \(\text{Con}(K)\). By Theorem 2.9, the congruences \(\tilde{\eta}, \eta\) and \(\eta\) can be represented by the congruence pairs \((\tilde{\eta}_1, \tilde{\eta}_2)(\tilde{\eta}_2, \tilde{\eta}_2)\) and \((\eta_1, \eta_2)\), respectively. Where

\[
\tilde{\eta}_1 \circ \tilde{\eta}_1 = \tilde{\eta}_1 \circ \tilde{\eta}_1 = \eta_1 \text{ and } \tilde{\eta}_2 \circ \tilde{\eta}_2 = \tilde{\eta}_2 \circ \tilde{\eta}_2 = \eta_2.
\]

By (1) and (2) we get

\[
\tilde{\eta}_1 = \tilde{\eta}_1 \text{ and } \tilde{\eta}_2 = \tilde{\eta}_2.
\]

Therefore, \(\tilde{\eta} = \eta\).

Corollary 5.1. Let \(K_1\) and \(K\) be \(PGK_2\)-algebras. If \(K_1\) is a strong extension of \(K\), then \(\text{Con}(K_1) \cong \text{Con}(K)\).

6 Conclusion

The following three key concepts in algebraic structures: 2-Permutability, \(n\)-Permutability, and strong extensions were examined for the \(PGK_2\)-algebras via congruence pairs. This paper's work could be further developed to study many aspects of \(GK_2\)-algebras and related structures. For instance, it can be applied to triple construction of \(GK_2\)-algebras, perfect extensions of \(PGK_2\)-algebras, and substructures of \(PGK_2\)-algebras.

References